blob: 15efa757a2655ada8850f6d1443891fc05d6241a [file] [log] [blame]
//
// Copyright 2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// validationES.h: Validation functions for generic OpenGL ES entry point parameters
#include "libANGLE/validationES.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/ErrorStrings.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Image.h"
#include "libANGLE/Program.h"
#include "libANGLE/Query.h"
#include "libANGLE/Texture.h"
#include "libANGLE/TransformFeedback.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/queryutils.h"
#include "libANGLE/validationES2.h"
#include "libANGLE/validationES3.h"
#include "common/mathutil.h"
#include "common/utilities.h"
using namespace angle;
namespace gl
{
using namespace err;
namespace
{
bool CompressedTextureFormatRequiresExactSize(GLenum internalFormat)
{
// List of compressed format that require that the texture size is smaller than or a multiple of
// the compressed block size.
switch (internalFormat)
{
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
case GL_COMPRESSED_SRGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT:
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
case GL_ETC1_RGB8_LOSSY_DECODE_ANGLE:
case GL_COMPRESSED_RGB8_LOSSY_DECODE_ETC2_ANGLE:
case GL_COMPRESSED_SRGB8_LOSSY_DECODE_ETC2_ANGLE:
case GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_LOSSY_DECODE_ETC2_ANGLE:
case GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_LOSSY_DECODE_ETC2_ANGLE:
case GL_COMPRESSED_RGBA8_LOSSY_DECODE_ETC2_EAC_ANGLE:
case GL_COMPRESSED_SRGB8_ALPHA8_LOSSY_DECODE_ETC2_EAC_ANGLE:
case GL_COMPRESSED_RGBA_BPTC_UNORM_EXT:
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT:
case GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_EXT:
case GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_EXT:
return true;
default:
return false;
}
}
bool CompressedSubTextureFormatRequiresExactSize(GLenum internalFormat)
{
// Compressed sub textures have additional formats that requires exact size.
// ES 3.1, Section 8.7, Page 171
return CompressedTextureFormatRequiresExactSize(internalFormat) ||
IsETC2EACFormat(internalFormat);
}
bool DifferenceCanOverflow(GLint a, GLint b)
{
CheckedNumeric<GLint> checkedA(a);
checkedA -= b;
// Use negation to make sure that the difference can't overflow regardless of the order.
checkedA = -checkedA;
return !checkedA.IsValid();
}
bool ValidReadPixelsTypeEnum(Context *context, GLenum type)
{
switch (type)
{
// Types referenced in Table 3.4 of the ES 2.0.25 spec
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_5_6_5:
return context->getClientVersion() >= ES_2_0;
// Types referenced in Table 3.2 of the ES 3.0.5 spec (Except depth stencil)
case GL_BYTE:
case GL_INT:
case GL_SHORT:
case GL_UNSIGNED_INT:
case GL_UNSIGNED_INT_10F_11F_11F_REV:
case GL_UNSIGNED_INT_24_8:
case GL_UNSIGNED_INT_2_10_10_10_REV:
case GL_UNSIGNED_INT_5_9_9_9_REV:
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
return context->getClientVersion() >= ES_3_0;
case GL_FLOAT:
return context->getClientVersion() >= ES_3_0 || context->getExtensions().textureFloat ||
context->getExtensions().colorBufferHalfFloat;
case GL_HALF_FLOAT:
return context->getClientVersion() >= ES_3_0 ||
context->getExtensions().textureHalfFloat;
case GL_HALF_FLOAT_OES:
return context->getExtensions().colorBufferHalfFloat;
default:
return false;
}
}
bool ValidReadPixelsFormatEnum(Context *context, GLenum format)
{
switch (format)
{
// Formats referenced in Table 3.4 of the ES 2.0.25 spec (Except luminance)
case GL_RGBA:
case GL_RGB:
case GL_ALPHA:
return context->getClientVersion() >= ES_2_0;
// Formats referenced in Table 3.2 of the ES 3.0.5 spec
case GL_RG:
case GL_RED:
case GL_RGBA_INTEGER:
case GL_RGB_INTEGER:
case GL_RG_INTEGER:
case GL_RED_INTEGER:
return context->getClientVersion() >= ES_3_0;
case GL_SRGB_ALPHA_EXT:
case GL_SRGB_EXT:
return context->getExtensions().sRGB;
case GL_BGRA_EXT:
return context->getExtensions().readFormatBGRA;
default:
return false;
}
}
bool ValidReadPixelsFormatType(Context *context,
const gl::InternalFormat *info,
GLenum format,
GLenum type)
{
switch (info->componentType)
{
case GL_UNSIGNED_NORMALIZED:
// TODO(geofflang): Don't accept BGRA here. Some chrome internals appear to try to use
// ReadPixels with BGRA even if the extension is not present
return (format == GL_RGBA && type == GL_UNSIGNED_BYTE && info->pixelBytes >= 1) ||
(context->getExtensions().textureNorm16 && format == GL_RGBA &&
type == GL_UNSIGNED_SHORT && info->pixelBytes >= 2) ||
(context->getExtensions().readFormatBGRA && format == GL_BGRA_EXT &&
type == GL_UNSIGNED_BYTE);
case GL_SIGNED_NORMALIZED:
return (format == GL_RGBA && type == GL_BYTE && info->pixelBytes >= 1) ||
(context->getExtensions().textureNorm16 && format == GL_RGBA &&
type == GL_UNSIGNED_SHORT && info->pixelBytes >= 2);
case GL_INT:
return (format == GL_RGBA_INTEGER && type == GL_INT);
case GL_UNSIGNED_INT:
return (format == GL_RGBA_INTEGER && type == GL_UNSIGNED_INT);
case GL_FLOAT:
return (format == GL_RGBA && type == GL_FLOAT);
default:
UNREACHABLE();
return false;
}
}
template <typename ParamType>
bool ValidateTextureWrapModeValue(Context *context,
const ParamType *params,
bool restrictedWrapModes)
{
switch (ConvertToGLenum(params[0]))
{
case GL_CLAMP_TO_EDGE:
break;
case GL_CLAMP_TO_BORDER:
if (!context->getExtensions().textureBorderClamp)
{
context->validationError(GL_INVALID_ENUM, kExtensionNotEnabled);
return false;
}
break;
case GL_REPEAT:
case GL_MIRRORED_REPEAT:
if (restrictedWrapModes)
{
// OES_EGL_image_external and ANGLE_texture_rectangle specifies this error.
context->validationError(GL_INVALID_ENUM, kInvalidWrapModeTexture);
return false;
}
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidTextureWrap);
return false;
}
return true;
}
template <typename ParamType>
bool ValidateTextureMinFilterValue(Context *context,
const ParamType *params,
bool restrictedMinFilter)
{
switch (ConvertToGLenum(params[0]))
{
case GL_NEAREST:
case GL_LINEAR:
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
if (restrictedMinFilter)
{
// OES_EGL_image_external specifies this error.
context->validationError(GL_INVALID_ENUM, kInvalidFilterTexture);
return false;
}
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidTextureFilterParam);
return false;
}
return true;
}
template <typename ParamType>
bool ValidateTextureMagFilterValue(Context *context, const ParamType *params)
{
switch (ConvertToGLenum(params[0]))
{
case GL_NEAREST:
case GL_LINEAR:
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidTextureFilterParam);
return false;
}
return true;
}
template <typename ParamType>
bool ValidateTextureCompareModeValue(Context *context, const ParamType *params)
{
// Acceptable mode parameters from GLES 3.0.2 spec, table 3.17
switch (ConvertToGLenum(params[0]))
{
case GL_NONE:
case GL_COMPARE_REF_TO_TEXTURE:
break;
default:
context->validationError(GL_INVALID_ENUM, kUnknownParameter);
return false;
}
return true;
}
template <typename ParamType>
bool ValidateTextureCompareFuncValue(Context *context, const ParamType *params)
{
// Acceptable function parameters from GLES 3.0.2 spec, table 3.17
switch (ConvertToGLenum(params[0]))
{
case GL_LEQUAL:
case GL_GEQUAL:
case GL_LESS:
case GL_GREATER:
case GL_EQUAL:
case GL_NOTEQUAL:
case GL_ALWAYS:
case GL_NEVER:
break;
default:
context->validationError(GL_INVALID_ENUM, kUnknownParameter);
return false;
}
return true;
}
template <typename ParamType>
bool ValidateTextureSRGBDecodeValue(Context *context, const ParamType *params)
{
if (!context->getExtensions().textureSRGBDecode)
{
context->validationError(GL_INVALID_ENUM, kExtensionNotEnabled);
return false;
}
switch (ConvertToGLenum(params[0]))
{
case GL_DECODE_EXT:
case GL_SKIP_DECODE_EXT:
break;
default:
context->validationError(GL_INVALID_ENUM, kUnknownParameter);
return false;
}
return true;
}
bool ValidateTextureMaxAnisotropyExtensionEnabled(Context *context)
{
if (!context->getExtensions().textureFilterAnisotropic)
{
context->validationError(GL_INVALID_ENUM, kExtensionNotEnabled);
return false;
}
return true;
}
bool ValidateTextureMaxAnisotropyValue(Context *context, GLfloat paramValue)
{
if (!ValidateTextureMaxAnisotropyExtensionEnabled(context))
{
return false;
}
GLfloat largest = context->getExtensions().maxTextureAnisotropy;
if (paramValue < 1 || paramValue > largest)
{
