| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/third_party/quic/core/quic_sent_packet_manager.h" |
| |
| #include <algorithm> |
| |
| #include "net/third_party/quic/core/congestion_control/general_loss_algorithm.h" |
| #include "net/third_party/quic/core/congestion_control/pacing_sender.h" |
| #include "net/third_party/quic/core/crypto/crypto_protocol.h" |
| #include "net/third_party/quic/core/proto/cached_network_parameters.pb.h" |
| #include "net/third_party/quic/core/quic_connection_stats.h" |
| #include "net/third_party/quic/core/quic_pending_retransmission.h" |
| #include "net/third_party/quic/core/quic_utils.h" |
| #include "net/third_party/quic/platform/api/quic_bug_tracker.h" |
| #include "net/third_party/quic/platform/api/quic_flag_utils.h" |
| #include "net/third_party/quic/platform/api/quic_flags.h" |
| #include "net/third_party/quic/platform/api/quic_logging.h" |
| #include "net/third_party/quic/platform/api/quic_map_util.h" |
| #include "net/third_party/quic/platform/api/quic_string.h" |
| |
| namespace quic { |
| |
| namespace { |
| static const int64_t kDefaultRetransmissionTimeMs = 500; |
| static const int64_t kMaxRetransmissionTimeMs = 60000; |
| // Maximum number of exponential backoffs used for RTO timeouts. |
| static const size_t kMaxRetransmissions = 10; |
| // Maximum number of packets retransmitted upon an RTO. |
| static const size_t kMaxRetransmissionsOnTimeout = 2; |
| // The path degrading delay is the sum of this number of consecutive RTO delays. |
| const size_t kNumRetransmissionDelaysForPathDegradingDelay = 2; |
| |
| // Ensure the handshake timer isnt't faster than 10ms. |
| // This limits the tenth retransmitted packet to 10s after the initial CHLO. |
| static const int64_t kMinHandshakeTimeoutMs = 10; |
| |
| // Sends up to two tail loss probes before firing an RTO, |
| // per draft RFC draft-dukkipati-tcpm-tcp-loss-probe. |
| static const size_t kDefaultMaxTailLossProbes = 2; |
| |
| inline bool HasCryptoHandshake(const QuicTransmissionInfo& transmission_info) { |
| DCHECK(!transmission_info.has_crypto_handshake || |
| !transmission_info.retransmittable_frames.empty()); |
| return transmission_info.has_crypto_handshake; |
| } |
| |
| // Returns true if retransmissions the specified type leave the data in flight. |
| inline bool RetransmissionLeavesBytesInFlight( |
| TransmissionType transmission_type) { |
| // Both TLP and the new RTO leave the packets in flight and let the loss |
| // detection decide if packets are lost. |
| return transmission_type == TLP_RETRANSMISSION || |
| transmission_type == PROBING_RETRANSMISSION || |
| transmission_type == RTO_RETRANSMISSION; |
| } |
| |
| // Returns true of retransmissions of the specified type should retransmit |
| // the frames directly (as opposed to resulting in a loss notification). |
| inline bool ShouldForceRetransmission(TransmissionType transmission_type) { |
| return transmission_type == HANDSHAKE_RETRANSMISSION || |
| transmission_type == TLP_RETRANSMISSION || |
| transmission_type == PROBING_RETRANSMISSION || |
| transmission_type == RTO_RETRANSMISSION; |
| } |
| |
| } // namespace |
| |
| #define ENDPOINT \ |
| (unacked_packets_.perspective() == Perspective::IS_SERVER ? "Server: " \ |
| : "Client: ") |
| |
| QuicSentPacketManager::QuicSentPacketManager( |
| Perspective perspective, |
| const QuicClock* clock, |
| QuicConnectionStats* stats, |
| CongestionControlType congestion_control_type, |
| LossDetectionType loss_type) |
| : unacked_packets_(perspective), |
| clock_(clock), |
| stats_(stats), |
| debug_delegate_(nullptr), |
| network_change_visitor_(nullptr), |
| initial_congestion_window_(kInitialCongestionWindow), |
| loss_algorithm_( |
| unacked_packets_.use_uber_loss_algorithm() |
| ? dynamic_cast<LossDetectionInterface*>(&uber_loss_algorithm_) |
| : dynamic_cast<LossDetectionInterface*>( |
| &general_loss_algorithm_)), |
| general_loss_algorithm_(loss_type), |
| uber_loss_algorithm_(loss_type), |
| consecutive_rto_count_(0), |
| consecutive_tlp_count_(0), |
| consecutive_crypto_retransmission_count_(0), |
| pending_timer_transmission_count_(0), |
| max_tail_loss_probes_(kDefaultMaxTailLossProbes), |
| max_rto_packets_(kMaxRetransmissionsOnTimeout), |
| enable_half_rtt_tail_loss_probe_(false), |
| using_pacing_(false), |
| use_new_rto_(false), |
| conservative_handshake_retransmits_(false), |
| min_tlp_timeout_( |
| QuicTime::Delta::FromMilliseconds(kMinTailLossProbeTimeoutMs)), |
| min_rto_timeout_( |
| QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs)), |
| ietf_style_tlp_(false), |
| ietf_style_2x_tlp_(false), |
| largest_mtu_acked_(0), |
| handshake_confirmed_(false), |
| delayed_ack_time_( |
| QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs)), |
| rtt_updated_(false), |
| acked_packets_iter_(last_ack_frame_.packets.rbegin()) { |
| SetSendAlgorithm(congestion_control_type); |
| } |
| |
| QuicSentPacketManager::~QuicSentPacketManager() {} |
| |
| void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) { |
| const Perspective perspective = unacked_packets_.perspective(); |
| if (config.HasReceivedInitialRoundTripTimeUs() && |
| config.ReceivedInitialRoundTripTimeUs() > 0) { |
| if (!config.HasClientSentConnectionOption(kNRTT, perspective)) { |
| SetInitialRtt(QuicTime::Delta::FromMicroseconds( |
| config.ReceivedInitialRoundTripTimeUs())); |
| } |
| } else if (config.HasInitialRoundTripTimeUsToSend() && |
| config.GetInitialRoundTripTimeUsToSend() > 0) { |
| SetInitialRtt(QuicTime::Delta::FromMicroseconds( |
| config.GetInitialRoundTripTimeUsToSend())); |
| } |
| if (config.HasClientSentConnectionOption(kMAD0, perspective)) { |
| rtt_stats_.set_ignore_max_ack_delay(true); |
| } |
| if (config.HasClientSentConnectionOption(kMAD1, perspective)) { |
| rtt_stats_.set_initial_max_ack_delay(delayed_ack_time_); |
| } |
