| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/third_party/quic/core/quic_data_writer.h" |
| |
| #include <cstdint> |
| |
| #include "net/third_party/quic/core/quic_connection_id.h" |
| #include "net/third_party/quic/core/quic_data_reader.h" |
| #include "net/third_party/quic/core/quic_utils.h" |
| #include "net/third_party/quic/platform/api/quic_arraysize.h" |
| #include "net/third_party/quic/platform/api/quic_flags.h" |
| #include "net/third_party/quic/platform/api/quic_test.h" |
| #include "net/third_party/quic/test_tools/quic_test_utils.h" |
| #include "starboard/memory.h" |
| |
| namespace quic { |
| namespace test { |
| namespace { |
| |
| char* AsChars(unsigned char* data) { |
| return reinterpret_cast<char*>(data); |
| } |
| |
| struct TestParams { |
| explicit TestParams(Endianness endianness) : endianness(endianness) {} |
| |
| Endianness endianness; |
| }; |
| |
| std::vector<TestParams> GetTestParams() { |
| std::vector<TestParams> params; |
| for (Endianness endianness : {NETWORK_BYTE_ORDER, HOST_BYTE_ORDER}) { |
| params.push_back(TestParams(endianness)); |
| } |
| return params; |
| } |
| |
| class QuicDataWriterTest : public QuicTestWithParam<TestParams> {}; |
| |
| INSTANTIATE_TEST_SUITE_P(QuicDataWriterTests, |
| QuicDataWriterTest, |
| ::testing::ValuesIn(GetTestParams())); |
| |
| TEST_P(QuicDataWriterTest, SanityCheckUFloat16Consts) { |
| // Check the arithmetic on the constants - otherwise the values below make |
| // no sense. |
| EXPECT_EQ(30, kUFloat16MaxExponent); |
| EXPECT_EQ(11, kUFloat16MantissaBits); |
| EXPECT_EQ(12, kUFloat16MantissaEffectiveBits); |
| EXPECT_EQ(UINT64_C(0x3FFC0000000), kUFloat16MaxValue); |
| } |
| |
| TEST_P(QuicDataWriterTest, WriteUFloat16) { |
| struct TestCase { |
| uint64_t decoded; |
| uint16_t encoded; |
| }; |
| TestCase test_cases[] = { |
| // Small numbers represent themselves. |
| {0, 0}, |
| {1, 1}, |
| {2, 2}, |
| {3, 3}, |
| {4, 4}, |
| {5, 5}, |
| {6, 6}, |
| {7, 7}, |
| {15, 15}, |
| {31, 31}, |
| {42, 42}, |
| {123, 123}, |
| {1234, 1234}, |
| // Check transition through 2^11. |
| {2046, 2046}, |
| {2047, 2047}, |
| {2048, 2048}, |
| {2049, 2049}, |
| // Running out of mantissa at 2^12. |
| {4094, 4094}, |
| {4095, 4095}, |
| {4096, 4096}, |
| {4097, 4096}, |
| {4098, 4097}, |
| {4099, 4097}, |
| {4100, 4098}, |
| {4101, 4098}, |
| // Check transition through 2^13. |
| {8190, 6143}, |
| {8191, 6143}, |
| {8192, 6144}, |
| {8193, 6144}, |
| {8194, 6144}, |
| {8195, 6144}, |
| {8196, 6145}, |
| {8197, 6145}, |
| // Half-way through the exponents. |
| {0x7FF8000, 0x87FF}, |
| {0x7FFFFFF, 0x87FF}, |
| {0x8000000, 0x8800}, |
| {0xFFF0000, 0x8FFF}, |
| {0xFFFFFFF, 0x8FFF}, |
| {0x10000000, 0x9000}, |
| // Transition into the largest exponent. |
| {0x1FFFFFFFFFE, 0xF7FF}, |
| {0x1FFFFFFFFFF, 0xF7FF}, |
| {0x20000000000, 0xF800}, |
| {0x20000000001, 0xF800}, |
| {0x2003FFFFFFE, 0xF800}, |
| {0x2003FFFFFFF, 0xF800}, |
| {0x20040000000, 0xF801}, |
| {0x20040000001, 0xF801}, |
| // Transition into the max value and clamping. |
| {0x3FF80000000, 0xFFFE}, |
| {0x3FFBFFFFFFF, 0xFFFE}, |
| {0x3FFC0000000, 0xFFFF}, |
| {0x3FFC0000001, 0xFFFF}, |
| {0x3FFFFFFFFFF, 0xFFFF}, |
| {0x40000000000, 0xFFFF}, |
| {0xFFFFFFFFFFFFFFFF, 0xFFFF}, |
| }; |
| int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]); |
| |
| for (int i = 0; i < num_test_cases; ++i) { |
| char buffer[2]; |
| QuicDataWriter writer(2, buffer, GetParam().endianness); |
| EXPECT_TRUE(writer.WriteUFloat16(test_cases[i].decoded)); |
| uint16_t result = *reinterpret_cast<uint16_t*>(writer.data()); |
| if (GetParam().endianness == NETWORK_BYTE_ORDER) { |
| result = QuicEndian::HostToNet16(result); |
| } |
| EXPECT_EQ(test_cases[i].encoded, result); |
| } |
| } |
| |
| TEST_P(QuicDataWriterTest, ReadUFloat16) { |
| struct TestCase { |
| uint64_t decoded; |
| uint16_t encoded; |
| }; |
| TestCase test_cases[] = { |
| // There are fewer decoding test cases because encoding truncates, and |
| // decoding returns the smallest expansion. |
| // Small numbers represent themselves. |
| {0, 0}, |
| {1, 1}, |
| {2, 2}, |
| {3, 3}, |
| {4, 4}, |
| {5, 5}, |
| {6, 6}, |
| {7, 7}, |
| {15, 15}, |
| {31, 31}, |
| {42, 42}, |
| {123, 123}, |
| {1234, 1234}, |
| // Check transition through 2^11. |
| {2046, 2046}, |
| {2047, 2047}, |
| {2048, 2048}, |
| {2049, 2049}, |
| // Running out of mantissa at 2^12. |
| {4094, 4094}, |
| {4095, 4095}, |
| {4096, 4096}, |
| {4098, 4097}, |
| {4100, 4098}, |
| // Check transition through 2^13. |
| {8190, 6143}, |
| {8192, 6144}, |
| {8196, 6145}, |
| // Half-way through the exponents. |
| {0x7FF8000, 0x87FF}, |
| {0x8000000, 0x8800}, |
| {0xFFF0000, 0x8FFF}, |