context->validationError(GL_INVALID_VALUE, kOutsideOfBounds);
return false;
}
return true;
}
bool ValidateFragmentShaderColorBufferMaskMatch(Context *context)
{
const Program *program = context->getState().getLinkedProgram(context);
const Framebuffer *framebuffer = context->getState().getDrawFramebuffer();
auto drawBufferMask = framebuffer->getDrawBufferMask().to_ulong();
auto fragmentOutputMask = program->getActiveOutputVariables().to_ulong();
return drawBufferMask == (drawBufferMask & fragmentOutputMask);
}
bool ValidateFragmentShaderColorBufferTypeMatch(Context *context)
{
const Program *program = context->getState().getLinkedProgram(context);
const Framebuffer *framebuffer = context->getState().getDrawFramebuffer();
return ValidateComponentTypeMasks(program->getDrawBufferTypeMask().to_ulong(),
framebuffer->getDrawBufferTypeMask().to_ulong(),
program->getActiveOutputVariables().to_ulong(),
framebuffer->getDrawBufferMask().to_ulong());
}
bool ValidateVertexShaderAttributeTypeMatch(Context *context)
{
const auto &glState = context->getState();
const Program *program = context->getState().getLinkedProgram(context);
const VertexArray *vao = context->getState().getVertexArray();
unsigned long stateCurrentValuesTypeBits = glState.getCurrentValuesTypeMask().to_ulong();
unsigned long vaoAttribTypeBits = vao->getAttributesTypeMask().to_ulong();
unsigned long vaoAttribEnabledMask = vao->getAttributesMask().to_ulong();
vaoAttribEnabledMask |= vaoAttribEnabledMask << kMaxComponentTypeMaskIndex;
vaoAttribTypeBits = (vaoAttribEnabledMask & vaoAttribTypeBits);
vaoAttribTypeBits |= (~vaoAttribEnabledMask & stateCurrentValuesTypeBits);
return ValidateComponentTypeMasks(program->getAttributesTypeMask().to_ulong(),
vaoAttribTypeBits, program->getAttributesMask().to_ulong(),
0xFFFF);
}
bool IsCompatibleDrawModeWithGeometryShader(PrimitiveMode drawMode,
PrimitiveMode geometryShaderInputPrimitiveType)
{
// [EXT_geometry_shader] Section 11.1gs.1, Geometry Shader Input Primitives
switch (drawMode)
{
case PrimitiveMode::Points:
return geometryShaderInputPrimitiveType == PrimitiveMode::Points;
case PrimitiveMode::Lines:
case PrimitiveMode::LineStrip:
case PrimitiveMode::LineLoop:
return geometryShaderInputPrimitiveType == PrimitiveMode::Lines;
case PrimitiveMode::LinesAdjacency:
case PrimitiveMode::LineStripAdjacency:
return geometryShaderInputPrimitiveType == PrimitiveMode::LinesAdjacency;
case PrimitiveMode::Triangles:
case PrimitiveMode::TriangleFan:
case PrimitiveMode::TriangleStrip:
return geometryShaderInputPrimitiveType == PrimitiveMode::Triangles;
case PrimitiveMode::TrianglesAdjacency:
case PrimitiveMode::TriangleStripAdjacency:
return geometryShaderInputPrimitiveType == PrimitiveMode::TrianglesAdjacency;
default:
UNREACHABLE();
return false;
}
}
// GLES1 texture parameters are a small subset of the others
bool IsValidGLES1TextureParameter(GLenum pname)
{
switch (pname)
{
case GL_TEXTURE_MAG_FILTER:
case GL_TEXTURE_MIN_FILTER:
case GL_TEXTURE_WRAP_S:
case GL_TEXTURE_WRAP_T:
case GL_TEXTURE_WRAP_R:
case GL_GENERATE_MIPMAP:
case GL_TEXTURE_CROP_RECT_OES:
return true;
default:
return false;
}
}
unsigned int GetSamplerParameterCount(GLenum pname)
{
return pname == GL_TEXTURE_BORDER_COLOR ? 4 : 1;
}
} // anonymous namespace
void SetRobustLengthParam(GLsizei *length, GLsizei value)
{
if (length)
{
*length = value;
}
}
bool IsETC2EACFormat(const GLenum format)
{
// ES 3.1, Table 8.19
switch (format)
{
case GL_COMPRESSED_R11_EAC:
case GL_COMPRESSED_SIGNED_R11_EAC:
case GL_COMPRESSED_RG11_EAC:
case GL_COMPRESSED_SIGNED_RG11_EAC:
case GL_COMPRESSED_RGB8_ETC2:
case GL_COMPRESSED_SRGB8_ETC2:
case GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2:
case GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2:
case GL_COMPRESSED_RGBA8_ETC2_EAC:
case GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC:
return true;
default:
return false;
}
}
bool ValidTextureTarget(const Context *context, TextureType type)
{
switch (type)
{
case TextureType::_2D:
case TextureType::CubeMap:
return true;
case TextureType::Rectangle:
return context->getExtensions().textureRectangle;
case TextureType::_3D:
return ((context->getClientMajorVersion() >= 3) ||
context->getExtensions().texture3DOES);
case TextureType::_2DArray:
return (context->getClientMajorVersion() >= 3);
case TextureType::_2DMultisample:
return (context->getClientVersion() >= Version(3, 1) ||
context->getExtensions().textureMultisample);
case TextureType::_2DMultisampleArray:
return context->getExtensions().textureStorageMultisample2DArray;
default:
return false;
}
}
bool ValidTexture2DTarget(const Context *context, TextureType type)
{
switch (type)
{
case TextureType::_2D:
case TextureType::CubeMap:
return true;
case TextureType::Rectangle:
return context->getExtensions().textureRectangle;
default:
return false;
}
}
bool ValidTexture3DTarget(const Context *context, TextureType target)
{
switch (target)
{
case TextureType::_3D:
case TextureType::_2DArray:
return (context->getClientMajorVersion() >= 3);
default:
return false;
}
}
// Most texture GL calls are not compatible with external textures, so we have a separate validation
// function for use in the GL calls that do
bool ValidTextureExternalTarget(const Context *context, TextureType target)
{
return (target == TextureType::External) &&
(context->getExtensions().eglImageExternal ||
context->getExtensions().eglStreamConsumerExternal);
}
bool ValidTextureExternalTarget(const Context *context, TextureTarget target)
{
return (target == TextureTarget::External) &&
ValidTextureExternalTarget(context, TextureType::External);
}
// This function differs from ValidTextureTarget in that the target must be
// usable as the destination of a 2D operation-- so a cube face is valid, but
// GL_TEXTURE_CUBE_MAP is not.
// Note: duplicate of IsInternalTextureTarget
bool ValidTexture2DDestinationTarget(const Context *context, TextureTarget target)
{
switch (target)
{
case TextureTarget::_2D:
case TextureTarget::CubeMapNegativeX:
case TextureTarget::CubeMapNegativeY:
case TextureTarget::CubeMapNegativeZ:
case TextureTarget::CubeMapPositiveX:
case TextureTarget::CubeMapPositiveY:
case TextureTarget::CubeMapPositiveZ:
return true;
case TextureTarget::Rectangle:
return context->getExtensions().textureRectangle;
default:
return false;
}
}
bool ValidateTransformFeedbackPrimitiveMode(const Context *context,
PrimitiveMode transformFeedbackPrimitiveMode,
PrimitiveMode renderPrimitiveMode)
{
ASSERT(context);
if (!context->getExtensions().geometryShader)
{
// It is an invalid operation to call DrawArrays or DrawArraysInstanced with a draw mode
// that does not match the current transform feedback object's draw mode (if transform
// feedback is active), (3.0.2, section 2.14, pg 86)
return transformFeedbackPrimitiveMode == renderPrimitiveMode;
}
// [GL_EXT_geometry_shader] Table 12.1gs
switch (renderPrimitiveMode)
{
case PrimitiveMode::Points:
return transformFeedbackPrimitiveMode == PrimitiveMode::Points;
case PrimitiveMode::Lines:
case PrimitiveMode::LineStrip:
case PrimitiveMode::LineLoop:
return transformFeedbackPrimitiveMode == PrimitiveMode::Lines;
case PrimitiveMode::Triangles:
case PrimitiveMode::TriangleFan:
case PrimitiveMode::TriangleStrip:
return transformFeedbackPrimitiveMode == PrimitiveMode::Triangles;
default:
UNREACHABLE();
return false;
}
}
bool ValidateDrawElementsInstancedBase(Context *context,
PrimitiveMode mode,
GLsizei count,
DrawElementsType type,
const GLvoid *indices,
GLsizei primcount)
{
if (primcount <= 0)
{
if (primcount < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativePrimcount);
return false;
}
// Early exit.
return ValidateDrawElementsCommon(context, mode, count, type, indices, primcount);
}
if (!ValidateDrawElementsCommon(context, mode, count, type, indices, primcount))
{
return false;
}
if (count == 0)
{
// Early exit.
return true;
}
return ValidateDrawInstancedAttribs(context, primcount);
}
bool ValidateDrawArraysInstancedBase(Context *context,
PrimitiveMode mode,
GLint first,
GLsizei count,
GLsizei primcount)
{
if (primcount <= 0)
{
if (primcount < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativePrimcount);
return false;
}
// Early exit.
return ValidateDrawArraysCommon(context, mode, first, count, primcount);
}
if (!ValidateDrawArraysCommon(context, mode, first, count, primcount))
{
return false;
}
if (count == 0)
{
// Early exit.