| if (config.HasClientSentConnectionOption(kMAD2, perspective)) { |
| min_tlp_timeout_ = QuicTime::Delta::Zero(); |
| } |
| if (config.HasClientSentConnectionOption(kMAD3, perspective)) { |
| min_rto_timeout_ = QuicTime::Delta::Zero(); |
| } |
| if (config.HasClientSentConnectionOption(kMAD4, perspective)) { |
| ietf_style_tlp_ = true; |
| } |
| if (config.HasClientSentConnectionOption(kMAD5, perspective)) { |
| ietf_style_2x_tlp_ = true; |
| } |
| |
| // Configure congestion control. |
| if (config.HasClientRequestedIndependentOption(kTBBR, perspective)) { |
| SetSendAlgorithm(kBBR); |
| } |
| if (config.HasClientRequestedIndependentOption(kRENO, perspective)) { |
| SetSendAlgorithm(kRenoBytes); |
| } else if (config.HasClientRequestedIndependentOption(kBYTE, perspective) || |
| (GetQuicReloadableFlag(quic_default_to_bbr) && |
| config.HasClientRequestedIndependentOption(kQBIC, perspective))) { |
| SetSendAlgorithm(kCubicBytes); |
| } else if (GetQuicReloadableFlag(quic_enable_pcc3) && |
| config.HasClientRequestedIndependentOption(kTPCC, perspective)) { |
| SetSendAlgorithm(kPCC); |
| } |
| // Initial window. |
| if (GetQuicReloadableFlag(quic_unified_iw_options)) { |
| if (config.HasClientRequestedIndependentOption(kIW03, perspective)) { |
| initial_congestion_window_ = 3; |
| send_algorithm_->SetInitialCongestionWindowInPackets(3); |
| } |
| if (config.HasClientRequestedIndependentOption(kIW10, perspective)) { |
| initial_congestion_window_ = 10; |
| send_algorithm_->SetInitialCongestionWindowInPackets(10); |
| } |
| if (config.HasClientRequestedIndependentOption(kIW20, perspective)) { |
| initial_congestion_window_ = 20; |
| send_algorithm_->SetInitialCongestionWindowInPackets(20); |
| } |
| if (config.HasClientRequestedIndependentOption(kIW50, perspective)) { |
| initial_congestion_window_ = 50; |
| send_algorithm_->SetInitialCongestionWindowInPackets(50); |
| } |
| } |
| |
| using_pacing_ = !FLAGS_quic_disable_pacing_for_perf_tests; |
| |
| if (config.HasClientSentConnectionOption(k1CON, perspective)) { |
| send_algorithm_->SetNumEmulatedConnections(1); |
| } |
| if (config.HasClientSentConnectionOption(kNTLP, perspective)) { |
| max_tail_loss_probes_ = 0; |
| } |
| if (config.HasClientSentConnectionOption(k1TLP, perspective)) { |
| max_tail_loss_probes_ = 1; |
| } |
| if (config.HasClientSentConnectionOption(k1RTO, perspective)) { |
| max_rto_packets_ = 1; |
| } |
| if (config.HasClientSentConnectionOption(kTLPR, perspective)) { |
| enable_half_rtt_tail_loss_probe_ = true; |
| } |
| if (config.HasClientSentConnectionOption(kNRTO, perspective)) { |
| use_new_rto_ = true; |
| } |
| // Configure loss detection. |
| if (config.HasClientRequestedIndependentOption(kTIME, perspective)) { |
| if (unacked_packets_.use_uber_loss_algorithm()) { |
| uber_loss_algorithm_.SetLossDetectionType(kTime); |
| } else { |
| general_loss_algorithm_.SetLossDetectionType(kTime); |
| } |
| } |
| if (config.HasClientRequestedIndependentOption(kATIM, perspective)) { |
| if (unacked_packets_.use_uber_loss_algorithm()) { |
| uber_loss_algorithm_.SetLossDetectionType(kAdaptiveTime); |
| } else { |
| general_loss_algorithm_.SetLossDetectionType(kAdaptiveTime); |
| } |
| } |
| if (config.HasClientRequestedIndependentOption(kLFAK, perspective)) { |
| if (unacked_packets_.use_uber_loss_algorithm()) { |
| uber_loss_algorithm_.SetLossDetectionType(kLazyFack); |
| } else { |
| general_loss_algorithm_.SetLossDetectionType(kLazyFack); |
| } |
| } |
| if (config.HasClientSentConnectionOption(kCONH, perspective)) { |
| conservative_handshake_retransmits_ = true; |
| } |
| send_algorithm_->SetFromConfig(config, perspective); |
| |
| if (network_change_visitor_ != nullptr) { |
| network_change_visitor_->OnCongestionChange(); |
| } |
| } |
| |
| void QuicSentPacketManager::ResumeConnectionState( |
| const CachedNetworkParameters& cached_network_params, |
| bool max_bandwidth_resumption) { |
| QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond( |
| max_bandwidth_resumption |
| ? cached_network_params.max_bandwidth_estimate_bytes_per_second() |
| : cached_network_params.bandwidth_estimate_bytes_per_second()); |
| QuicTime::Delta rtt = |
| QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms()); |
| AdjustNetworkParameters(bandwidth, rtt); |
| } |
| |
| void QuicSentPacketManager::AdjustNetworkParameters(QuicBandwidth bandwidth, |
| QuicTime::Delta rtt) { |
| if (!rtt.IsZero()) { |
| SetInitialRtt(rtt); |
| } |
| send_algorithm_->AdjustNetworkParameters(bandwidth, rtt); |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnAdjustNetworkParameters(bandwidth, rtt); |
| } |
| } |
| |
| void QuicSentPacketManager::SetHandshakeConfirmed() { |
| handshake_confirmed_ = true; |
| if (unacked_packets_.use_uber_loss_algorithm()) { |
| NeuterHandshakePackets(); |
| } |
| } |
| |
| void QuicSentPacketManager::PostProcessAfterMarkingPacketHandled( |
| const QuicAckFrame& ack_frame, |
| QuicTime ack_receive_time, |
| bool rtt_updated, |
| QuicByteCount prior_bytes_in_flight) { |
| if (session_decides_what_to_write()) { |
| unacked_packets_.NotifyAggregatedStreamFrameAcked( |
| last_ack_frame_.ack_delay_time); |
| } |
| InvokeLossDetection(ack_receive_time); |
| // Ignore losses in RTO mode. |
| if (consecutive_rto_count_ > 0 && !use_new_rto_) { |
| packets_lost_.clear(); |
| } |
| MaybeInvokeCongestionEvent(rtt_updated, prior_bytes_in_flight, |
| ack_receive_time); |
| unacked_packets_.RemoveObsoletePackets(); |
| |
| sustained_bandwidth_recorder_.RecordEstimate( |
| send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(), |
| send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(), |
| rtt_stats_.smoothed_rtt()); |
| |
| // Anytime we are making forward progress and have a new RTT estimate, reset |
| // the backoff counters. |
| if (rtt_updated) { |
| if (consecutive_rto_count_ > 0) { |