| {0x10000000, 0x9000}, |
| // Transition into the largest exponent. |
| {0x1FFE0000000, 0xF7FF}, |
| {0x20000000000, 0xF800}, |
| {0x20040000000, 0xF801}, |
| // Transition into the max value. |
| {0x3FF80000000, 0xFFFE}, |
| {0x3FFC0000000, 0xFFFF}, |
| }; |
| int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]); |
| |
| for (int i = 0; i < num_test_cases; ++i) { |
| uint16_t encoded_ufloat = test_cases[i].encoded; |
| if (GetParam().endianness == NETWORK_BYTE_ORDER) { |
| encoded_ufloat = QuicEndian::HostToNet16(encoded_ufloat); |
| } |
| QuicDataReader reader(reinterpret_cast<char*>(&encoded_ufloat), 2, |
| GetParam().endianness); |
| uint64_t value; |
| EXPECT_TRUE(reader.ReadUFloat16(&value)); |
| EXPECT_EQ(test_cases[i].decoded, value); |
| } |
| } |
| |
| TEST_P(QuicDataWriterTest, RoundTripUFloat16) { |
| // Just test all 16-bit encoded values. 0 and max already tested above. |
| uint64_t previous_value = 0; |
| for (uint16_t i = 1; i < 0xFFFF; ++i) { |
| // Read the two bytes. |
| uint16_t read_number = i; |
| if (GetParam().endianness == NETWORK_BYTE_ORDER) { |
| read_number = QuicEndian::HostToNet16(read_number); |
| } |
| QuicDataReader reader(reinterpret_cast<char*>(&read_number), 2, |
| GetParam().endianness); |
| uint64_t value; |
| // All values must be decodable. |
| EXPECT_TRUE(reader.ReadUFloat16(&value)); |
| // Check that small numbers represent themselves |
| if (i < 4097) { |
| EXPECT_EQ(i, value); |
| } |
| // Check there's monotonic growth. |
| EXPECT_LT(previous_value, value); |
| // Check that precision is within 0.5% away from the denormals. |
| if (i > 2000) { |
| EXPECT_GT(previous_value * 1005, value * 1000); |
| } |
| // Check we're always within the promised range. |
| EXPECT_LT(value, UINT64_C(0x3FFC0000000)); |
| previous_value = value; |
| char buffer[6]; |
| QuicDataWriter writer(6, buffer, GetParam().endianness); |
| EXPECT_TRUE(writer.WriteUFloat16(value - 1)); |
| EXPECT_TRUE(writer.WriteUFloat16(value)); |
| EXPECT_TRUE(writer.WriteUFloat16(value + 1)); |
| // Check minimal decoding (previous decoding has previous encoding). |
| uint16_t encoded1 = *reinterpret_cast<uint16_t*>(writer.data()); |
| uint16_t encoded2 = *reinterpret_cast<uint16_t*>(writer.data() + 2); |
| uint16_t encoded3 = *reinterpret_cast<uint16_t*>(writer.data() + 4); |
| if (GetParam().endianness == NETWORK_BYTE_ORDER) { |
| encoded1 = QuicEndian::NetToHost16(encoded1); |
| encoded2 = QuicEndian::NetToHost16(encoded2); |
| encoded3 = QuicEndian::NetToHost16(encoded3); |
| } |
| EXPECT_EQ(i - 1, encoded1); |
| // Check roundtrip. |
| EXPECT_EQ(i, encoded2); |
| // Check next decoding. |
| EXPECT_EQ(i < 4096 ? i + 1 : i, encoded3); |
| } |
| } |
| |
| TEST_P(QuicDataWriterTest, WriteConnectionId) { |
| QuicConnectionId connection_id = |
| TestConnectionId(UINT64_C(0x0011223344556677)); |
| char big_endian[] = { |
| 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, |
| }; |
| EXPECT_EQ(connection_id.length(), QUIC_ARRAYSIZE(big_endian)); |
| ASSERT_LE(connection_id.length(), kQuicMaxConnectionIdLength); |
| char buffer[kQuicMaxConnectionIdLength]; |
| QuicDataWriter writer(connection_id.length(), buffer, GetParam().endianness); |
| EXPECT_TRUE(writer.WriteConnectionId(connection_id)); |
| test::CompareCharArraysWithHexError("connection_id", buffer, |
| connection_id.length(), big_endian, |
| connection_id.length()); |
| |
| QuicConnectionId read_connection_id; |
| QuicDataReader reader(buffer, connection_id.length(), GetParam().endianness); |
| EXPECT_TRUE( |
| reader.ReadConnectionId(&read_connection_id, QUIC_ARRAYSIZE(big_endian))); |
| EXPECT_EQ(connection_id, read_connection_id); |
| } |
| |
| TEST_P(QuicDataWriterTest, EmptyConnectionIds) { |
| QuicConnectionId empty_connection_id = EmptyQuicConnectionId(); |
| char buffer[2]; |
| QuicDataWriter writer(QUIC_ARRAYSIZE(buffer), buffer, GetParam().endianness); |
| EXPECT_TRUE(writer.WriteConnectionId(empty_connection_id)); |
| EXPECT_TRUE(writer.WriteUInt8(1)); |
| EXPECT_TRUE(writer.WriteConnectionId(empty_connection_id)); |
| EXPECT_TRUE(writer.WriteUInt8(2)); |
| EXPECT_TRUE(writer.WriteConnectionId(empty_connection_id)); |
| EXPECT_FALSE(writer.WriteUInt8(3)); |
| |
| EXPECT_EQ(buffer[0], 1); |
| EXPECT_EQ(buffer[1], 2); |
| |
| QuicConnectionId read_connection_id = TestConnectionId(); |
| uint8_t read_byte; |
| QuicDataReader reader(buffer, QUIC_ARRAYSIZE(buffer), GetParam().endianness); |
| EXPECT_TRUE(reader.ReadConnectionId(&read_connection_id, 0)); |
| EXPECT_EQ(read_connection_id, empty_connection_id); |
| EXPECT_TRUE(reader.ReadUInt8(&read_byte)); |
| EXPECT_EQ(read_byte, 1); |
| // Reset read_connection_id to something else to verify that |