return true;
}
return ValidateDrawInstancedAttribs(context, primcount);
}
bool ValidateDrawInstancedANGLE(Context *context)
{
// Verify there is at least one active attribute with a divisor of zero
const State &state = context->getState();
Program *program = state.getLinkedProgram(context);
const auto &attribs = state.getVertexArray()->getVertexAttributes();
const auto &bindings = state.getVertexArray()->getVertexBindings();
for (size_t attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
const VertexAttribute &attrib = attribs[attributeIndex];
const VertexBinding &binding = bindings[attrib.bindingIndex];
if (program->isAttribLocationActive(attributeIndex) && binding.getDivisor() == 0)
{
return true;
}
}
context->validationError(GL_INVALID_OPERATION, kNoZeroDivisor);
return false;
}
bool ValidTexture3DDestinationTarget(const Context *context, TextureTarget target)
{
switch (target)
{
case TextureTarget::_3D:
case TextureTarget::_2DArray:
return true;
default:
return false;
}
}
bool ValidTexLevelDestinationTarget(const Context *context, TextureType type)
{
switch (type)
{
case TextureType::_2D:
case TextureType::_2DArray:
case TextureType::_2DMultisample:
case TextureType::CubeMap:
case TextureType::_3D:
return true;
case TextureType::Rectangle:
return context->getExtensions().textureRectangle;
case TextureType::_2DMultisampleArray:
return context->getExtensions().textureStorageMultisample2DArray;
default:
return false;
}
}
bool ValidFramebufferTarget(const Context *context, GLenum target)
{
static_assert(GL_DRAW_FRAMEBUFFER_ANGLE == GL_DRAW_FRAMEBUFFER &&
GL_READ_FRAMEBUFFER_ANGLE == GL_READ_FRAMEBUFFER,
"ANGLE framebuffer enums must equal the ES3 framebuffer enums.");
switch (target)
{
case GL_FRAMEBUFFER:
return true;
case GL_READ_FRAMEBUFFER:
case GL_DRAW_FRAMEBUFFER:
return (context->getExtensions().framebufferBlit ||
context->getClientMajorVersion() >= 3);
default:
return false;
}
}
bool ValidMipLevel(const Context *context, TextureType type, GLint level)
{
const auto &caps = context->getCaps();
int maxDimension = 0;
switch (type)
{
case TextureType::_2D:
case TextureType::_2DArray:
case TextureType::_2DMultisample:
case TextureType::_2DMultisampleArray:
// TODO(http://anglebug.com/2775): It's a bit unclear what the "maximum allowable
// level-of-detail" for multisample textures should be. Could maybe make it zero.
maxDimension = caps.max2DTextureSize;
break;
case TextureType::CubeMap:
maxDimension = caps.maxCubeMapTextureSize;
break;
case TextureType::External:
case TextureType::Rectangle:
return level == 0;
case TextureType::_3D:
maxDimension = caps.max3DTextureSize;
break;
default:
UNREACHABLE();
}
return level <= log2(maxDimension) && level >= 0;
}
bool ValidImageSizeParameters(Context *context,
TextureType target,
GLint level,
GLsizei width,
GLsizei height,
GLsizei depth,
bool isSubImage)
{
if (width < 0 || height < 0 || depth < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativeSize);
return false;
}
// TexSubImage parameters can be NPOT without textureNPOT extension,
// as long as the destination texture is POT.
bool hasNPOTSupport =
context->getExtensions().textureNPOT || context->getClientVersion() >= Version(3, 0);
if (!isSubImage && !hasNPOTSupport &&
(level != 0 && (!isPow2(width) || !isPow2(height) || !isPow2(depth))))
{
context->validationError(GL_INVALID_VALUE, kTextureNotPow2);
return false;
}
if (!ValidMipLevel(context, target, level))
{
context->validationError(GL_INVALID_VALUE, kInvalidMipLevel);
return false;
}
return true;
}
bool ValidCompressedDimension(GLsizei size, GLuint blockSize, bool smallerThanBlockSizeAllowed)
{
return (smallerThanBlockSizeAllowed && (size > 0) && (blockSize % size == 0)) ||
(size % blockSize == 0);
}
bool ValidCompressedImageSize(const Context *context,
GLenum internalFormat,
GLint level,
GLsizei width,
GLsizei height,
GLsizei depth)
{
const InternalFormat &formatInfo = GetSizedInternalFormatInfo(internalFormat);
if (!formatInfo.compressed)
{
return false;
}
if (width < 0 || height < 0)
{
return false;
}
if (CompressedTextureFormatRequiresExactSize(internalFormat))
{
// The ANGLE extensions allow specifying compressed textures with sizes smaller than the
// block size for level 0 but WebGL disallows this.
bool smallerThanBlockSizeAllowed =
level > 0 || !context->getExtensions().webglCompatibility;
if (!ValidCompressedDimension(width, formatInfo.compressedBlockWidth,
smallerThanBlockSizeAllowed) ||
!ValidCompressedDimension(height, formatInfo.compressedBlockHeight,
smallerThanBlockSizeAllowed) ||
!ValidCompressedDimension(depth, formatInfo.compressedBlockDepth,
smallerThanBlockSizeAllowed))
{
return false;
}
}
return true;
}
bool ValidCompressedSubImageSize(const Context *context,
GLenum internalFormat,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
size_t textureWidth,
size_t textureHeight,
size_t textureDepth)
{
const InternalFormat &formatInfo = GetSizedInternalFormatInfo(internalFormat);
if (!formatInfo.compressed)
{
return false;
}
if (xoffset < 0 || yoffset < 0 || zoffset < 0 || width < 0 || height < 0 || depth < 0)
{
return false;
}
bool fillsEntireMip =
xoffset == 0 && yoffset == 0 && static_cast<size_t>(width) == textureWidth &&
static_cast<size_t>(height) == textureHeight && static_cast<size_t>(depth) == textureDepth;
if (CompressedFormatRequiresWholeImage(internalFormat))
{
return fillsEntireMip;
}
if (CompressedSubTextureFormatRequiresExactSize(internalFormat))
{
if (xoffset % formatInfo.compressedBlockWidth != 0 ||
yoffset % formatInfo.compressedBlockHeight != 0 ||
zoffset % formatInfo.compressedBlockDepth != 0)
{
return false;
}
// Allowed to either have data that is a multiple of block size or is smaller than the block
// size but fills the entire mip
bool sizeMultipleOfBlockSize = (width % formatInfo.compressedBlockWidth) == 0 &&
(height % formatInfo.compressedBlockHeight) == 0 &&
(depth % formatInfo.compressedBlockDepth) == 0;
if (!sizeMultipleOfBlockSize && !fillsEntireMip)
{
return false;
}
}
return true;
}
bool ValidImageDataSize(Context *context,
TextureType texType,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLenum type,
const void *pixels,
GLsizei imageSize)
{
Buffer *pixelUnpackBuffer = context->getState().getTargetBuffer(BufferBinding::PixelUnpack);
if (pixelUnpackBuffer == nullptr && imageSize < 0)
{
// Checks are not required
return true;
}
// ...the data would be unpacked from the buffer object such that the memory reads required
// would exceed the data store size.
const InternalFormat &formatInfo = GetInternalFormatInfo(format, type);
ASSERT(formatInfo.internalFormat != GL_NONE);
const Extents size(width, height, depth);
const auto &unpack = context->getState().getUnpackState();
bool targetIs3D = texType == TextureType::_3D || texType == TextureType::_2DArray;
GLuint endByte = 0;
if (!formatInfo.computePackUnpackEndByte(type, size, unpack, targetIs3D, &endByte))
{
context->validationError(GL_INVALID_OPERATION, kIntegerOverflow);
return false;
}
if (pixelUnpackBuffer)
{
CheckedNumeric<size_t> checkedEndByte(endByte);
CheckedNumeric<size_t> checkedOffset(reinterpret_cast<size_t>(pixels));
checkedEndByte += checkedOffset;
if (!checkedEndByte.IsValid() ||
(checkedEndByte.ValueOrDie() > static_cast<size_t>(pixelUnpackBuffer->getSize())))
{
// Overflow past the end of the buffer
context->validationError(GL_INVALID_OPERATION, kIntegerOverflow);
return false;
}
if (context->getExtensions().webglCompatibility &&
pixelUnpackBuffer->isBoundForTransformFeedbackAndOtherUse())
{
context->validationError(GL_INVALID_OPERATION,
kPixelUnpackBufferBoundForTransformFeedback);
return false;
}
}
else
{
ASSERT(imageSize >= 0);
if (pixels == nullptr && imageSize != 0)
{
context->validationError(GL_INVALID_OPERATION, kImageSizeMustBeZero);
return false;
}
if (pixels != nullptr && endByte > static_cast<GLuint>(imageSize))
{
context->validationError(GL_INVALID_OPERATION, kImageSizeTooSmall);
return false;
}
}
return true;
}
bool ValidQueryType(const Context *context, QueryType queryType)
{
switch (queryType)
{
case QueryType::AnySamples:
case QueryType::AnySamplesConservative:
return context->getClientMajorVersion() >= 3 ||
context->getExtensions().occlusionQueryBoolean;
case QueryType::TransformFeedbackPrimitivesWritten:
return (context->getClientMajorVersion() >= 3);
case QueryType::TimeElapsed:
return context->getExtensions().disjointTimerQuery;
case QueryType::CommandsCompleted:
return context->getExtensions().syncQuery;
case QueryType::PrimitivesGenerated:
return context->getExtensions().geometryShader;
default:
return false;
}
}
bool ValidateWebGLVertexAttribPointer(Context *context,
VertexAttribType type,
GLboolean normalized,
GLsizei stride,
const void *ptr,
bool pureInteger)
{
ASSERT(context->getExtensions().webglCompatibility);
// WebGL 1.0 [Section 6.11] Vertex Attribute Data Stride
// The WebGL API supports vertex attribute data strides up to 255 bytes. A call to
// vertexAttribPointer will generate an INVALID_VALUE error if the value for the stride
// parameter exceeds 255.
constexpr GLsizei kMaxWebGLStride = 255;
if (stride > kMaxWebGLStride)
{
context->validationError(GL_INVALID_VALUE, kStrideExceedsWebGLLimit);
return false;
}
// WebGL 1.0 [Section 6.4] Buffer Offset and Stride Requirements
// The offset arguments to drawElements and vertexAttribPointer, and the stride argument to
// vertexAttribPointer, must be a multiple of the size of the data type passed to the call,
// or an INVALID_OPERATION error is generated.
angle::FormatID internalType = GetVertexFormatID(type, normalized, 1, pureInteger);
size_t typeSize = GetVertexFormatSize(internalType);
ASSERT(isPow2(typeSize) && typeSize > 0);
size_t sizeMask = (typeSize - 1);
if ((reinterpret_cast<intptr_t>(ptr) & sizeMask) != 0)
{
context->validationError(GL_INVALID_OPERATION, kOffsetMustBeMultipleOfType);
return false;
}
if ((stride & sizeMask) != 0)
{
context->validationError(GL_INVALID_OPERATION, kStrideMustBeMultipleOfType);
return false;
}
return true;
}
Program *GetValidProgramNoResolve(Context *context, ShaderProgramID id)
{
// ES3 spec (section 2.11.1) -- "Commands that accept shader or program object names will
// generate the error INVALID_VALUE if the provided name is not the name of either a shader
// or program object and INVALID_OPERATION if the provided name identifies an object
// that is not the expected type."