| // If the ack acknowledges data sent prior to the RTO, |
| // the RTO was spurious. |
| if (LargestAcked(ack_frame) < first_rto_transmission_) { |
| // Replace SRTT with latest_rtt and increase the variance to prevent |
| // a spurious RTO from happening again. |
| rtt_stats_.ExpireSmoothedMetrics(); |
| } else { |
| if (!use_new_rto_) { |
| send_algorithm_->OnRetransmissionTimeout(true); |
| } |
| } |
| } |
| // Reset all retransmit counters any time a new packet is acked. |
| consecutive_rto_count_ = 0; |
| consecutive_tlp_count_ = 0; |
| consecutive_crypto_retransmission_count_ = 0; |
| } |
| |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time, |
| LargestAcked(ack_frame), rtt_updated, |
| GetLeastUnacked()); |
| } |
| // Remove packets below least unacked from all_packets_acked_ and |
| // last_ack_frame_. |
| last_ack_frame_.packets.RemoveUpTo(unacked_packets_.GetLeastUnacked()); |
| last_ack_frame_.received_packet_times.clear(); |
| } |
| |
| void QuicSentPacketManager::MaybeInvokeCongestionEvent( |
| bool rtt_updated, |
| QuicByteCount prior_in_flight, |
| QuicTime event_time) { |
| if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) { |
| return; |
| } |
| if (using_pacing_) { |
| pacing_sender_.OnCongestionEvent(rtt_updated, prior_in_flight, event_time, |
| packets_acked_, packets_lost_); |
| } else { |
| send_algorithm_->OnCongestionEvent(rtt_updated, prior_in_flight, event_time, |
| packets_acked_, packets_lost_); |
| } |
| packets_acked_.clear(); |
| packets_lost_.clear(); |
| if (network_change_visitor_ != nullptr) { |
| network_change_visitor_->OnCongestionChange(); |
| } |
| } |
| |
| void QuicSentPacketManager::RetransmitUnackedPackets( |
| TransmissionType retransmission_type) { |
| DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION || |
| retransmission_type == ALL_INITIAL_RETRANSMISSION); |
| QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| if ((retransmission_type == ALL_UNACKED_RETRANSMISSION || |
| it->encryption_level == ENCRYPTION_ZERO_RTT) && |
| unacked_packets_.HasRetransmittableFrames(*it)) { |
| MarkForRetransmission(packet_number, retransmission_type); |
| } |
| } |
| } |
| |
| void QuicSentPacketManager::NeuterUnencryptedPackets() { |
| QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| if (session_decides_what_to_write()) { |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| if (!it->retransmittable_frames.empty() && |
| it->encryption_level == ENCRYPTION_NONE) { |
| // Once the connection swithes to forward secure, no unencrypted packets |
| // will be sent. The data has been abandoned in the cryto stream. Remove |
| // it from in flight. |
| unacked_packets_.RemoveFromInFlight(packet_number); |
| } |
| } |
| return; |
| } |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| if (it->encryption_level == ENCRYPTION_NONE && |
| unacked_packets_.HasRetransmittableFrames(*it)) { |
| // Once you're forward secure, no unencrypted packets will be sent, crypto |
| // or otherwise. Unencrypted packets are neutered and abandoned, to ensure |
| // they are not retransmitted or considered lost from a congestion control |
| // perspective. |
| pending_retransmissions_.erase(packet_number); |
| unacked_packets_.RemoveFromInFlight(packet_number); |
| unacked_packets_.RemoveRetransmittability(packet_number); |
| } |
| } |
| } |
| |
| void QuicSentPacketManager::NeuterHandshakePackets() { |
| DCHECK(unacked_packets_.use_uber_loss_algorithm()); |
| QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| if (session_decides_what_to_write()) { |
| if (!it->retransmittable_frames.empty() && |
| unacked_packets_.GetPacketNumberSpace(it->encryption_level) == |
| HANDSHAKE_DATA) { |
| unacked_packets_.RemoveFromInFlight(packet_number); |
| } |
| continue; |
| } |
| if (unacked_packets_.GetPacketNumberSpace(it->encryption_level) == |
| HANDSHAKE_DATA && |
| unacked_packets_.HasRetransmittableFrames(*it)) { |
| pending_retransmissions_.erase(packet_number); |
| unacked_packets_.RemoveFromInFlight(packet_number); |
| unacked_packets_.RemoveRetransmittability(packet_number); |
| } |
| } |
| } |
| |
| void QuicSentPacketManager::MarkForRetransmission( |
| QuicPacketNumber packet_number, |
| TransmissionType transmission_type) { |
| QuicTransmissionInfo* transmission_info = |
| unacked_packets_.GetMutableTransmissionInfo(packet_number); |
| // When session decides what to write, a previous RTO retransmission may cause |
| // connection close; packets without retransmittable frames can be marked for |
| // loss retransmissions. |
| QUIC_BUG_IF((transmission_type != LOSS_RETRANSMISSION && |
| (!session_decides_what_to_write() || |
| transmission_type != RTO_RETRANSMISSION)) && |
| !unacked_packets_.HasRetransmittableFrames(*transmission_info)) |
| << "transmission_type: " |
| << QuicUtils::TransmissionTypeToString(transmission_type); |
| // Handshake packets should never be sent as probing retransmissions. |
| DCHECK(!transmission_info->has_crypto_handshake || |
| transmission_type != PROBING_RETRANSMISSION); |
| if (!RetransmissionLeavesBytesInFlight(transmission_type)) { |
| unacked_packets_.RemoveFromInFlight(transmission_info); |
| } |
| |
| if (!session_decides_what_to_write()) { |
| if (!unacked_packets_.HasRetransmittableFrames(*transmission_info)) { |
| return; |
| } |
| if (!QuicContainsKey(pending_retransmissions_, packet_number)) { |
| pending_retransmissions_[packet_number] = transmission_type; |
| } |
| return; |
| } |
| |
| HandleRetransmission(transmission_type, transmission_info); |
| |
| // Update packet state according to transmission type. |
| transmission_info->state = |
| QuicUtils::RetransmissionTypeToPacketState(transmission_type); |
| } |
| |
| void QuicSentPacketManager::HandleRetransmission( |
| TransmissionType transmission_type, |
| QuicTransmissionInfo* transmission_info) { |