| // ReadConnectionId properly sets it back to empty. |
| read_connection_id = TestConnectionId(); |
| EXPECT_TRUE(reader.ReadConnectionId(&read_connection_id, 0)); |
| EXPECT_EQ(read_connection_id, empty_connection_id); |
| EXPECT_TRUE(reader.ReadUInt8(&read_byte)); |
| EXPECT_EQ(read_byte, 2); |
| read_connection_id = TestConnectionId(); |
| EXPECT_TRUE(reader.ReadConnectionId(&read_connection_id, 0)); |
| EXPECT_EQ(read_connection_id, empty_connection_id); |
| EXPECT_FALSE(reader.ReadUInt8(&read_byte)); |
| } |
| |
| TEST_P(QuicDataWriterTest, WriteTag) { |
| char CHLO[] = { |
| 'C', |
| 'H', |
| 'L', |
| 'O', |
| }; |
| const int kBufferLength = sizeof(QuicTag); |
| char buffer[kBufferLength]; |
| QuicDataWriter writer(kBufferLength, buffer, GetParam().endianness); |
| writer.WriteTag(kCHLO); |
| test::CompareCharArraysWithHexError("CHLO", buffer, kBufferLength, CHLO, |
| kBufferLength); |
| |
| QuicTag read_chlo; |
| QuicDataReader reader(buffer, kBufferLength, GetParam().endianness); |
| reader.ReadTag(&read_chlo); |
| EXPECT_EQ(kCHLO, read_chlo); |
| } |
| |
| TEST_P(QuicDataWriterTest, Write16BitUnsignedIntegers) { |
| char little_endian16[] = {0x22, 0x11}; |
| char big_endian16[] = {0x11, 0x22}; |
| char buffer16[2]; |
| { |
| uint16_t in_memory16 = 0x1122; |
| QuicDataWriter writer(2, buffer16, GetParam().endianness); |
| writer.WriteUInt16(in_memory16); |
| test::CompareCharArraysWithHexError( |
| "uint16_t", buffer16, 2, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian16 |
| : little_endian16, |
| 2); |
| |
| uint16_t read_number16; |
| QuicDataReader reader(buffer16, 2, GetParam().endianness); |
| reader.ReadUInt16(&read_number16); |
| EXPECT_EQ(in_memory16, read_number16); |
| } |
| |
| { |
| uint64_t in_memory16 = 0x0000000000001122; |
| QuicDataWriter writer(2, buffer16, GetParam().endianness); |
| writer.WriteBytesToUInt64(2, in_memory16); |
| test::CompareCharArraysWithHexError( |
| "uint16_t", buffer16, 2, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian16 |
| : little_endian16, |
| 2); |
| |
| uint64_t read_number16; |
| QuicDataReader reader(buffer16, 2, GetParam().endianness); |
| reader.ReadBytesToUInt64(2, &read_number16); |
| EXPECT_EQ(in_memory16, read_number16); |
| } |
| } |
| |
| TEST_P(QuicDataWriterTest, Write24BitUnsignedIntegers) { |
| char little_endian24[] = {0x33, 0x22, 0x11}; |
| char big_endian24[] = {0x11, 0x22, 0x33}; |
| char buffer24[3]; |
| uint64_t in_memory24 = 0x0000000000112233; |
| QuicDataWriter writer(3, buffer24, GetParam().endianness); |
| writer.WriteBytesToUInt64(3, in_memory24); |
| test::CompareCharArraysWithHexError( |
| "uint24", buffer24, 3, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian24 |
| : little_endian24, |
| 3); |
| |
| uint64_t read_number24; |
| QuicDataReader reader(buffer24, 3, GetParam().endianness); |
| reader.ReadBytesToUInt64(3, &read_number24); |
| EXPECT_EQ(in_memory24, read_number24); |
| } |
| |
| TEST_P(QuicDataWriterTest, Write32BitUnsignedIntegers) { |
| char little_endian32[] = {0x44, 0x33, 0x22, 0x11}; |
| char big_endian32[] = {0x11, 0x22, 0x33, 0x44}; |
| char buffer32[4]; |
| { |
| uint32_t in_memory32 = 0x11223344; |
| QuicDataWriter writer(4, buffer32, GetParam().endianness); |
| writer.WriteUInt32(in_memory32); |
| test::CompareCharArraysWithHexError( |
| "uint32_t", buffer32, 4, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian32 |
| : little_endian32, |
| 4); |
| |
| uint32_t read_number32; |
| QuicDataReader reader(buffer32, 4, GetParam().endianness); |
| reader.ReadUInt32(&read_number32); |
| EXPECT_EQ(in_memory32, read_number32); |
| } |
| |
| { |
| uint64_t in_memory32 = 0x11223344; |
| QuicDataWriter writer(4, buffer32, GetParam().endianness); |
| writer.WriteBytesToUInt64(4, in_memory32); |
| test::CompareCharArraysWithHexError( |
| "uint32_t", buffer32, 4, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian32 |
| : little_endian32, |
| 4); |
| |
| uint64_t read_number32; |
| QuicDataReader reader(buffer32, 4, GetParam().endianness); |
| reader.ReadBytesToUInt64(4, &read_number32); |
| EXPECT_EQ(in_memory32, read_number32); |
| } |
| } |
| |
| TEST_P(QuicDataWriterTest, Write40BitUnsignedIntegers) { |
| uint64_t in_memory40 = 0x0000001122334455; |
| char little_endian40[] = {0x55, 0x44, 0x33, 0x22, 0x11}; |
| char big_endian40[] = {0x11, 0x22, 0x33, 0x44, 0x55}; |
| char buffer40[5]; |
| QuicDataWriter writer(5, buffer40, GetParam().endianness); |
| writer.WriteBytesToUInt64(5, in_memory40); |
| test::CompareCharArraysWithHexError( |
| "uint40", buffer40, 5, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian40 |
| : little_endian40, |
| 5); |
| |