Program *validProgram = context->getProgramNoResolveLink(id);
if (!validProgram)
{
if (context->getShader(id))
{
context->validationError(GL_INVALID_OPERATION, kExpectedProgramName);
}
else
{
context->validationError(GL_INVALID_VALUE, kInvalidProgramName);
}
}
return validProgram;
}
Program *GetValidProgram(Context *context, ShaderProgramID id)
{
Program *program = GetValidProgramNoResolve(context, id);
if (program)
{
program->resolveLink(context);
}
return program;
}
Shader *GetValidShader(Context *context, ShaderProgramID id)
{
// See ValidProgram for spec details.
Shader *validShader = context->getShader(id);
if (!validShader)
{
if (context->getProgramNoResolveLink(id))
{
context->validationError(GL_INVALID_OPERATION, kExpectedShaderName);
}
else
{
context->validationError(GL_INVALID_VALUE, kInvalidShaderName);
}
}
return validShader;
}
bool ValidateAttachmentTarget(Context *context, GLenum attachment)
{
if (attachment >= GL_COLOR_ATTACHMENT1_EXT && attachment <= GL_COLOR_ATTACHMENT15_EXT)
{
if (context->getClientMajorVersion() < 3 && !context->getExtensions().drawBuffers)
{
context->validationError(GL_INVALID_ENUM, kInvalidAttachment);
return false;
}
// Color attachment 0 is validated below because it is always valid
const int colorAttachment = (attachment - GL_COLOR_ATTACHMENT0_EXT);
if (colorAttachment >= context->getCaps().maxColorAttachments)
{
context->validationError(GL_INVALID_OPERATION, kInvalidAttachment);
return false;
}
}
else
{
switch (attachment)
{
case GL_COLOR_ATTACHMENT0:
case GL_DEPTH_ATTACHMENT:
case GL_STENCIL_ATTACHMENT:
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
if (!context->getExtensions().webglCompatibility &&
context->getClientMajorVersion() < 3)
{
context->validationError(GL_INVALID_ENUM, kInvalidAttachment);
return false;
}
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidAttachment);
return false;
}
}
return true;
}
bool ValidateRenderbufferStorageParametersBase(Context *context,
GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width,
GLsizei height)
{
switch (target)
{
case GL_RENDERBUFFER:
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidRenderbufferTarget);
return false;
}
if (width < 0 || height < 0 || samples < 0)
{
context->validationError(GL_INVALID_VALUE, kInvalidRenderbufferWidthHeight);
return false;
}
// Hack for the special WebGL 1 "DEPTH_STENCIL" internal format.
GLenum convertedInternalFormat = context->getConvertedRenderbufferFormat(internalformat);
const TextureCaps &formatCaps = context->getTextureCaps().get(convertedInternalFormat);
if (!formatCaps.renderbuffer)
{
context->validationError(GL_INVALID_ENUM, kInvalidRenderbufferInternalFormat);
return false;
}
// ANGLE_framebuffer_multisample does not explicitly state that the internal format must be
// sized but it does state that the format must be in the ES2.0 spec table 4.5 which contains
// only sized internal formats.
const InternalFormat &formatInfo = GetSizedInternalFormatInfo(convertedInternalFormat);
if (formatInfo.internalFormat == GL_NONE)
{
context->validationError(GL_INVALID_ENUM, kInvalidRenderbufferInternalFormat);
return false;
}
if (std::max(width, height) > context->getCaps().maxRenderbufferSize)
{
context->validationError(GL_INVALID_VALUE, kResourceMaxRenderbufferSize);
return false;
}
RenderbufferID id = context->getState().getRenderbufferId();
if (id.value == 0)
{
context->validationError(GL_INVALID_OPERATION, kInvalidRenderbufferTarget);
return false;
}
return true;
}
bool ValidateFramebufferRenderbufferParameters(Context *context,
GLenum target,
GLenum attachment,
GLenum renderbuffertarget,
RenderbufferID renderbuffer)
{
if (!ValidFramebufferTarget(context, target))
{
context->validationError(GL_INVALID_ENUM, kInvalidFramebufferTarget);
return false;
}
Framebuffer *framebuffer = context->getState().getTargetFramebuffer(target);
ASSERT(framebuffer);
if (framebuffer->isDefault())
{
context->validationError(GL_INVALID_OPERATION, kDefaultFramebufferTarget);
return false;
}
if (!ValidateAttachmentTarget(context, attachment))
{
return false;
}
// [OpenGL ES 2.0.25] Section 4.4.3 page 112
// [OpenGL ES 3.0.2] Section 4.4.2 page 201
// 'renderbuffer' must be either zero or the name of an existing renderbuffer object of
// type 'renderbuffertarget', otherwise an INVALID_OPERATION error is generated.
if (renderbuffer.value != 0)
{
if (!context->getRenderbuffer(renderbuffer))
{
context->validationError(GL_INVALID_OPERATION, kInvalidRenderbufferTarget);
return false;
}
}
return true;
}
bool ValidateBlitFramebufferParameters(Context *context,
GLint srcX0,
GLint srcY0,
GLint srcX1,
GLint srcY1,
GLint dstX0,
GLint dstY0,
GLint dstX1,
GLint dstY1,
GLbitfield mask,
GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
break;
case GL_LINEAR:
break;
default:
context->validationError(GL_INVALID_ENUM, kBlitInvalidFilter);
return false;
}
if ((mask & ~(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)) != 0)
{
context->validationError(GL_INVALID_VALUE, kBlitInvalidMask);
return false;
}
// ES3.0 spec, section 4.3.2 states that linear filtering is only available for the
// color buffer, leaving only nearest being unfiltered from above
if ((mask & ~GL_COLOR_BUFFER_BIT) != 0 && filter != GL_NEAREST)
{
context->validationError(GL_INVALID_OPERATION, kBlitOnlyNearestForNonColor);
return false;
}
const auto &glState = context->getState();
Framebuffer *readFramebuffer = glState.getReadFramebuffer();
Framebuffer *drawFramebuffer = glState.getDrawFramebuffer();
if (!readFramebuffer || !drawFramebuffer)
{
context->validationError(GL_INVALID_FRAMEBUFFER_OPERATION, kBlitFramebufferMissing);
return false;
}
if (!ValidateFramebufferComplete(context, readFramebuffer))
{
return false;
}
if (!ValidateFramebufferComplete(context, drawFramebuffer))
{
return false;
}
// The draw and read framebuffers can only match if:
// - They are the default framebuffer AND
// - The read/draw surfaces are different
if ((readFramebuffer->id() == drawFramebuffer->id()) &&
((drawFramebuffer->id() != Framebuffer::kDefaultDrawFramebufferHandle) ||
(context->getCurrentDrawSurface() == context->getCurrentReadSurface())))
{
context->validationError(GL_INVALID_OPERATION, kBlitFeedbackLoop);
return false;
}
// Not allow blitting to MS buffers, therefore if renderToTextureSamples exist,
// consider it MS. needResourceSamples = false
if (!ValidateFramebufferNotMultisampled(context, drawFramebuffer, false))
{
return false;
}
// This validation is specified in the WebGL 2.0 spec and not in the GLES 3.0.5 spec, but we
// always run it in order to avoid triggering driver bugs.
if (DifferenceCanOverflow(srcX0, srcX1) || DifferenceCanOverflow(srcY0, srcY1) ||
DifferenceCanOverflow(dstX0, dstX1) || DifferenceCanOverflow(dstY0, dstY1))
{
context->validationError(GL_INVALID_VALUE, kBlitDimensionsOutOfRange);
return false;
}
bool sameBounds = srcX0 == dstX0 && srcY0 == dstY0 && srcX1 == dstX1 && srcY1 == dstY1;
if (mask & GL_COLOR_BUFFER_BIT)
{
const FramebufferAttachment *readColorBuffer = readFramebuffer->getReadColorAttachment();
const Extensions &extensions = context->getExtensions();
if (readColorBuffer)
{
const Format &readFormat = readColorBuffer->getFormat();
for (size_t drawbufferIdx = 0;
drawbufferIdx < drawFramebuffer->getDrawbufferStateCount(); ++drawbufferIdx)
{
const FramebufferAttachment *attachment =
drawFramebuffer->getDrawBuffer(drawbufferIdx);
if (attachment)
{
const Format &drawFormat = attachment->getFormat();
// The GL ES 3.0.2 spec (pg 193) states that:
// 1) If the read buffer is fixed point format, the draw buffer must be as well
// 2) If the read buffer is an unsigned integer format, the draw buffer must be
// as well
// 3) If the read buffer is a signed integer format, the draw buffer must be as
// well
// Changes with EXT_color_buffer_float:
// Case 1) is changed to fixed point OR floating point
GLenum readComponentType = readFormat.info->componentType;
GLenum drawComponentType = drawFormat.info->componentType;
bool readFixedPoint = (readComponentType == GL_UNSIGNED_NORMALIZED ||
readComponentType == GL_SIGNED_NORMALIZED);
bool drawFixedPoint = (drawComponentType == GL_UNSIGNED_NORMALIZED ||
drawComponentType == GL_SIGNED_NORMALIZED);
if (extensions.colorBufferFloat)
{
bool readFixedOrFloat = (readFixedPoint || readComponentType == GL_FLOAT);
bool drawFixedOrFloat = (drawFixedPoint || drawComponentType == GL_FLOAT);
if (readFixedOrFloat != drawFixedOrFloat)
{
context->validationError(GL_INVALID_OPERATION,
kBlitTypeMismatchFixedOrFloat);
return false;
}
}
else if (readFixedPoint != drawFixedPoint)
{
context->validationError(GL_INVALID_OPERATION, kBlitTypeMismatchFixedPoint);
return false;
}
if (readComponentType == GL_UNSIGNED_INT &&
drawComponentType != GL_UNSIGNED_INT)
{
context->validationError(GL_INVALID_OPERATION,
kBlitTypeMismatchUnsignedInteger);
return false;
}
if (readComponentType == GL_INT && drawComponentType != GL_INT)
{
context->validationError(GL_INVALID_OPERATION,
kBlitTypeMismatchSignedInteger);
return false;
}
if (readColorBuffer->getSamples() > 0 &&
(!Format::EquivalentForBlit(readFormat, drawFormat) || !sameBounds))
{
context->validationError(GL_INVALID_OPERATION,
kBlitMultisampledFormatOrBoundsMismatch);
return false;
}
if (context->getExtensions().webglCompatibility &&
*readColorBuffer == *attachment)
{
context->validationError(GL_INVALID_OPERATION, kBlitSameImageColor);
return false;
}
}
}
if (readFormat.info->isInt() && filter == GL_LINEAR)
{
context->validationError(GL_INVALID_OPERATION, kBlitIntegerWithLinearFilter);
return false;
}
}
// WebGL 2.0 BlitFramebuffer when blitting from a missing attachment
// In OpenGL ES it is undefined what happens when an operation tries to blit from a missing
// attachment and WebGL defines it to be an error. We do the check unconditionally as the
// situation is an application error that would lead to a crash in ANGLE.