| DCHECK(session_decides_what_to_write()); |
| if (ShouldForceRetransmission(transmission_type)) { |
| // TODO(fayang): Consider to make RTO and PROBING retransmission |
| // strategies be configurable by applications. Today, TLP, RTO and PROBING |
| // retransmissions are handled similarly, i.e., always retranmist the |
| // oldest outstanding data. This is not ideal in general because different |
| // applications may want different strategies. For example, some |
| // applications may want to use higher priority stream data for bandwidth |
| // probing, and some applications want to consider RTO is an indication of |
| // loss, etc. |
| unacked_packets_.RetransmitFrames(*transmission_info, transmission_type); |
| return; |
| } |
| |
| unacked_packets_.NotifyFramesLost(*transmission_info, transmission_type); |
| if (transmission_info->retransmittable_frames.empty()) { |
| return; |
| } |
| |
| if (transmission_type == LOSS_RETRANSMISSION) { |
| // Record the first packet sent after loss, which allows to wait 1 |
| // more RTT before giving up on this lost packet. |
| transmission_info->retransmission = |
| unacked_packets_.largest_sent_packet() + 1; |
| } else { |
| // Clear the recorded first packet sent after loss when version or |
| // encryption changes. |
| transmission_info->retransmission.Clear(); |
| } |
| } |
| |
| void QuicSentPacketManager::RecordOneSpuriousRetransmission( |
| const QuicTransmissionInfo& info) { |
| stats_->bytes_spuriously_retransmitted += info.bytes_sent; |
| ++stats_->packets_spuriously_retransmitted; |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnSpuriousPacketRetransmission(info.transmission_type, |
| info.bytes_sent); |
| } |
| } |
| |
| void QuicSentPacketManager::RecordSpuriousRetransmissions( |
| const QuicTransmissionInfo& info, |
| QuicPacketNumber acked_packet_number) { |
| if (session_decides_what_to_write()) { |
| RecordOneSpuriousRetransmission(info); |
| if (info.transmission_type == LOSS_RETRANSMISSION) { |
| // Only inform the loss detection of spurious retransmits it caused. |
| loss_algorithm_->SpuriousRetransmitDetected( |
| unacked_packets_, clock_->Now(), rtt_stats_, acked_packet_number); |
| } |
| return; |
| } |
| QuicPacketNumber retransmission = info.retransmission; |
| while (retransmission.IsInitialized()) { |
| const QuicTransmissionInfo& retransmit_info = |
| unacked_packets_.GetTransmissionInfo(retransmission); |
| retransmission = retransmit_info.retransmission; |
| RecordOneSpuriousRetransmission(retransmit_info); |
| } |
| // Only inform the loss detection of spurious retransmits it caused. |
| if (unacked_packets_.GetTransmissionInfo(info.retransmission) |
| .transmission_type == LOSS_RETRANSMISSION) { |
| loss_algorithm_->SpuriousRetransmitDetected( |
| unacked_packets_, clock_->Now(), rtt_stats_, info.retransmission); |
| } |
| } |
| |
| QuicPendingRetransmission QuicSentPacketManager::NextPendingRetransmission() { |
| QUIC_BUG_IF(pending_retransmissions_.empty()) |
| << "Unexpected call to NextPendingRetransmission() with empty pending " |
| << "retransmission list. Corrupted memory usage imminent."; |
| QUIC_BUG_IF(session_decides_what_to_write()) |
| << "Unexpected call to NextPendingRetransmission() when session handles " |
| "retransmissions"; |
| QuicPacketNumber packet_number = pending_retransmissions_.begin()->first; |
| TransmissionType transmission_type = pending_retransmissions_.begin()->second; |
| if (unacked_packets_.HasPendingCryptoPackets()) { |
| // Ensure crypto packets are retransmitted before other packets. |
| for (const auto& pair : pending_retransmissions_) { |
| if (HasCryptoHandshake( |
| unacked_packets_.GetTransmissionInfo(pair.first))) { |
| packet_number = pair.first; |
| transmission_type = pair.second; |
| break; |
| } |
| } |
| } |
| DCHECK(unacked_packets_.IsUnacked(packet_number)) << packet_number; |
| const QuicTransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(packet_number); |
| DCHECK(unacked_packets_.HasRetransmittableFrames(transmission_info)); |
| |
| return QuicPendingRetransmission(packet_number, transmission_type, |
| transmission_info); |
| } |
| |
| QuicPacketNumber QuicSentPacketManager::GetNewestRetransmission( |
| QuicPacketNumber packet_number, |
| const QuicTransmissionInfo& transmission_info) const { |
| if (session_decides_what_to_write()) { |
| return packet_number; |
| } |
| QuicPacketNumber retransmission = transmission_info.retransmission; |
| while (retransmission.IsInitialized()) { |
| packet_number = retransmission; |
| retransmission = |
| unacked_packets_.GetTransmissionInfo(retransmission).retransmission; |
| } |
| return packet_number; |
| } |
| |
| void QuicSentPacketManager::MarkPacketHandled(QuicPacketNumber packet_number, |
| QuicTransmissionInfo* info, |
| QuicTime::Delta ack_delay_time) { |
| QuicPacketNumber newest_transmission = |
| GetNewestRetransmission(packet_number, *info); |
| // Remove the most recent packet, if it is pending retransmission. |
| pending_retransmissions_.erase(newest_transmission); |
| |
| if (newest_transmission == packet_number) { |
| // Try to aggregate acked stream frames if acked packet is not a |
| // retransmission. |
| const bool fast_path = session_decides_what_to_write() && |
| info->transmission_type == NOT_RETRANSMISSION; |
| if (fast_path) { |
| unacked_packets_.MaybeAggregateAckedStreamFrame(*info, ack_delay_time); |
| } else { |
| if (session_decides_what_to_write()) { |
| unacked_packets_.NotifyAggregatedStreamFrameAcked(ack_delay_time); |
| } |
| const bool new_data_acked = |
| unacked_packets_.NotifyFramesAcked(*info, ack_delay_time); |
| if (session_decides_what_to_write() && !new_data_acked && |
| info->transmission_type != NOT_RETRANSMISSION) { |
| // Record as a spurious retransmission if this packet is a |
| // retransmission and no new data gets acked. |