| uint64_t read_number40; |
| QuicDataReader reader(buffer40, 5, GetParam().endianness); |
| reader.ReadBytesToUInt64(5, &read_number40); |
| EXPECT_EQ(in_memory40, read_number40); |
| } |
| |
| TEST_P(QuicDataWriterTest, Write48BitUnsignedIntegers) { |
| uint64_t in_memory48 = 0x0000112233445566; |
| char little_endian48[] = {0x66, 0x55, 0x44, 0x33, 0x22, 0x11}; |
| char big_endian48[] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66}; |
| char buffer48[6]; |
| QuicDataWriter writer(6, buffer48, GetParam().endianness); |
| writer.WriteBytesToUInt64(6, in_memory48); |
| test::CompareCharArraysWithHexError( |
| "uint48", buffer48, 6, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian48 |
| : little_endian48, |
| 6); |
| |
| uint64_t read_number48; |
| QuicDataReader reader(buffer48, 6, GetParam().endianness); |
| reader.ReadBytesToUInt64(6., &read_number48); |
| EXPECT_EQ(in_memory48, read_number48); |
| } |
| |
| TEST_P(QuicDataWriterTest, Write56BitUnsignedIntegers) { |
| uint64_t in_memory56 = 0x0011223344556677; |
| char little_endian56[] = {0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11}; |
| char big_endian56[] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77}; |
| char buffer56[7]; |
| QuicDataWriter writer(7, buffer56, GetParam().endianness); |
| writer.WriteBytesToUInt64(7, in_memory56); |
| test::CompareCharArraysWithHexError( |
| "uint56", buffer56, 7, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian56 |
| : little_endian56, |
| 7); |
| |
| uint64_t read_number56; |
| QuicDataReader reader(buffer56, 7, GetParam().endianness); |
| reader.ReadBytesToUInt64(7, &read_number56); |
| EXPECT_EQ(in_memory56, read_number56); |
| } |
| |
| TEST_P(QuicDataWriterTest, Write64BitUnsignedIntegers) { |
| uint64_t in_memory64 = 0x1122334455667788; |
| unsigned char little_endian64[] = {0x88, 0x77, 0x66, 0x55, |
| 0x44, 0x33, 0x22, 0x11}; |
| unsigned char big_endian64[] = {0x11, 0x22, 0x33, 0x44, |
| 0x55, 0x66, 0x77, 0x88}; |
| char buffer64[8]; |
| QuicDataWriter writer(8, buffer64, GetParam().endianness); |
| writer.WriteBytesToUInt64(8, in_memory64); |
| test::CompareCharArraysWithHexError( |
| "uint64_t", buffer64, 8, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? AsChars(big_endian64) |
| : AsChars(little_endian64), |
| 8); |
| |
| uint64_t read_number64; |
| QuicDataReader reader(buffer64, 8, GetParam().endianness); |
| reader.ReadBytesToUInt64(8, &read_number64); |
| EXPECT_EQ(in_memory64, read_number64); |
| |
| QuicDataWriter writer2(8, buffer64, GetParam().endianness); |
| writer2.WriteUInt64(in_memory64); |
| test::CompareCharArraysWithHexError( |
| "uint64_t", buffer64, 8, |
| GetParam().endianness == NETWORK_BYTE_ORDER ? AsChars(big_endian64) |
| : AsChars(little_endian64), |
| 8); |
| read_number64 = 0u; |
| QuicDataReader reader2(buffer64, 8, GetParam().endianness); |
| reader2.ReadUInt64(&read_number64); |
| EXPECT_EQ(in_memory64, read_number64); |
| } |
| |
| TEST_P(QuicDataWriterTest, WriteIntegers) { |
| char buf[43]; |
| uint8_t i8 = 0x01; |
| uint16_t i16 = 0x0123; |
| uint32_t i32 = 0x01234567; |
| uint64_t i64 = 0x0123456789ABCDEF; |
| QuicDataWriter writer(46, buf, GetParam().endianness); |
| for (size_t i = 0; i < 10; ++i) { |
| switch (i) { |
| case 0u: |
| EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64)); |
| break; |
| case 1u: |
| EXPECT_TRUE(writer.WriteUInt8(i8)); |
| EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64)); |
| break; |
| case 2u: |
| EXPECT_TRUE(writer.WriteUInt16(i16)); |
| EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64)); |
| break; |
| case 3u: |
| EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64)); |
| break; |
| case 4u: |
| EXPECT_TRUE(writer.WriteUInt32(i32)); |
| EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64)); |
| break; |
| case 5u: |
| case 6u: |
| case 7u: |
| case 8u: |
| EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64)); |
| break; |
| default: |
| EXPECT_FALSE(writer.WriteBytesToUInt64(i, i64)); |
| } |
| } |
| |
| QuicDataReader reader(buf, 46, GetParam().endianness); |
| for (size_t i = 0; i < 10; ++i) { |
| uint8_t read8; |
| uint16_t read16; |
| uint32_t read32; |
| uint64_t read64; |
| switch (i) { |
| case 0u: |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(0u, read64); |
| break; |
| case 1u: |
| EXPECT_TRUE(reader.ReadUInt8(&read8)); |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(i8, read8); |
| EXPECT_EQ(0xEFu, read64); |
| break; |
| case 2u: |
| EXPECT_TRUE(reader.ReadUInt16(&read16)); |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(i16, read16); |
| EXPECT_EQ(0xCDEFu, read64); |
| break; |
| case 3u: |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(0xABCDEFu, read64); |