else if (drawFramebuffer->hasEnabledDrawBuffer())
{
context->validationError(GL_INVALID_OPERATION, kBlitMissingColor);
return false;
}
}
GLenum masks[] = {GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT};
GLenum attachments[] = {GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT};
for (size_t i = 0; i < 2; i++)
{
if (mask & masks[i])
{
const FramebufferAttachment *readBuffer =
readFramebuffer->getAttachment(context, attachments[i]);
const FramebufferAttachment *drawBuffer =
drawFramebuffer->getAttachment(context, attachments[i]);
if (readBuffer && drawBuffer)
{
if (!Format::EquivalentForBlit(readBuffer->getFormat(), drawBuffer->getFormat()))
{
context->validationError(GL_INVALID_OPERATION,
kBlitDepthOrStencilFormatMismatch);
return false;
}
if (readBuffer->getSamples() > 0 && !sameBounds)
{
context->validationError(GL_INVALID_OPERATION, kBlitMultisampledBoundsMismatch);
return false;
}
if (context->getExtensions().webglCompatibility && *readBuffer == *drawBuffer)
{
context->validationError(GL_INVALID_OPERATION, kBlitSameImageDepthOrStencil);
return false;
}
}
// WebGL 2.0 BlitFramebuffer when blitting from a missing attachment
else if (drawBuffer)
{
context->validationError(GL_INVALID_OPERATION, kBlitMissingDepthOrStencil);
return false;
}
}
}
// OVR_multiview2:
// Calling BlitFramebuffer will result in an INVALID_FRAMEBUFFER_OPERATION error if the
// current draw framebuffer isMultiview() or the number of
// views in the current read framebuffer is more than one.
if (readFramebuffer->readDisallowedByMultiview())
{
context->validationError(GL_INVALID_FRAMEBUFFER_OPERATION, kBlitFromMultiview);
return false;
}
if (drawFramebuffer->isMultiview())
{
context->validationError(GL_INVALID_FRAMEBUFFER_OPERATION, kBlitToMultiview);
return false;
}
return true;
}
bool ValidateReadPixelsRobustANGLE(Context *context,
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLsizei bufSize,
GLsizei *length,
GLsizei *columns,
GLsizei *rows,
void *pixels)
{
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
GLsizei writeLength = 0;
GLsizei writeColumns = 0;
GLsizei writeRows = 0;
if (!ValidateReadPixelsBase(context, x, y, width, height, format, type, bufSize, &writeLength,
&writeColumns, &writeRows, pixels))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, writeLength))
{
return false;
}
SetRobustLengthParam(length, writeLength);
SetRobustLengthParam(columns, writeColumns);
SetRobustLengthParam(rows, writeRows);
return true;
}
bool ValidateReadnPixelsEXT(Context *context,
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLsizei bufSize,
void *pixels)
{
if (bufSize < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativeBufferSize);
return false;
}
return ValidateReadPixelsBase(context, x, y, width, height, format, type, bufSize, nullptr,
nullptr, nullptr, pixels);
}
bool ValidateReadnPixelsRobustANGLE(Context *context,
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLsizei bufSize,
GLsizei *length,
GLsizei *columns,
GLsizei *rows,
void *data)
{
GLsizei writeLength = 0;
GLsizei writeColumns = 0;
GLsizei writeRows = 0;
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
if (!ValidateReadPixelsBase(context, x, y, width, height, format, type, bufSize, &writeLength,
&writeColumns, &writeRows, data))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, writeLength))
{
return false;
}
SetRobustLengthParam(length, writeLength);
SetRobustLengthParam(columns, writeColumns);
SetRobustLengthParam(rows, writeRows);
return true;
}
bool ValidateGenQueriesEXT(Context *context, GLsizei n, QueryID *ids)
{
if (!context->getExtensions().occlusionQueryBoolean &&
!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kQueryExtensionNotEnabled);
return false;
}
return ValidateGenOrDelete(context, n);
}
bool ValidateDeleteQueriesEXT(Context *context, GLsizei n, const QueryID *ids)
{
if (!context->getExtensions().occlusionQueryBoolean &&
!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kQueryExtensionNotEnabled);
return false;
}
return ValidateGenOrDelete(context, n);
}
bool ValidateIsQueryEXT(Context *context, QueryID id)
{
if (!context->getExtensions().occlusionQueryBoolean &&
!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kQueryExtensionNotEnabled);
return false;
}
return true;
}
bool ValidateBeginQueryBase(Context *context, QueryType target, QueryID id)
{
if (!ValidQueryType(context, target))
{
context->validationError(GL_INVALID_ENUM, kInvalidQueryType);
return false;
}
if (id.value == 0)
{
context->validationError(GL_INVALID_OPERATION, kInvalidQueryId);
return false;
}
// From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id>
// of zero, if the active query object name for <target> is non-zero (for the
// targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if
// the active query for either target is non-zero), if <id> is the name of an
// existing query object whose type does not match <target>, or if <id> is the
// active query object name for any query type, the error INVALID_OPERATION is
// generated.
// Ensure no other queries are active
// NOTE: If other queries than occlusion are supported, we will need to check
// separately that:
// a) The query ID passed is not the current active query for any target/type
// b) There are no active queries for the requested target (and in the case
// of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT,
// no query may be active for either if glBeginQuery targets either.
if (context->getState().isQueryActive(target))
{
context->validationError(GL_INVALID_OPERATION, kOtherQueryActive);
return false;
}
Query *queryObject = context->getQuery(id, true, target);
// check that name was obtained with glGenQueries
if (!queryObject)
{
context->validationError(GL_INVALID_OPERATION, kInvalidQueryId);
return false;
}
// check for type mismatch
if (queryObject->getType() != target)
{
context->validationError(GL_INVALID_OPERATION, kQueryTargetMismatch);
return false;
}
return true;
}
bool ValidateBeginQueryEXT(Context *context, QueryType target, QueryID id)
{
if (!context->getExtensions().occlusionQueryBoolean &&
!context->getExtensions().disjointTimerQuery && !context->getExtensions().syncQuery)
{
context->validationError(GL_INVALID_OPERATION, kQueryExtensionNotEnabled);
return false;
}
return ValidateBeginQueryBase(context, target, id);
}
bool ValidateEndQueryBase(Context *context, QueryType target)
{
if (!ValidQueryType(context, target))
{
context->validationError(GL_INVALID_ENUM, kInvalidQueryType);
return false;
}
const Query *queryObject = context->getState().getActiveQuery(target);
if (queryObject == nullptr)
{
context->validationError(GL_INVALID_OPERATION, kQueryInactive);
return false;
}
return true;
}
bool ValidateEndQueryEXT(Context *context, QueryType target)
{
if (!context->getExtensions().occlusionQueryBoolean &&
!context->getExtensions().disjointTimerQuery && !context->getExtensions().syncQuery)
{
context->validationError(GL_INVALID_OPERATION, kQueryExtensionNotEnabled);
return false;
}
return ValidateEndQueryBase(context, target);
}
bool ValidateQueryCounterEXT(Context *context, QueryID id, QueryType target)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (target != QueryType::Timestamp)
{
context->validationError(GL_INVALID_ENUM, kInvalidQueryTarget);
return false;
}
Query *queryObject = context->getQuery(id, true, target);
if (queryObject == nullptr)
{
context->validationError(GL_INVALID_OPERATION, kInvalidQueryId);
return false;
}
if (context->getState().isQueryActive(queryObject))
{
context->validationError(GL_INVALID_OPERATION, kQueryActive);
return false;
}
return true;
}
bool ValidateGetQueryivBase(Context *context, QueryType target, GLenum pname, GLsizei *numParams)
{
if (numParams)
{
*numParams = 0;
}
if (!ValidQueryType(context, target) && target != QueryType::Timestamp)
{
context->validationError(GL_INVALID_ENUM, kInvalidQueryType);
return false;
}
switch (pname)
{
case GL_CURRENT_QUERY_EXT:
if (target == QueryType::Timestamp)
{
context->validationError(GL_INVALID_ENUM, kInvalidQueryTarget);
return false;
}
break;
case GL_QUERY_COUNTER_BITS_EXT:
if (!context->getExtensions().disjointTimerQuery ||
(target != QueryType::Timestamp && target != QueryType::TimeElapsed))
{
context->validationError(GL_INVALID_ENUM, kInvalidPname);
return false;
}
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidPname);
return false;
}
if (numParams)
{
// All queries return only one value
*numParams = 1;
}
return true;
}
bool ValidateGetQueryivEXT(Context *context, QueryType target, GLenum pname, GLint *params)
{
if (!context->getExtensions().occlusionQueryBoolean &&
!context->getExtensions().disjointTimerQuery && !context->getExtensions().syncQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
return ValidateGetQueryivBase(context, target, pname, nullptr);
}
bool ValidateGetQueryivRobustANGLE(Context *context,
QueryType target,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLint *params)
{
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
GLsizei numParams = 0;
if (!ValidateGetQueryivBase(context, target, pname, &numParams))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetQueryObjectValueBase(Context *context, QueryID id, GLenum pname, GLsizei *numParams)
{
if (numParams)
{
*numParams = 1;
}
if (context->isContextLost())
{
context->validationError(GL_CONTEXT_LOST, kContextLost);
if (pname == GL_QUERY_RESULT_AVAILABLE_EXT)
{
// Generate an error but still return true, the context still needs to return a
// value in this case.