| QUIC_DVLOG(1) << "Detect spurious retransmitted packet " |
| << packet_number << " transmission type: " |
| << QuicUtils::TransmissionTypeToString( |
| info->transmission_type); |
| RecordSpuriousRetransmissions(*info, packet_number); |
| } |
| } |
| } else { |
| DCHECK(!session_decides_what_to_write()); |
| RecordSpuriousRetransmissions(*info, packet_number); |
| // Remove the most recent packet from flight if it's a crypto handshake |
| // packet, since they won't be acked now that one has been processed. |
| // Other crypto handshake packets won't be in flight, only the newest |
| // transmission of a crypto packet is in flight at once. |
| // TODO(ianswett): Instead of handling all crypto packets special, |
| // only handle nullptr encrypted packets in a special way. |
| const QuicTransmissionInfo& newest_transmission_info = |
| unacked_packets_.GetTransmissionInfo(newest_transmission); |
| unacked_packets_.NotifyFramesAcked(newest_transmission_info, |
| ack_delay_time); |
| if (HasCryptoHandshake(newest_transmission_info)) { |
| unacked_packets_.RemoveFromInFlight(newest_transmission); |
| } |
| } |
| |
| if (network_change_visitor_ != nullptr && |
| info->bytes_sent > largest_mtu_acked_) { |
| largest_mtu_acked_ = info->bytes_sent; |
| network_change_visitor_->OnPathMtuIncreased(largest_mtu_acked_); |
| } |
| unacked_packets_.RemoveFromInFlight(info); |
| unacked_packets_.RemoveRetransmittability(info); |
| info->state = ACKED; |
| } |
| |
| bool QuicSentPacketManager::OnPacketSent( |
| SerializedPacket* serialized_packet, |
| QuicPacketNumber original_packet_number, |
| QuicTime sent_time, |
| TransmissionType transmission_type, |
| HasRetransmittableData has_retransmittable_data) { |
| QuicPacketNumber packet_number = serialized_packet->packet_number; |
| DCHECK_LE(FirstSendingPacketNumber(), packet_number); |
| DCHECK(!unacked_packets_.IsUnacked(packet_number)); |
| QUIC_BUG_IF(serialized_packet->encrypted_length == 0) |
| << "Cannot send empty packets."; |
| |
| if (original_packet_number.IsInitialized()) { |
| pending_retransmissions_.erase(original_packet_number); |
| } |
| |
| if (pending_timer_transmission_count_ > 0) { |
| --pending_timer_transmission_count_; |
| } |
| |
| bool in_flight = has_retransmittable_data == HAS_RETRANSMITTABLE_DATA; |
| if (using_pacing_) { |
| pacing_sender_.OnPacketSent( |
| sent_time, unacked_packets_.bytes_in_flight(), packet_number, |
| serialized_packet->encrypted_length, has_retransmittable_data); |
| } else { |
| send_algorithm_->OnPacketSent( |
| sent_time, unacked_packets_.bytes_in_flight(), packet_number, |
| serialized_packet->encrypted_length, has_retransmittable_data); |
| } |
| |
| unacked_packets_.AddSentPacket(serialized_packet, original_packet_number, |
| transmission_type, sent_time, in_flight); |
| // Reset the retransmission timer anytime a pending packet is sent. |
| return in_flight; |
| } |
| |
| void QuicSentPacketManager::OnRetransmissionTimeout() { |
| DCHECK(unacked_packets_.HasInFlightPackets()); |
| DCHECK_EQ(0u, pending_timer_transmission_count_); |
| // Handshake retransmission, timer based loss detection, TLP, and RTO are |
| // implemented with a single alarm. The handshake alarm is set when the |
| // handshake has not completed, the loss alarm is set when the loss detection |
| // algorithm says to, and the TLP and RTO alarms are set after that. |
| // The TLP alarm is always set to run for under an RTO. |
| switch (GetRetransmissionMode()) { |
| case HANDSHAKE_MODE: |
| ++stats_->crypto_retransmit_count; |
| RetransmitCryptoPackets(); |
| return; |
| case LOSS_MODE: { |
| ++stats_->loss_timeout_count; |
| QuicByteCount prior_in_flight = unacked_packets_.bytes_in_flight(); |
| const QuicTime now = clock_->Now(); |
| InvokeLossDetection(now); |
| MaybeInvokeCongestionEvent(false, prior_in_flight, now); |
| return; |
| } |
| case TLP_MODE: |
| ++stats_->tlp_count; |
| ++consecutive_tlp_count_; |
| pending_timer_transmission_count_ = 1; |
| // TLPs prefer sending new data instead of retransmitting data, so |
| // give the connection a chance to write before completing the TLP. |
| return; |
| case RTO_MODE: |
| ++stats_->rto_count; |
| RetransmitRtoPackets(); |
| return; |
| } |
| } |
| |
| void QuicSentPacketManager::RetransmitCryptoPackets() { |
| DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode()); |
| ++consecutive_crypto_retransmission_count_; |
| bool packet_retransmitted = false; |
| QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| std::vector<QuicPacketNumber> crypto_retransmissions; |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| // Only retransmit frames which are in flight, and therefore have been sent. |
| if (!it->in_flight || |
| (session_decides_what_to_write() && it->state != OUTSTANDING) || |
| !it->has_crypto_handshake || |
| !unacked_packets_.HasRetransmittableFrames(*it)) { |
| continue; |
| } |
| packet_retransmitted = true; |
| if (session_decides_what_to_write()) { |
| crypto_retransmissions.push_back(packet_number); |
| } else { |
| MarkForRetransmission(packet_number, HANDSHAKE_RETRANSMISSION); |
| } |
| ++pending_timer_transmission_count_; |
| } |
| DCHECK(packet_retransmitted) << "No crypto packets found to retransmit."; |
| if (session_decides_what_to_write()) { |
| for (QuicPacketNumber retransmission : crypto_retransmissions) { |
| MarkForRetransmission(retransmission, HANDSHAKE_RETRANSMISSION); |
| } |
| } |
| } |
| |
| bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() { |
| if (pending_timer_transmission_count_ == 0) { |
| return false; |
| } |
| if (!MaybeRetransmitOldestPacket(TLP_RETRANSMISSION)) { |
| // If no tail loss probe can be sent, because there are no retransmittable |
| // packets, execute a conventional RTO to abandon old packets. |
| if (GetQuicReloadableFlag(quic_optimize_inflight_check)) { |