| break; |
| case 4u: |
| EXPECT_TRUE(reader.ReadUInt32(&read32)); |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(i32, read32); |
| EXPECT_EQ(0x89ABCDEFu, read64); |
| break; |
| case 5u: |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(0x6789ABCDEFu, read64); |
| break; |
| case 6u: |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(0x456789ABCDEFu, read64); |
| break; |
| case 7u: |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(0x23456789ABCDEFu, read64); |
| break; |
| case 8u: |
| EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64)); |
| EXPECT_EQ(0x0123456789ABCDEFu, read64); |
| break; |
| default: |
| EXPECT_FALSE(reader.ReadBytesToUInt64(i, &read64)); |
| } |
| } |
| } |
| |
| TEST_P(QuicDataWriterTest, WriteBytes) { |
| char bytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8}; |
| char buf[QUIC_ARRAYSIZE(bytes)]; |
| QuicDataWriter writer(QUIC_ARRAYSIZE(buf), buf, GetParam().endianness); |
| EXPECT_TRUE(writer.WriteBytes(bytes, QUIC_ARRAYSIZE(bytes))); |
| for (unsigned int i = 0; i < QUIC_ARRAYSIZE(bytes); ++i) { |
| EXPECT_EQ(bytes[i], buf[i]); |
| } |
| } |
| |
| const int kVarIntBufferLength = 1024; |
| |
| // Encodes and then decodes a specified value, checks that the |
| // value that was encoded is the same as the decoded value, the length |
| // is correct, and that after decoding, all data in the buffer has |
| // been consumed.. |
| // Returns true if everything works, false if not. |
| bool EncodeDecodeValue(uint64_t value_in, char* buffer, size_t size_of_buffer) { |
| // Init the buffer to all 0, just for cleanliness. Makes for better |
| // output if, in debugging, we need to dump out the buffer. |
| memset(buffer, 0, size_of_buffer); |
| // make a writer. Note that for IETF encoding |
| // we do not care about endianness... It's always big-endian, |
| // but the c'tor expects to be told what endianness is in force... |
| QuicDataWriter writer(size_of_buffer, buffer, Endianness::NETWORK_BYTE_ORDER); |
| |
| // Try to write the value. |
| if (writer.WriteVarInt62(value_in) != true) { |
| return false; |
| } |
| // Look at the value we encoded. Determine how much should have been |
| // used based on the value, and then check the state of the writer |
| // to see that it matches. |
| size_t expected_length = 0; |
| if (value_in <= 0x3f) { |
| expected_length = 1; |
| } else if (value_in <= 0x3fff) { |
| expected_length = 2; |
| } else if (value_in <= 0x3fffffff) { |
| expected_length = 4; |
| } else { |
| expected_length = 8; |
| } |
| if (writer.length() != expected_length) { |
| return false; |
| } |
| |
| // set up a reader, just the length we've used, no more, no less. |
| QuicDataReader reader(buffer, expected_length, |
| Endianness::NETWORK_BYTE_ORDER); |
| uint64_t value_out; |
| |
| if (reader.ReadVarInt62(&value_out) == false) { |
| return false; |
| } |
| if (value_in != value_out) { |
| return false; |
| } |
| // We only write one value so there had better be nothing left to read |
| return reader.IsDoneReading(); |
| } |
| |
| // Test that 8-byte-encoded Variable Length Integers are properly laid |
| // out in the buffer. |
| TEST_P(QuicDataWriterTest, VarInt8Layout) { |
| char buffer[1024]; |
| |
| // Check that the layout of bytes in the buffer is correct. Bytes |
| // are always encoded big endian... |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer.WriteVarInt62(UINT64_C(0x3142f3e4d5c6b7a8))); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 0)), |
| (0x31 + 0xc0)); // 0xc0 for encoding |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 1)), 0x42); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 2)), 0xf3); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 3)), 0xe4); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 4)), 0xd5); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 5)), 0xc6); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 6)), 0xb7); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 7)), 0xa8); |
| } |
| |
| // Test that 4-byte-encoded Variable Length Integers are properly laid |
| // out in the buffer. |
| TEST_P(QuicDataWriterTest, VarInt4Layout) { |
| char buffer[1024]; |
| |
| // Check that the layout of bytes in the buffer is correct. Bytes |
| // are always encoded big endian... |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer.WriteVarInt62(0x3243f4e5)); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 0)), |
| (0x32 + 0x80)); // 0x80 for encoding |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 1)), 0x43); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 2)), 0xf4); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 3)), 0xe5); |