return true;
}
else
{
return false;
}
}
Query *queryObject = context->getQuery(id, false, QueryType::InvalidEnum);
if (!queryObject)
{
context->validationError(GL_INVALID_OPERATION, kInvalidQueryId);
return false;
}
if (context->getState().isQueryActive(queryObject))
{
context->validationError(GL_INVALID_OPERATION, kQueryActive);
return false;
}
switch (pname)
{
case GL_QUERY_RESULT_EXT:
case GL_QUERY_RESULT_AVAILABLE_EXT:
break;
default:
context->validationError(GL_INVALID_ENUM, kEnumNotSupported);
return false;
}
return true;
}
bool ValidateGetQueryObjectivEXT(Context *context, QueryID id, GLenum pname, GLint *params)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
return ValidateGetQueryObjectValueBase(context, id, pname, nullptr);
}
bool ValidateGetQueryObjectivRobustANGLE(Context *context,
QueryID id,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLint *params)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
GLsizei numParams = 0;
if (!ValidateGetQueryObjectValueBase(context, id, pname, &numParams))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetQueryObjectuivEXT(Context *context, QueryID id, GLenum pname, GLuint *params)
{
if (!context->getExtensions().disjointTimerQuery &&
!context->getExtensions().occlusionQueryBoolean && !context->getExtensions().syncQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
return ValidateGetQueryObjectValueBase(context, id, pname, nullptr);
}
bool ValidateGetQueryObjectuivRobustANGLE(Context *context,
QueryID id,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLuint *params)
{
if (!context->getExtensions().disjointTimerQuery &&
!context->getExtensions().occlusionQueryBoolean && !context->getExtensions().syncQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
GLsizei numParams = 0;
if (!ValidateGetQueryObjectValueBase(context, id, pname, &numParams))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetQueryObjecti64vEXT(Context *context, QueryID id, GLenum pname, GLint64 *params)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
return ValidateGetQueryObjectValueBase(context, id, pname, nullptr);
}
bool ValidateGetQueryObjecti64vRobustANGLE(Context *context,
QueryID id,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLint64 *params)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
GLsizei numParams = 0;
if (!ValidateGetQueryObjectValueBase(context, id, pname, &numParams))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetQueryObjectui64vEXT(Context *context, QueryID id, GLenum pname, GLuint64 *params)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
return ValidateGetQueryObjectValueBase(context, id, pname, nullptr);
}
bool ValidateGetQueryObjectui64vRobustANGLE(Context *context,
QueryID id,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLuint64 *params)
{
if (!context->getExtensions().disjointTimerQuery)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
GLsizei numParams = 0;
if (!ValidateGetQueryObjectValueBase(context, id, pname, &numParams))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateUniformCommonBase(Context *context,
Program *program,
GLint location,
GLsizei count,
const LinkedUniform **uniformOut)
{
// TODO(Jiajia): Add image uniform check in future.
if (count < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativeCount);
return false;
}
if (!program)
{
context->validationError(GL_INVALID_OPERATION, kInvalidProgramName);
return false;
}
if (!program->isLinked())
{
context->validationError(GL_INVALID_OPERATION, kProgramNotLinked);
return false;
}
if (location == -1)
{
// Silently ignore the uniform command
return false;
}
const auto &uniformLocations = program->getUniformLocations();
size_t castedLocation = static_cast<size_t>(location);
if (castedLocation >= uniformLocations.size())
{
context->validationError(GL_INVALID_OPERATION, kInvalidUniformLocation);
return false;
}
const auto &uniformLocation = uniformLocations[castedLocation];
if (uniformLocation.ignored)
{
// Silently ignore the uniform command
return false;
}
if (!uniformLocation.used())
{
context->validationError(GL_INVALID_OPERATION, kInvalidUniformLocation);
return false;
}
const auto &uniform = program->getUniformByIndex(uniformLocation.index);
// attempting to write an array to a non-array uniform is an INVALID_OPERATION
if (count > 1 && !uniform.isArray())
{
context->validationError(GL_INVALID_OPERATION, kInvalidUniformCount);
return false;
}
*uniformOut = &uniform;
return true;
}
bool ValidateUniform1ivValue(Context *context,
GLenum uniformType,
GLsizei count,
const GLint *value)
{
// Value type is GL_INT, because we only get here from glUniform1i{v}.
// It is compatible with INT or BOOL.
// Do these cheap tests first, for a little extra speed.
if (GL_INT == uniformType || GL_BOOL == uniformType)
{
return true;
}
if (IsSamplerType(uniformType))
{
// Check that the values are in range.
const GLint max = context->getCaps().maxCombinedTextureImageUnits;
for (GLsizei i = 0; i < count; ++i)
{
if (value[i] < 0 || value[i] >= max)
{
context->validationError(GL_INVALID_VALUE, kSamplerUniformValueOutOfRange);
return false;
}
}
return true;
}
context->validationError(GL_INVALID_OPERATION, kUniformTypeMismatch);
return false;
}
bool ValidateUniformMatrixValue(Context *context, GLenum valueType, GLenum uniformType)
{
// Check that the value type is compatible with uniform type.
if (valueType == uniformType)
{
return true;
}
context->validationError(GL_INVALID_OPERATION, kUniformTypeMismatch);
return false;
}
bool ValidateUniform(Context *context, GLenum valueType, GLint location, GLsizei count)
{
const LinkedUniform *uniform = nullptr;
Program *programObject = context->getState().getLinkedProgram(context);
return ValidateUniformCommonBase(context, programObject, location, count, &uniform) &&
ValidateUniformValue(context, valueType, uniform->type);
}
bool ValidateUniform1iv(Context *context, GLint location, GLsizei count, const GLint *value)
{
const LinkedUniform *uniform = nullptr;
Program *programObject = context->getState().getLinkedProgram(context);
return ValidateUniformCommonBase(context, programObject, location, count, &uniform) &&
ValidateUniform1ivValue(context, uniform->type, count, value);
}
bool ValidateUniformMatrix(Context *context,
GLenum valueType,
GLint location,
GLsizei count,
GLboolean transpose)
{
if (ConvertToBool(transpose) && context->getClientMajorVersion() < 3)
{
context->validationError(GL_INVALID_VALUE, kES3Required);
return false;
}
const LinkedUniform *uniform = nullptr;
Program *programObject = context->getState().getLinkedProgram(context);
return ValidateUniformCommonBase(context, programObject, location, count, &uniform) &&
ValidateUniformMatrixValue(context, valueType, uniform->type);
}
bool ValidateStateQuery(Context *context, GLenum pname, GLenum *nativeType, unsigned int *numParams)
{
if (!context->getQueryParameterInfo(pname, nativeType, numParams))
{
context->validationError(GL_INVALID_ENUM, kInvalidPname);
return false;
}
const Caps &caps = context->getCaps();
if (pname >= GL_DRAW_BUFFER0 && pname <= GL_DRAW_BUFFER15)
{
int colorAttachment = (pname - GL_DRAW_BUFFER0);
if (colorAttachment >= caps.maxDrawBuffers)
{
context->validationError(GL_INVALID_OPERATION, kIndexExceedsMaxDrawBuffer);
return false;
}
}
switch (pname)
{
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_TEXTURE_BINDING_3D:
case GL_TEXTURE_BINDING_2D_ARRAY:
case GL_TEXTURE_BINDING_2D_MULTISAMPLE:
break;
case GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY:
if (!context->getExtensions().textureStorageMultisample2DArray)
{
context->validationError(GL_INVALID_ENUM, kMultisampleArrayExtensionRequired);
return false;
}
break;
case GL_TEXTURE_BINDING_RECTANGLE_ANGLE:
if (!context->getExtensions().textureRectangle)
{
context->validationError(GL_INVALID_ENUM, kEnumNotSupported);
return false;
}
break;
case GL_TEXTURE_BINDING_EXTERNAL_OES:
if (!context->getExtensions().eglStreamConsumerExternal &&
!context->getExtensions().eglImageExternal)
{
context->validationError(GL_INVALID_ENUM, kEnumNotSupported);
return false;
}
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
{
Framebuffer *readFramebuffer = context->getState().getReadFramebuffer();
ASSERT(readFramebuffer);
if (!ValidateFramebufferComplete<GL_INVALID_OPERATION>(context, readFramebuffer))
{
return false;
}
if (readFramebuffer->getReadBufferState() == GL_NONE)
{
context->validationError(GL_INVALID_OPERATION, kReadBufferNone);
return false;
}
const FramebufferAttachment *attachment = readFramebuffer->getReadColorAttachment();
if (!attachment)
{
context->validationError(GL_INVALID_OPERATION, kReadBufferNotAttached);
return false;
}
}
break;
default:
break;
}
// pname is valid, but there are no parameters to return
if (*numParams == 0)
{
return false;
}
return true;
}
bool ValidateGetBooleanvRobustANGLE(Context *context,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLboolean *params)
{
GLenum nativeType;
unsigned int numParams = 0;
if (!ValidateRobustStateQuery(context, pname, bufSize, &nativeType, &numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetFloatvRobustANGLE(Context *context,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLfloat *params)
{
GLenum nativeType;
unsigned int numParams = 0;
if (!ValidateRobustStateQuery(context, pname, bufSize, &nativeType, &numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetIntegervRobustANGLE(Context *context,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLint *data)