| QUIC_RELOADABLE_FLAG_COUNT(quic_optimize_inflight_check); |
| pending_timer_transmission_count_ = 0; |
| RetransmitRtoPackets(); |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicSentPacketManager::MaybeRetransmitOldestPacket(TransmissionType type) { |
| QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| // Only retransmit frames which are in flight, and therefore have been sent. |
| if (!it->in_flight || |
| (session_decides_what_to_write() && it->state != OUTSTANDING) || |
| !unacked_packets_.HasRetransmittableFrames(*it)) { |
| continue; |
| } |
| MarkForRetransmission(packet_number, type); |
| return true; |
| } |
| QUIC_DVLOG(1) |
| << "No retransmittable packets, so RetransmitOldestPacket failed."; |
| return false; |
| } |
| |
| void QuicSentPacketManager::RetransmitRtoPackets() { |
| QUIC_BUG_IF(pending_timer_transmission_count_ > 0) |
| << "Retransmissions already queued:" << pending_timer_transmission_count_; |
| // Mark two packets for retransmission. |
| QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| std::vector<QuicPacketNumber> retransmissions; |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++packet_number) { |
| if ((!session_decides_what_to_write() || it->state == OUTSTANDING) && |
| unacked_packets_.HasRetransmittableFrames(*it) && |
| pending_timer_transmission_count_ < max_rto_packets_) { |
| if (session_decides_what_to_write()) { |
| retransmissions.push_back(packet_number); |
| } else { |
| MarkForRetransmission(packet_number, RTO_RETRANSMISSION); |
| } |
| ++pending_timer_transmission_count_; |
| } |
| // Abandon non-retransmittable data that's in flight to ensure it doesn't |
| // fill up the congestion window. |
| bool has_retransmissions = it->retransmission.IsInitialized(); |
| if (session_decides_what_to_write()) { |
| has_retransmissions = it->state != OUTSTANDING; |
| } |
| if (it->in_flight && !has_retransmissions && |
| !unacked_packets_.HasRetransmittableFrames(*it)) { |
| // Log only for non-retransmittable data. |
| // Retransmittable data is marked as lost during loss detection, and will |
| // be logged later. |
| unacked_packets_.RemoveFromInFlight(packet_number); |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnPacketLoss(packet_number, RTO_RETRANSMISSION, |
| clock_->Now()); |
| } |
| } |
| } |
| if (pending_timer_transmission_count_ > 0) { |
| if (consecutive_rto_count_ == 0) { |
| first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1; |
| } |
| ++consecutive_rto_count_; |
| } |
| if (session_decides_what_to_write()) { |
| for (QuicPacketNumber retransmission : retransmissions) { |
| MarkForRetransmission(retransmission, RTO_RETRANSMISSION); |
| } |
| } |
| } |
| |
| QuicSentPacketManager::RetransmissionTimeoutMode |
| QuicSentPacketManager::GetRetransmissionMode() const { |
| DCHECK(unacked_packets_.HasInFlightPackets()); |
| if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) { |
| return HANDSHAKE_MODE; |
| } |
| if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) { |
| return LOSS_MODE; |
| } |
| if (consecutive_tlp_count_ < max_tail_loss_probes_) { |
| if (GetQuicReloadableFlag(quic_optimize_inflight_check) || |
| unacked_packets_.HasUnackedRetransmittableFrames()) { |
| return TLP_MODE; |
| } |
| } |
| return RTO_MODE; |
| } |
| |
| void QuicSentPacketManager::InvokeLossDetection(QuicTime time) { |
| if (!packets_acked_.empty()) { |
| DCHECK_LE(packets_acked_.front().packet_number, |
| packets_acked_.back().packet_number); |
| largest_newly_acked_ = packets_acked_.back().packet_number; |
| } |
| loss_algorithm_->DetectLosses(unacked_packets_, time, rtt_stats_, |
| largest_newly_acked_, packets_acked_, |
| &packets_lost_); |
| for (const LostPacket& packet : packets_lost_) { |
| ++stats_->packets_lost; |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnPacketLoss(packet.packet_number, LOSS_RETRANSMISSION, |
| time); |
| } |
| |
| MarkForRetransmission(packet.packet_number, LOSS_RETRANSMISSION); |
| } |
| } |
| |
| bool QuicSentPacketManager::MaybeUpdateRTT(QuicPacketNumber largest_acked, |
| QuicTime::Delta ack_delay_time, |
| QuicTime ack_receive_time) { |
| // We rely on ack_delay_time to compute an RTT estimate, so we |
| // only update rtt when the largest observed gets acked. |
| if (!unacked_packets_.IsUnacked(largest_acked)) { |
| return false; |
| } |
| // We calculate the RTT based on the highest ACKed packet number, the lower |
| // packet numbers will include the ACK aggregation delay. |
| const QuicTransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(largest_acked); |
| // Ensure the packet has a valid sent time. |
| if (transmission_info.sent_time == QuicTime::Zero()) { |
| QUIC_BUG << "Acked packet has zero sent time, largest_acked:" |
| << largest_acked; |
| return false; |
| } |
| if (transmission_info.sent_time > ack_receive_time) { |
| QUIC_CODE_COUNT(quic_receive_acked_before_sending); |
| } |
| |
| QuicTime::Delta send_delta = ack_receive_time - transmission_info.sent_time; |
| rtt_stats_.UpdateRtt(send_delta, ack_delay_time, ack_receive_time); |
| |
| return true; |
| } |
| |
| QuicTime::Delta QuicSentPacketManager::TimeUntilSend(QuicTime now) const { |
| // The TLP logic is entirely contained within QuicSentPacketManager, so the |
| // send algorithm does not need to be consulted. |
| if (pending_timer_transmission_count_ > 0) { |
| return QuicTime::Delta::Zero(); |
| } |
| |
| if (using_pacing_) { |
| return pacing_sender_.TimeUntilSend(now, |
| unacked_packets_.bytes_in_flight()); |
| } |
| |
| return send_algorithm_->CanSend(unacked_packets_.bytes_in_flight()) |
| ? QuicTime::Delta::Zero() |
| : QuicTime::Delta::Infinite(); |
| } |
| |
| const QuicTime QuicSentPacketManager::GetRetransmissionTime() const { |
| // Don't set the timer if there is nothing to retransmit or we've already |
| // queued a tlp transmission and it hasn't been sent yet. |