| } |
| |
| // Test that 2-byte-encoded Variable Length Integers are properly laid |
| // out in the buffer. |
| TEST_P(QuicDataWriterTest, VarInt2Layout) { |
| char buffer[1024]; |
| |
| // Check that the layout of bytes in the buffer is correct. Bytes |
| // are always encoded big endian... |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer.WriteVarInt62(0x3647)); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 0)), |
| (0x36 + 0x40)); // 0x40 for encoding |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 1)), 0x47); |
| } |
| |
| // Test that 1-byte-encoded Variable Length Integers are properly laid |
| // out in the buffer. |
| TEST_P(QuicDataWriterTest, VarInt1Layout) { |
| char buffer[1024]; |
| |
| // Check that the layout of bytes in the buffer |
| // is correct. Bytes are always encoded big endian... |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer.WriteVarInt62(0x3f)); |
| EXPECT_EQ(static_cast<unsigned char>(*(writer.data() + 0)), 0x3f); |
| } |
| |
| // Test certain, targeted, values that are expected to succeed: |
| // 0, 1, |
| // 0x3e, 0x3f, 0x40, 0x41 (around the 1-2 byte transitions) |
| // 0x3ffe, 0x3fff, 0x4000, 0x4001 (the 2-4 byte transition) |
| // 0x3ffffffe, 0x3fffffff, 0x40000000, 0x40000001 (the 4-8 byte |
| // transition) |
| // 0x3ffffffffffffffe, 0x3fffffffffffffff, (the highest valid values) |
| // 0xfe, 0xff, 0x100, 0x101, |
| // 0xfffe, 0xffff, 0x10000, 0x10001, |
| // 0xfffffe, 0xffffff, 0x1000000, 0x1000001, |
| // 0xfffffffe, 0xffffffff, 0x100000000, 0x100000001, |
| // 0xfffffffffe, 0xffffffffff, 0x10000000000, 0x10000000001, |
| // 0xfffffffffffe, 0xffffffffffff, 0x1000000000000, 0x1000000000001, |
| // 0xfffffffffffffe, 0xffffffffffffff, 0x100000000000000, 0x100000000000001, |
| TEST_P(QuicDataWriterTest, VarIntGoodTargetedValues) { |
| char buffer[kVarIntBufferLength]; |
| uint64_t passing_values[] = { |
| 0, |
| 1, |
| 0x3e, |
| 0x3f, |
| 0x40, |
| 0x41, |
| 0x3ffe, |
| 0x3fff, |
| 0x4000, |
| 0x4001, |
| 0x3ffffffe, |
| 0x3fffffff, |
| 0x40000000, |
| 0x40000001, |
| 0x3ffffffffffffffe, |
| 0x3fffffffffffffff, |
| 0xfe, |
| 0xff, |
| 0x100, |
| 0x101, |
| 0xfffe, |
| 0xffff, |
| 0x10000, |
| 0x10001, |
| 0xfffffe, |
| 0xffffff, |
| 0x1000000, |
| 0x1000001, |
| 0xfffffffe, |
| 0xffffffff, |
| 0x100000000, |
| 0x100000001, |
| 0xfffffffffe, |
| 0xffffffffff, |
| 0x10000000000, |
| 0x10000000001, |
| 0xfffffffffffe, |
| 0xffffffffffff, |
| 0x1000000000000, |
| 0x1000000000001, |
| 0xfffffffffffffe, |
| 0xffffffffffffff, |
| 0x100000000000000, |
| 0x100000000000001, |
| }; |
| for (uint64_t test_val : passing_values) { |
| EXPECT_TRUE( |
| EncodeDecodeValue(test_val, static_cast<char*>(buffer), sizeof(buffer))) |
| << " encode/decode of " << test_val << " failed"; |
| } |
| } |
| // |
| // Test certain, targeted, values where failure is expected (the |
| // values are invalid w.r.t. IETF VarInt encoding): |
| // 0x4000000000000000, 0x4000000000000001, ( Just above max allowed value) |
| // 0xfffffffffffffffe, 0xffffffffffffffff, (should fail) |
| TEST_P(QuicDataWriterTest, VarIntBadTargetedValues) { |
| char buffer[kVarIntBufferLength]; |
| uint64_t failing_values[] = { |
| 0x4000000000000000, |
| 0x4000000000000001, |
| 0xfffffffffffffffe, |
| 0xffffffffffffffff, |
| }; |
| for (uint64_t test_val : failing_values) { |
| EXPECT_FALSE( |
| EncodeDecodeValue(test_val, static_cast<char*>(buffer), sizeof(buffer))) |
| << " encode/decode of " << test_val << " succeeded, but was an " |
| << "invalid value"; |
| } |
| } |
| |
| // Following tests all try to fill the buffer with multiple values, |
| // go one value more than the buffer can accommodate, then read |
| // the successfully encoded values, and try to read the unsuccessfully |
| // encoded value. The following is the number of values to encode. |
| const int kMultiVarCount = 1000; |
| |
| // Test writing & reading multiple 8-byte-encoded varints |
| TEST_P(QuicDataWriterTest, MultiVarInt8) { |
| uint64_t test_val; |
| char buffer[8 * kMultiVarCount]; |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| // Put N values into the buffer. Adding i to the value ensures that |
| // each value is different so we can detect if we overwrite values, |
| // or read the same value over and over. |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(writer.WriteVarInt62(UINT64_C(0x3142f3e4d5c6b7a8) + i)); |
| } |
| EXPECT_EQ(writer.length(), 8u * kMultiVarCount); |
| |
| // N+1st should fail, the buffer is full. |
| EXPECT_FALSE(writer.WriteVarInt62(UINT64_C(0x3142f3e4d5c6b7a8))); |
| |
| // Now we should be able to read out the N values that were |
| // successfully encoded. |