{
GLenum nativeType;
unsigned int numParams = 0;
if (!ValidateRobustStateQuery(context, pname, bufSize, &nativeType, &numParams))
{
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateGetInteger64vRobustANGLE(Context *context,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLint64 *data)
{
GLenum nativeType;
unsigned int numParams = 0;
if (!ValidateRobustStateQuery(context, pname, bufSize, &nativeType, &numParams))
{
return false;
}
if (nativeType == GL_INT_64_ANGLEX)
{
CastStateValues(context, nativeType, pname, numParams, data);
return false;
}
SetRobustLengthParam(length, numParams);
return true;
}
bool ValidateRobustStateQuery(Context *context,
GLenum pname,
GLsizei bufSize,
GLenum *nativeType,
unsigned int *numParams)
{
if (!ValidateRobustEntryPoint(context, bufSize))
{
return false;
}
if (!ValidateStateQuery(context, pname, nativeType, numParams))
{
return false;
}
if (!ValidateRobustBufferSize(context, bufSize, *numParams))
{
return false;
}
return true;
}
bool ValidateCopyTexImageParametersBase(Context *context,
TextureTarget target,
GLint level,
GLenum internalformat,
bool isSubImage,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLint border,
Format *textureFormatOut)
{
TextureType texType = TextureTargetToType(target);
if (xoffset < 0 || yoffset < 0 || zoffset < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativeOffset);
return false;
}
if (width < 0 || height < 0)
{
context->validationError(GL_INVALID_VALUE, kNegativeSize);
return false;
}
if (std::numeric_limits<GLsizei>::max() - xoffset < width ||
std::numeric_limits<GLsizei>::max() - yoffset < height)
{
context->validationError(GL_INVALID_VALUE, kOffsetOverflow);
return false;
}
if (border != 0)
{
context->validationError(GL_INVALID_VALUE, kInvalidBorder);
return false;
}
if (!ValidMipLevel(context, texType, level))
{
context->validationError(GL_INVALID_VALUE, kInvalidMipLevel);
return false;
}
const State &state = context->getState();
Framebuffer *readFramebuffer = state.getReadFramebuffer();
if (!ValidateFramebufferComplete(context, readFramebuffer))
{
return false;
}
// needResourceSamples = true. Treat renderToTexture textures as single sample since they will
// be resolved before copying
if (!readFramebuffer->isDefault() &&
!ValidateFramebufferNotMultisampled(context, readFramebuffer, true))
{
return false;
}
if (readFramebuffer->getReadBufferState() == GL_NONE)
{
context->validationError(GL_INVALID_OPERATION, kReadBufferNone);
return false;
}
// WebGL 1.0 [Section 6.26] Reading From a Missing Attachment
// In OpenGL ES it is undefined what happens when an operation tries to read from a missing
// attachment and WebGL defines it to be an error. We do the check unconditionally as the
// situation is an application error that would lead to a crash in ANGLE.
const FramebufferAttachment *source = readFramebuffer->getReadColorAttachment();
if (source == nullptr)
{
context->validationError(GL_INVALID_OPERATION, kMissingReadAttachment);
return false;
}
// ANGLE_multiview spec, Revision 1:
// Calling CopyTexSubImage3D, CopyTexImage2D, or CopyTexSubImage2D will result in an
// INVALID_FRAMEBUFFER_OPERATION error if the multi-view layout of the current read framebuffer
// is FRAMEBUFFER_MULTIVIEW_SIDE_BY_SIDE_ANGLE or the number of views in the current read
// framebuffer is more than one.
if (readFramebuffer->readDisallowedByMultiview())
{
context->validationError(GL_INVALID_FRAMEBUFFER_OPERATION, kMultiviewReadFramebuffer);
return false;
}
const Caps &caps = context->getCaps();
GLint maxDimension = 0;
switch (texType)
{
case TextureType::_2D:
maxDimension = caps.max2DTextureSize;
break;
case TextureType::CubeMap:
maxDimension = caps.maxCubeMapTextureSize;
break;
case TextureType::Rectangle:
maxDimension = caps.maxRectangleTextureSize;
break;
case TextureType::_2DArray:
maxDimension = caps.max2DTextureSize;
break;
case TextureType::_3D:
maxDimension = caps.max3DTextureSize;
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidTextureTarget);
return false;
}
Texture *texture = state.getTargetTexture(texType);
if (!texture)
{
context->validationError(GL_INVALID_OPERATION, kTextureNotBound);
return false;
}
if (texture->getImmutableFormat() && !isSubImage)
{
context->validationError(GL_INVALID_OPERATION, kTextureIsImmutable);
return false;
}
const InternalFormat &formatInfo =
isSubImage ? *texture->getFormat(target, level).info
: GetInternalFormatInfo(internalformat, GL_UNSIGNED_BYTE);
if (formatInfo.depthBits > 0 || formatInfo.compressed)
{
context->validationError(GL_INVALID_OPERATION, kInvalidFormat);
return false;
}
if (isSubImage)
{
if (static_cast<size_t>(xoffset + width) > texture->getWidth(target, level) ||
static_cast<size_t>(yoffset + height) > texture->getHeight(target, level) ||
static_cast<size_t>(zoffset) >= texture->getDepth(target, level))
{
context->validationError(GL_INVALID_VALUE, kOffsetOverflow);
return false;
}
}
else
{
if (texType == TextureType::CubeMap && width != height)
{
context->validationError(GL_INVALID_VALUE, kCubemapIncomplete);
return false;
}
if (!formatInfo.textureSupport(context->getClientVersion(), context->getExtensions()))
{
context->validationError(GL_INVALID_ENUM, kEnumNotSupported);
return false;
}
int maxLevelDimension = (maxDimension >> level);
if (static_cast<int>(width) > maxLevelDimension ||
static_cast<int>(height) > maxLevelDimension)
{
context->validationError(GL_INVALID_VALUE, kResourceMaxTextureSize);
return false;
}
}
if (textureFormatOut)
{
*textureFormatOut = texture->getFormat(target, level);
}
// Detect texture copying feedback loops for WebGL.
if (context->getExtensions().webglCompatibility)
{
if (readFramebuffer->formsCopyingFeedbackLoopWith(texture->id(), level, zoffset))
{
context->validationError(GL_INVALID_OPERATION, kFeedbackLoop);
return false;
}
}
return true;
}
// Note all errors returned from this function are INVALID_OPERATION except for the draw framebuffer
// completeness check.
const char *ValidateDrawStates(Context *context)
{
const Extensions &extensions = context->getExtensions();
const State &state = context->getState();
// WebGL buffers cannot be mapped/unmapped because the MapBufferRange, FlushMappedBufferRange,
// and UnmapBuffer entry points are removed from the WebGL 2.0 API.
// https://www.khronos.org/registry/webgl/specs/latest/2.0/#5.14
VertexArray *vertexArray = state.getVertexArray();
ASSERT(vertexArray);
if (!extensions.webglCompatibility && vertexArray->hasMappedEnabledArrayBuffer())
{
return kBufferMapped;
}
// Note: these separate values are not supported in WebGL, due to D3D's limitations. See
// Section 6.10 of the WebGL 1.0 spec.
Framebuffer *framebuffer = state.getDrawFramebuffer();
ASSERT(framebuffer);
if (context->getLimitations().noSeparateStencilRefsAndMasks || extensions.webglCompatibility)
{
ASSERT(framebuffer);
const FramebufferAttachment *dsAttachment =
framebuffer->getStencilOrDepthStencilAttachment();
const GLuint stencilBits = dsAttachment ? dsAttachment->getStencilSize() : 0;
ASSERT(stencilBits <= 8);
const DepthStencilState &depthStencilState = state.getDepthStencilState();
if (depthStencilState.stencilTest && stencilBits > 0)
{
GLuint maxStencilValue = (1 << stencilBits) - 1;
bool differentRefs =
clamp(state.getStencilRef(), 0, static_cast<GLint>(maxStencilValue)) !=
clamp(state.getStencilBackRef(), 0, static_cast<GLint>(maxStencilValue));
bool differentWritemasks = (depthStencilState.stencilWritemask & maxStencilValue) !=
(depthStencilState.stencilBackWritemask & maxStencilValue);
bool differentMasks = (depthStencilState.stencilMask & maxStencilValue) !=
(depthStencilState.stencilBackMask & maxStencilValue);
if (differentRefs || differentWritemasks || differentMasks)
{
if (!extensions.webglCompatibility)
{
WARN() << "This ANGLE implementation does not support separate front/back "
"stencil writemasks, reference values, or stencil mask values.";
}
return kStencilReferenceMaskOrMismatch;
}
}
}
if (!extensions.floatBlend && context->getState().isBlendEnabled() &&
framebuffer->hasActiveFloat32ColorAttachment())
{
return kUnsupportedFloatBlending;
}
if (!framebuffer->isComplete(context))
{
// Note: this error should be generated as INVALID_FRAMEBUFFER_OPERATION.
return kDrawFramebufferIncomplete;
}
if (context->getStateCache().hasAnyEnabledClientAttrib())
{
if (context->getExtensions().webglCompatibility || !state.areClientArraysEnabled())
{
// [WebGL 1.0] Section 6.5 Enabled Vertex Attributes and Range Checking
// If a vertex attribute is enabled as an array via enableVertexAttribArray but no
// buffer is bound to that attribute via bindBuffer and vertexAttribPointer, then calls
// to drawArrays or drawElements will generate an INVALID_OPERATION error.
return kVertexArrayNoBuffer;
}
if (state.getVertexArray()->hasEnabledNullPointerClientArray())
{
// This is an application error that would normally result in a crash, but we catch it
// and return an error
return kVertexArrayNoBufferPointer;
}
}
// If we are running GLES1, there is no current program.
if (context->getClientVersion() >= Version(2, 0))
{
Program *program = state.getLinkedProgram(context);
if (!program)
{
return kProgramNotBound;
}
// In OpenGL ES spec for UseProgram at section 7.3, trying to render without
// vertex shader stage or fragment shader stage is a undefined behaviour.