| if (!unacked_packets_.HasInFlightPackets() || |
| pending_timer_transmission_count_ > 0) { |
| return QuicTime::Zero(); |
| } |
| if (!GetQuicReloadableFlag(quic_optimize_inflight_check) && |
| !unacked_packets_.HasUnackedRetransmittableFrames()) { |
| return QuicTime::Zero(); |
| } |
| switch (GetRetransmissionMode()) { |
| case HANDSHAKE_MODE: |
| return unacked_packets_.GetLastCryptoPacketSentTime() + |
| GetCryptoRetransmissionDelay(); |
| case LOSS_MODE: |
| return loss_algorithm_->GetLossTimeout(); |
| case TLP_MODE: { |
| // TODO(ianswett): When CWND is available, it would be preferable to |
| // set the timer based on the earliest retransmittable packet. |
| // Base the updated timer on the send time of the last packet. |
| const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); |
| const QuicTime tlp_time = sent_time + GetTailLossProbeDelay(); |
| // Ensure the TLP timer never gets set to a time in the past. |
| return std::max(clock_->ApproximateNow(), tlp_time); |
| } |
| case RTO_MODE: { |
| // The RTO is based on the first outstanding packet. |
| const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); |
| QuicTime rto_time = sent_time + GetRetransmissionDelay(); |
| // Wait for TLP packets to be acked before an RTO fires. |
| QuicTime tlp_time = |
| unacked_packets_.GetLastPacketSentTime() + GetTailLossProbeDelay(); |
| return std::max(tlp_time, rto_time); |
| } |
| } |
| DCHECK(false); |
| return QuicTime::Zero(); |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetPathDegradingDelay() const { |
| QuicTime::Delta delay = QuicTime::Delta::Zero(); |
| for (size_t i = 0; i < max_tail_loss_probes_; ++i) { |
| delay = delay + GetTailLossProbeDelay(i); |
| } |
| for (size_t i = 0; i < kNumRetransmissionDelaysForPathDegradingDelay; ++i) { |
| delay = delay + GetRetransmissionDelay(i); |
| } |
| return delay; |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay() |
| const { |
| // This is equivalent to the TailLossProbeDelay, but slightly more aggressive |
| // because crypto handshake messages don't incur a delayed ack time. |
| QuicTime::Delta srtt = rtt_stats_.SmoothedOrInitialRtt(); |
| int64_t delay_ms; |
| if (conservative_handshake_retransmits_) { |
| // Using the delayed ack time directly could cause conservative handshake |
| // retransmissions to actually be more aggressive than the default. |
| delay_ms = std::max(delayed_ack_time_.ToMilliseconds(), |
| static_cast<int64_t>(2 * srtt.ToMilliseconds())); |
| } else { |
| delay_ms = std::max(kMinHandshakeTimeoutMs, |
| static_cast<int64_t>(1.5 * srtt.ToMilliseconds())); |
| } |
| return QuicTime::Delta::FromMilliseconds( |
| delay_ms << consecutive_crypto_retransmission_count_); |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay( |
| size_t consecutive_tlp_count) const { |
| QuicTime::Delta srtt = rtt_stats_.SmoothedOrInitialRtt(); |
| if (enable_half_rtt_tail_loss_probe_ && consecutive_tlp_count == 0u) { |
| return std::max(min_tlp_timeout_, srtt * 0.5); |
| } |
| if (ietf_style_tlp_) { |
| return std::max(min_tlp_timeout_, 1.5 * srtt + rtt_stats_.max_ack_delay()); |
| } |
| if (ietf_style_2x_tlp_) { |
| return std::max(min_tlp_timeout_, 2 * srtt + rtt_stats_.max_ack_delay()); |
| } |
| if (!unacked_packets_.HasMultipleInFlightPackets()) { |
| // This expression really should be using the delayed ack time, but in TCP |
| // MinRTO was traditionally set to 2x the delayed ack timer and this |
| // expression assumed QUIC did the same. |
| return std::max(2 * srtt, 1.5 * srtt + (min_rto_timeout_ * 0.5)); |
| } |
| return std::max(min_tlp_timeout_, 2 * srtt); |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay( |
| size_t consecutive_rto_count) const { |
| QuicTime::Delta retransmission_delay = QuicTime::Delta::Zero(); |
| if (rtt_stats_.smoothed_rtt().IsZero()) { |
| // We are in the initial state, use default timeout values. |
| retransmission_delay = |
| QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| } else { |
| retransmission_delay = |
| rtt_stats_.smoothed_rtt() + 4 * rtt_stats_.mean_deviation(); |
| if (retransmission_delay < min_rto_timeout_) { |
| retransmission_delay = min_rto_timeout_; |
| } |
| } |
| |
| // Calculate exponential back off. |
| retransmission_delay = |
| retransmission_delay * |
| (1 << std::min<size_t>(consecutive_rto_count, kMaxRetransmissions)); |
| |
| if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) { |
| return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs); |
| } |
| return retransmission_delay; |
| } |
| |
| QuicString QuicSentPacketManager::GetDebugState() const { |
| return send_algorithm_->GetDebugState(); |
| } |
| |
| void QuicSentPacketManager::CancelRetransmissionsForStream( |
| QuicStreamId stream_id) { |
| if (session_decides_what_to_write()) { |
| return; |
| } |
| unacked_packets_.CancelRetransmissionsForStream(stream_id); |
| auto it = pending_retransmissions_.begin(); |
| while (it != pending_retransmissions_.end()) { |
| if (unacked_packets_.HasRetransmittableFrames(it->first)) { |
| ++it; |
| continue; |
| } |
| it = pending_retransmissions_.erase(it); |
| } |
| } |
| |
| void QuicSentPacketManager::SetSendAlgorithm( |
| CongestionControlType congestion_control_type) { |
| SetSendAlgorithm(SendAlgorithmInterface::Create( |
| clock_, &rtt_stats_, &unacked_packets_, congestion_control_type, |
| QuicRandom::GetInstance(), stats_, initial_congestion_window_)); |
| } |
| |
| void QuicSentPacketManager::SetSendAlgorithm( |
| SendAlgorithmInterface* send_algorithm) { |
| send_algorithm_.reset(send_algorithm); |
| pacing_sender_.set_sender(send_algorithm); |
| } |
| |
| void QuicSentPacketManager::OnConnectionMigration(AddressChangeType type) { |
| if (type == PORT_CHANGE || type == IPV4_SUBNET_CHANGE) { |
| // Rtt and cwnd do not need to be reset when the peer address change is |