| QuicDataReader reader(buffer, sizeof(buffer), Endianness::NETWORK_BYTE_ORDER); |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, (UINT64_C(0x3142f3e4d5c6b7a8) + i)); |
| } |
| // And the N+1st should fail. |
| EXPECT_FALSE(reader.ReadVarInt62(&test_val)); |
| } |
| |
| // Test writing & reading multiple 4-byte-encoded varints |
| TEST_P(QuicDataWriterTest, MultiVarInt4) { |
| uint64_t test_val; |
| char buffer[4 * kMultiVarCount]; |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| // Put N values into the buffer. Adding i to the value ensures that |
| // each value is different so we can detect if we overwrite values, |
| // or read the same value over and over. |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(writer.WriteVarInt62(UINT64_C(0x3142f3e4) + i)); |
| } |
| EXPECT_EQ(writer.length(), 4u * kMultiVarCount); |
| |
| // N+1st should fail, the buffer is full. |
| EXPECT_FALSE(writer.WriteVarInt62(UINT64_C(0x3142f3e4))); |
| |
| // Now we should be able to read out the N values that were |
| // successfully encoded. |
| QuicDataReader reader(buffer, sizeof(buffer), Endianness::NETWORK_BYTE_ORDER); |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, (UINT64_C(0x3142f3e4) + i)); |
| } |
| // And the N+1st should fail. |
| EXPECT_FALSE(reader.ReadVarInt62(&test_val)); |
| } |
| |
| // Test writing & reading multiple 2-byte-encoded varints |
| TEST_P(QuicDataWriterTest, MultiVarInt2) { |
| uint64_t test_val; |
| char buffer[2 * kMultiVarCount]; |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| // Put N values into the buffer. Adding i to the value ensures that |
| // each value is different so we can detect if we overwrite values, |
| // or read the same value over and over. |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(writer.WriteVarInt62(UINT64_C(0x3142) + i)); |
| } |
| EXPECT_EQ(writer.length(), 2u * kMultiVarCount); |
| |
| // N+1st should fail, the buffer is full. |
| EXPECT_FALSE(writer.WriteVarInt62(UINT64_C(0x3142))); |
| |
| // Now we should be able to read out the N values that were |
| // successfully encoded. |
| QuicDataReader reader(buffer, sizeof(buffer), Endianness::NETWORK_BYTE_ORDER); |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, (UINT64_C(0x3142) + i)); |
| } |
| // And the N+1st should fail. |
| EXPECT_FALSE(reader.ReadVarInt62(&test_val)); |
| } |
| |
| // Test writing & reading multiple 1-byte-encoded varints |
| TEST_P(QuicDataWriterTest, MultiVarInt1) { |
| uint64_t test_val; |
| char buffer[1 * kMultiVarCount]; |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| // Put N values into the buffer. Adding i to the value ensures that |
| // each value is different so we can detect if we overwrite values, |
| // or read the same value over and over. &0xf ensures we do not |
| // overflow the max value for single-byte encoding. |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(writer.WriteVarInt62(UINT64_C(0x30) + (i & 0xf))); |
| } |
| EXPECT_EQ(writer.length(), 1u * kMultiVarCount); |
| |
| // N+1st should fail, the buffer is full. |
| EXPECT_FALSE(writer.WriteVarInt62(UINT64_C(0x31))); |
| |
| // Now we should be able to read out the N values that were |
| // successfully encoded. |
| QuicDataReader reader(buffer, sizeof(buffer), Endianness::NETWORK_BYTE_ORDER); |
| for (int i = 0; i < kMultiVarCount; i++) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, (UINT64_C(0x30) + (i & 0xf))); |
| } |
| // And the N+1st should fail. |
| EXPECT_FALSE(reader.ReadVarInt62(&test_val)); |
| } |
| |
| // Test writing varints with a forced length. |
| TEST_P(QuicDataWriterTest, VarIntFixedLength) { |
| char buffer[90]; |
| memset(buffer, 0, sizeof(buffer)); |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| |
| writer.WriteVarInt62(1, VARIABLE_LENGTH_INTEGER_LENGTH_1); |
| writer.WriteVarInt62(1, VARIABLE_LENGTH_INTEGER_LENGTH_2); |
| writer.WriteVarInt62(1, VARIABLE_LENGTH_INTEGER_LENGTH_4); |
| writer.WriteVarInt62(1, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| writer.WriteVarInt62(63, VARIABLE_LENGTH_INTEGER_LENGTH_1); |
| writer.WriteVarInt62(63, VARIABLE_LENGTH_INTEGER_LENGTH_2); |
| writer.WriteVarInt62(63, VARIABLE_LENGTH_INTEGER_LENGTH_4); |
| writer.WriteVarInt62(63, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| writer.WriteVarInt62(64, VARIABLE_LENGTH_INTEGER_LENGTH_2); |
| writer.WriteVarInt62(64, VARIABLE_LENGTH_INTEGER_LENGTH_4); |
| writer.WriteVarInt62(64, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| writer.WriteVarInt62(16383, VARIABLE_LENGTH_INTEGER_LENGTH_2); |
| writer.WriteVarInt62(16383, VARIABLE_LENGTH_INTEGER_LENGTH_4); |