// But ANGLE should clearly generate an INVALID_OPERATION error instead of
// produce undefined result.
if (!program->hasLinkedShaderStage(ShaderType::Vertex) ||
!program->hasLinkedShaderStage(ShaderType::Fragment))
{
return kNoActiveGraphicsShaderStage;
}
if (!program->validateSamplers(nullptr, context->getCaps()))
{
return kTextureTypeConflict;
}
if (extensions.multiview || extensions.multiview2)
{
const int programNumViews = program->usesMultiview() ? program->getNumViews() : 1;
const int framebufferNumViews = framebuffer->getNumViews();
if (framebufferNumViews != programNumViews)
{
return kMultiviewMismatch;
}
if (state.isTransformFeedbackActiveUnpaused() && framebufferNumViews > 1)
{
return kMultiviewTransformFeedback;
}
if (extensions.disjointTimerQuery && framebufferNumViews > 1 &&
state.isQueryActive(QueryType::TimeElapsed))
{
return kMultiviewTimerQuery;
}
}
// Uniform buffer validation
for (unsigned int uniformBlockIndex = 0;
uniformBlockIndex < program->getActiveUniformBlockCount(); uniformBlockIndex++)
{
const InterfaceBlock &uniformBlock = program->getUniformBlockByIndex(uniformBlockIndex);
GLuint blockBinding = program->getUniformBlockBinding(uniformBlockIndex);
const OffsetBindingPointer<Buffer> &uniformBuffer =
state.getIndexedUniformBuffer(blockBinding);
if (uniformBuffer.get() == nullptr)
{
// undefined behaviour
return kUniformBufferUnbound;
}
size_t uniformBufferSize = GetBoundBufferAvailableSize(uniformBuffer);
if (uniformBufferSize < uniformBlock.dataSize)
{
// undefined behaviour
return kUniformBufferTooSmall;
}
if (extensions.webglCompatibility &&
uniformBuffer->isBoundForTransformFeedbackAndOtherUse())
{
return kUniformBufferBoundForTransformFeedback;
}
}
// Do some additonal WebGL-specific validation
if (extensions.webglCompatibility)
{
if (!state.validateSamplerFormats())
{
return kSamplerFormatMismatch;
}
const TransformFeedback *transformFeedbackObject = state.getCurrentTransformFeedback();
if (state.isTransformFeedbackActive() &&
transformFeedbackObject->buffersBoundForOtherUse())
{
return kTransformFeedbackBufferDoubleBound;
}
// Detect rendering feedback loops for WebGL.
if (framebuffer->formsRenderingFeedbackLoopWith(context))
{
return kFeedbackLoop;
}
// Detect that the vertex shader input types match the attribute types
if (!ValidateVertexShaderAttributeTypeMatch(context))
{
return kVertexShaderTypeMismatch;
}
if (!context->getState().getRasterizerState().rasterizerDiscard &&
!context->getState().getBlendState().allChannelsMasked())
{
// Detect that if there's active color buffer without fragment shader output
if (!ValidateFragmentShaderColorBufferMaskMatch(context))
{
return kDrawBufferMaskMismatch;
}
// Detect that the color buffer types match the fragment shader output types
if (!ValidateFragmentShaderColorBufferTypeMatch(context))
{
return kDrawBufferTypeMismatch;
}
}
const VertexArray *vao = context->getState().getVertexArray();
if (vao->hasTransformFeedbackBindingConflict(context))
{
return kVertexBufferBoundForTransformFeedback;
}
}
}
return nullptr;
}
void RecordDrawModeError(Context *context, PrimitiveMode mode)
{
const State &state = context->getState();
TransformFeedback *curTransformFeedback = state.getCurrentTransformFeedback();
if (state.isTransformFeedbackActiveUnpaused())
{
if (!ValidateTransformFeedbackPrimitiveMode(context,
curTransformFeedback->getPrimitiveMode(), mode))
{
context->validationError(GL_INVALID_OPERATION, kInvalidDrawModeTransformFeedback);
return;
}
}
const Extensions &extensions = context->getExtensions();
switch (mode)
{
case PrimitiveMode::Points:
case PrimitiveMode::Lines:
case PrimitiveMode::LineLoop:
case PrimitiveMode::LineStrip:
case PrimitiveMode::Triangles:
case PrimitiveMode::TriangleStrip:
case PrimitiveMode::TriangleFan:
break;
case PrimitiveMode::LinesAdjacency:
case PrimitiveMode::LineStripAdjacency:
case PrimitiveMode::TrianglesAdjacency:
case PrimitiveMode::TriangleStripAdjacency:
if (!extensions.geometryShader)
{
context->validationError(GL_INVALID_ENUM, kGeometryShaderExtensionNotEnabled);
return;
}
break;
default:
context->validationError(GL_INVALID_ENUM, kInvalidDrawMode);
return;
}
// If we are running GLES1, there is no current program.
if (context->getClientVersion() >= Version(2, 0))
{
Program *program = state.getLinkedProgram(context);
ASSERT(program);
// Do geometry shader specific validations
if (program->hasLinkedShaderStage(ShaderType::Geometry))
{
if (!IsCompatibleDrawModeWithGeometryShader(
mode, program->getGeometryShaderInputPrimitiveType()))
{
context->validationError(GL_INVALID_OPERATION,
kIncompatibleDrawModeAgainstGeometryShader);
return;
}
}
}
// An error should be recorded.
UNREACHABLE();
}
bool ValidateDrawArraysInstancedANGLE(Context *context,
PrimitiveMode mode,
GLint first,
GLsizei count,
GLsizei primcount)
{
if (!context->getExtensions().instancedArraysANGLE)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateDrawArraysInstancedBase(context, mode, first, count, primcount))
{
return false;
}
return ValidateDrawInstancedANGLE(context);
}
bool ValidateDrawArraysInstancedEXT(Context *context,
PrimitiveMode mode,
GLint first,
GLsizei count,
GLsizei primcount)
{
if (!context->getExtensions().instancedArraysEXT)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateDrawArraysInstancedBase(context, mode, first, count, primcount))
{
return false;
}
return true;
}
const char *ValidateDrawElementsStates(Context *context)
{
const State &state = context->getState();
if (context->getStateCache().isTransformFeedbackActiveUnpaused())
{
// EXT_geometry_shader allows transform feedback to work with all draw commands.
// [EXT_geometry_shader] Section 12.1, "Transform Feedback"
if (!context->getExtensions().geometryShader)
{
// It is an invalid operation to call DrawElements, DrawRangeElements or
// DrawElementsInstanced while transform feedback is active, (3.0.2, section 2.14, pg
// 86)
return kUnsupportedDrawModeForTransformFeedback;
}
}
const VertexArray *vao = state.getVertexArray();
Buffer *elementArrayBuffer = vao->getElementArrayBuffer();
if (elementArrayBuffer)
{
if (context->getExtensions().webglCompatibility)
{
if (elementArrayBuffer->isBoundForTransformFeedbackAndOtherUse())
{
return kElementArrayBufferBoundForTransformFeedback;
}
}
else if (elementArrayBuffer->isMapped())
{
// WebGL buffers cannot be mapped/unmapped because the MapBufferRange,
// FlushMappedBufferRange, and UnmapBuffer entry points are removed from the
// WebGL 2.0 API. https://www.khronos.org/registry/webgl/specs/latest/2.0/#5.14
return kBufferMapped;
}
}
else
{
// [WebGL 1.0] Section 6.2 No Client Side Arrays
// If an indexed draw command (drawElements) is called and no WebGLBuffer is bound to
// the ELEMENT_ARRAY_BUFFER binding point, an INVALID_OPERATION error is generated.
if (!context->getState().areClientArraysEnabled() ||
context->getExtensions().webglCompatibility)
{
return kMustHaveElementArrayBinding;
}
}
return nullptr;
}
bool ValidateDrawElementsInstancedANGLE(Context *context,
PrimitiveMode mode,
GLsizei count,
DrawElementsType type,
const void *indices,
GLsizei primcount)
{
if (!context->getExtensions().instancedArraysANGLE)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateDrawElementsInstancedBase(context, mode, count, type, indices, primcount))
{
return false;
}
return ValidateDrawInstancedANGLE(context);
}
bool ValidateDrawElementsInstancedEXT(Context *context,
PrimitiveMode mode,
GLsizei count,
DrawElementsType type,
const void *indices,
GLsizei primcount)
{
if (!context->getExtensions().instancedArraysEXT)
{
context->validationError(GL_INVALID_OPERATION, kExtensionNotEnabled);
return false;
}
if (!ValidateDrawElementsInstancedBase(context, mode, count, type, indices, primcount))
{
return false;
}
return true;
}
bool ValidateFramebufferTextureBase(Context *context,
GLenum target,
GLenum attachment,
TextureID texture,
GLint level)
{
if (!ValidFramebufferTarget(context, target))
{
context->validationError(GL_INVALID_ENUM, kInvalidFramebufferTarget);
return false;
}
if (!ValidateAttachmentTarget(context, attachment))
{
return false;
}
if (texture.value != 0)
{
Texture *tex = context->getTexture(texture);
if (tex == nullptr)
{
context->validationError(GL_INVALID_OPERATION, kMissingTexture);
return false;
}
if (level < 0)
{
context->validationError(GL_INVALID_VALUE, kInvalidMipLevel);
return false;
}