| // considered to be caused by NATs. |
| return; |
| } |
| consecutive_rto_count_ = 0; |
| consecutive_tlp_count_ = 0; |
| rtt_stats_.OnConnectionMigration(); |
| send_algorithm_->OnConnectionMigration(); |
| } |
| |
| void QuicSentPacketManager::OnAckFrameStart(QuicPacketNumber largest_acked, |
| QuicTime::Delta ack_delay_time, |
| QuicTime ack_receive_time) { |
| DCHECK(packets_acked_.empty()); |
| DCHECK_LE(largest_acked, unacked_packets_.largest_sent_packet()); |
| rtt_updated_ = |
| MaybeUpdateRTT(largest_acked, ack_delay_time, ack_receive_time); |
| DCHECK(!unacked_packets_.largest_acked().IsInitialized() || |
| largest_acked >= unacked_packets_.largest_acked()); |
| last_ack_frame_.ack_delay_time = ack_delay_time; |
| acked_packets_iter_ = last_ack_frame_.packets.rbegin(); |
| } |
| |
| void QuicSentPacketManager::OnAckRange(QuicPacketNumber start, |
| QuicPacketNumber end) { |
| if (!last_ack_frame_.largest_acked.IsInitialized() || |
| end > last_ack_frame_.largest_acked + 1) { |
| // Largest acked increases. |
| unacked_packets_.IncreaseLargestAcked(end - 1); |
| last_ack_frame_.largest_acked = end - 1; |
| } |
| // Drop ack ranges which ack packets below least_unacked. |
| QuicPacketNumber least_unacked = unacked_packets_.GetLeastUnacked(); |
| if (least_unacked.IsInitialized() && end <= least_unacked) { |
| return; |
| } |
| start = std::max(start, least_unacked); |
| do { |
| QuicPacketNumber newly_acked_start = start; |
| if (acked_packets_iter_ != last_ack_frame_.packets.rend()) { |
| newly_acked_start = std::max(start, acked_packets_iter_->max()); |
| } |
| for (QuicPacketNumber acked = end - 1; acked >= newly_acked_start; |
| --acked) { |
| // Check if end is above the current range. If so add newly acked packets |
| // in descending order. |
| packets_acked_.push_back(AckedPacket(acked, 0, QuicTime::Zero())); |
| if (acked == FirstSendingPacketNumber()) { |
| break; |
| } |
| } |
| if (acked_packets_iter_ == last_ack_frame_.packets.rend() || |
| start > acked_packets_iter_->min()) { |
| // Finish adding all newly acked packets. |
| return; |
| } |
| end = std::min(end, acked_packets_iter_->min()); |
| ++acked_packets_iter_; |
| } while (start < end); |
| } |
| |
| void QuicSentPacketManager::OnAckTimestamp(QuicPacketNumber packet_number, |
| QuicTime timestamp) { |
| last_ack_frame_.received_packet_times.push_back({packet_number, timestamp}); |
| for (AckedPacket& packet : packets_acked_) { |
| if (packet.packet_number == packet_number) { |
| packet.receive_timestamp = timestamp; |
| return; |
| } |
| } |
| } |
| |
| bool QuicSentPacketManager::OnAckFrameEnd(QuicTime ack_receive_time) { |
| QuicByteCount prior_bytes_in_flight = unacked_packets_.bytes_in_flight(); |
| // Reverse packets_acked_ so that it is in ascending order. |
| reverse(packets_acked_.begin(), packets_acked_.end()); |
| for (AckedPacket& acked_packet : packets_acked_) { |
| QuicTransmissionInfo* info = |
| unacked_packets_.GetMutableTransmissionInfo(acked_packet.packet_number); |
| if (!QuicUtils::IsAckable(info->state)) { |
| if (info->state == ACKED) { |
| QUIC_BUG << "Trying to ack an already acked packet: " |
| << acked_packet.packet_number |
| << ", last_ack_frame_: " << last_ack_frame_ |
| << ", least_unacked: " << unacked_packets_.GetLeastUnacked() |
| << ", packets_acked_: " << packets_acked_; |
| } else { |
| QUIC_PEER_BUG << "Received ack for unackable packet: " |
| << acked_packet.packet_number << " with state: " |
| << QuicUtils::SentPacketStateToString(info->state); |
| } |
| continue; |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "Got an ack for packet " |
| << acked_packet.packet_number; |
| last_ack_frame_.packets.Add(acked_packet.packet_number); |
| if (info->largest_acked.IsInitialized()) { |
| if (largest_packet_peer_knows_is_acked_.IsInitialized()) { |
| largest_packet_peer_knows_is_acked_ = |
| std::max(largest_packet_peer_knows_is_acked_, info->largest_acked); |
| } else { |
| largest_packet_peer_knows_is_acked_ = info->largest_acked; |
| } |
| } |
| // If data is associated with the most recent transmission of this |
| // packet, then inform the caller. |
| if (info->in_flight) { |
| acked_packet.bytes_acked = info->bytes_sent; |
| } else { |
| // Unackable packets are skipped earlier. |
| largest_newly_acked_ = acked_packet.packet_number; |
| } |
| if (unacked_packets_.use_uber_loss_algorithm()) { |
| unacked_packets_.MaybeUpdateLargestAckedOfPacketNumberSpace( |
| info->encryption_level, acked_packet.packet_number); |
| } |
| MarkPacketHandled(acked_packet.packet_number, info, |
| last_ack_frame_.ack_delay_time); |
| } |
| const bool acked_new_packet = !packets_acked_.empty(); |
| PostProcessAfterMarkingPacketHandled(last_ack_frame_, ack_receive_time, |
| rtt_updated_, prior_bytes_in_flight); |
| |
| return acked_new_packet; |
| } |
| |
| void QuicSentPacketManager::SetDebugDelegate(DebugDelegate* debug_delegate) { |
| debug_delegate_ = debug_delegate; |
| } |
| |
| void QuicSentPacketManager::OnApplicationLimited() { |
| if (using_pacing_) { |
| pacing_sender_.OnApplicationLimited(); |
| } |
| send_algorithm_->OnApplicationLimited(unacked_packets_.bytes_in_flight()); |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnApplicationLimited(); |
| } |
| } |
| |
| QuicTime QuicSentPacketManager::GetNextReleaseTime() const { |
| return using_pacing_ ? pacing_sender_.ideal_next_packet_send_time() |
| : QuicTime::Zero(); |
| } |
| |
| void QuicSentPacketManager::SetInitialRtt(QuicTime::Delta rtt) { |
| const QuicTime::Delta min_rtt = |
| QuicTime::Delta::FromMicroseconds(kMinInitialRoundTripTimeUs); |
| const QuicTime::Delta max_rtt = |
| QuicTime::Delta::FromMicroseconds(kMaxInitialRoundTripTimeUs); |
| rtt_stats_.set_initial_rtt(std::max(min_rtt, std::min(max_rtt, rtt))); |
| } |
| |
| #undef ENDPOINT // undef for jumbo builds |
| } // namespace quic |