| writer.WriteVarInt62(16383, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| writer.WriteVarInt62(16384, VARIABLE_LENGTH_INTEGER_LENGTH_4); |
| writer.WriteVarInt62(16384, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| writer.WriteVarInt62(1073741823, VARIABLE_LENGTH_INTEGER_LENGTH_4); |
| writer.WriteVarInt62(1073741823, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| writer.WriteVarInt62(1073741824, VARIABLE_LENGTH_INTEGER_LENGTH_8); |
| |
| QuicDataReader reader(buffer, sizeof(buffer), Endianness::NETWORK_BYTE_ORDER); |
| |
| uint64_t test_val = 0; |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 1u); |
| } |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 63u); |
| } |
| |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 64u); |
| } |
| for (int i = 0; i < 3; ++i) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 16383u); |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 16384u); |
| } |
| for (int i = 0; i < 2; ++i) { |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 1073741823u); |
| } |
| |
| EXPECT_TRUE(reader.ReadVarInt62(&test_val)); |
| EXPECT_EQ(test_val, 1073741824u); |
| |
| // We are at the end of the buffer so this should fail. |
| EXPECT_FALSE(reader.ReadVarInt62(&test_val)); |
| } |
| |
| // Test encoding/decoding stream-id values. |
| void EncodeDecodeStreamId(uint64_t value_in, bool expected_decode_result) { |
| char buffer[1 * kMultiVarCount]; |
| memset(buffer, 0, sizeof(buffer)); |
| |
| // Encode the given Stream ID. |
| QuicDataWriter writer(sizeof(buffer), static_cast<char*>(buffer), |
| Endianness::NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer.WriteVarInt62(value_in)); |
| |
| QuicDataReader reader(buffer, sizeof(buffer), Endianness::NETWORK_BYTE_ORDER); |
| QuicStreamId received_stream_id; |
| bool read_result = reader.ReadVarIntStreamId(&received_stream_id); |
| EXPECT_EQ(expected_decode_result, read_result); |
| if (read_result) { |
| EXPECT_EQ(value_in, received_stream_id); |
| } |
| } |
| |
| // Test writing & reading stream-ids of various value. |
| TEST_P(QuicDataWriterTest, StreamId1) { |
| // Check a 1-byte QuicStreamId, should work |
| EncodeDecodeStreamId(UINT64_C(0x15), true); |
| |
| // Check a 2-byte QuicStream ID. It should work. |
| EncodeDecodeStreamId(UINT64_C(0x1567), true); |
| |
| // Check a QuicStreamId that requires 4 bytes of encoding |
| // This should work. |
| EncodeDecodeStreamId(UINT64_C(0x34567890), true); |
| |
| // Check a QuicStreamId that requires 8 bytes of encoding |
| // but whose value is in the acceptable range. |
| // This should work. |
| EncodeDecodeStreamId(UINT64_C(0xf4567890), true); |
| |
| // Check QuicStreamIds that require 8 bytes of encoding |
| // and whose value is not acceptable. |
| // This should fail. |
| EncodeDecodeStreamId(UINT64_C(0x100000000), false); |
| EncodeDecodeStreamId(UINT64_C(0x3fffffffffffffff), false); |
| } |
| |
| TEST_P(QuicDataWriterTest, WriteRandomBytes) { |
| char buffer[20]; |
| char expected[20]; |
| for (size_t i = 0; i < 20; ++i) { |
| expected[i] = 'r'; |
| } |
| MockRandom random; |
| QuicDataWriter writer(20, buffer, GetParam().endianness); |
| EXPECT_FALSE(writer.WriteRandomBytes(&random, 30)); |
| |
| EXPECT_TRUE(writer.WriteRandomBytes(&random, 20)); |
| test::CompareCharArraysWithHexError("random", buffer, 20, expected, 20); |
| } |
| |
| TEST_P(QuicDataWriterTest, PeekVarInt62Length) { |
| // In range [0, 63], variable length should be 1 byte. |
| char buffer[20]; |
| QuicDataWriter writer(20, buffer, NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer.WriteVarInt62(50)); |
| QuicDataReader reader(buffer, 20, NETWORK_BYTE_ORDER); |
| EXPECT_EQ(1, reader.PeekVarInt62Length()); |
| // In range (63-16383], variable length should be 2 byte2. |
| char buffer2[20]; |
| QuicDataWriter writer2(20, buffer2, NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer2.WriteVarInt62(100)); |
| QuicDataReader reader2(buffer2, 20, NETWORK_BYTE_ORDER); |
| EXPECT_EQ(2, reader2.PeekVarInt62Length()); |
| // In range (16383, 1073741823], variable length should be 4 bytes. |
| char buffer3[20]; |
| QuicDataWriter writer3(20, buffer3, NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer3.WriteVarInt62(20000)); |
| QuicDataReader reader3(buffer3, 20, NETWORK_BYTE_ORDER); |
| EXPECT_EQ(4, reader3.PeekVarInt62Length()); |
| // In range (1073741823, 4611686018427387903], variable length should be 8 |
| // bytes. |
| char buffer4[20]; |
| QuicDataWriter writer4(20, buffer4, NETWORK_BYTE_ORDER); |
| EXPECT_TRUE(writer4.WriteVarInt62(2000000000)); |
| QuicDataReader reader4(buffer4, 20, NETWORK_BYTE_ORDER); |
| EXPECT_EQ(8, reader4.PeekVarInt62Length()); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace quic |