blob: 74729705761bdf50f4aa8cf1185200bc2213224b [file] [log] [blame]
/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <string.h>
#include <tuple>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp8_rtcd.h"
#include "./vpx_config.h"
#include "test/acm_random.h"
#include "test/bench.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vpx/vpx_integer.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/msvc.h"
namespace {
using libvpx_test::ACMRandom;
using std::make_tuple;
typedef void (*PredictFunc)(uint8_t *src_ptr, int src_pixels_per_line,
int xoffset, int yoffset, uint8_t *dst_ptr,
int dst_pitch);
typedef std::tuple<int, int, PredictFunc> PredictParam;
class PredictTestBase : public AbstractBench,
public ::testing::TestWithParam<PredictParam> {
public:
PredictTestBase()
: width_(GET_PARAM(0)), height_(GET_PARAM(1)), predict_(GET_PARAM(2)),
src_(nullptr), padded_dst_(nullptr), dst_(nullptr), dst_c_(nullptr) {}
virtual void SetUp() {
src_ = new uint8_t[kSrcSize];
ASSERT_NE(src_, nullptr);
// padded_dst_ provides a buffer of kBorderSize around the destination
// memory to facilitate detecting out of bounds writes.
dst_stride_ = kBorderSize + width_ + kBorderSize;
padded_dst_size_ = dst_stride_ * (kBorderSize + height_ + kBorderSize);
padded_dst_ =
reinterpret_cast<uint8_t *>(vpx_memalign(16, padded_dst_size_));
ASSERT_NE(padded_dst_, nullptr);
dst_ = padded_dst_ + (kBorderSize * dst_stride_) + kBorderSize;
dst_c_ = new uint8_t[16 * 16];
ASSERT_NE(dst_c_, nullptr);
memset(src_, 0, kSrcSize);
memset(padded_dst_, 128, padded_dst_size_);
memset(dst_c_, 0, 16 * 16);
}
virtual void TearDown() {
delete[] src_;
src_ = nullptr;
vpx_free(padded_dst_);
padded_dst_ = nullptr;
dst_ = nullptr;
delete[] dst_c_;
dst_c_ = nullptr;
libvpx_test::ClearSystemState();
}
protected:
// Make reference arrays big enough for 16x16 functions. Six-tap filters need
// 5 extra pixels outside of the macroblock.
static const int kSrcStride = 21;
static const int kSrcSize = kSrcStride * kSrcStride;
static const int kBorderSize = 16;
int width_;
int height_;
PredictFunc predict_;
uint8_t *src_;
uint8_t *padded_dst_;
uint8_t *dst_;
int padded_dst_size_;
uint8_t *dst_c_;
int dst_stride_;
bool CompareBuffers(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride) const {
for (int height = 0; height < height_; ++height) {
EXPECT_EQ(0, memcmp(a + height * a_stride, b + height * b_stride,
sizeof(*a) * width_))
<< "Row " << height << " does not match.";
}
return !HasFailure();
}
// Given a block of memory 'a' with size 'a_size', determine if all regions
// excepting block 'b' described by 'b_stride', 'b_height', and 'b_width'
// match pixel value 'c'.
bool CheckBorder(const uint8_t *a, int a_size, const uint8_t *b, int b_width,
int b_height, int b_stride, uint8_t c) const {
const uint8_t *a_end = a + a_size;
const int b_size = (b_stride * b_height) + b_width;
const uint8_t *b_end = b + b_size;
const int left_border = (b_stride - b_width) / 2;
const int right_border = left_border + ((b_stride - b_width) % 2);
EXPECT_GE(b - left_border, a) << "'b' does not start within 'a'";
EXPECT_LE(b_end + right_border, a_end) << "'b' does not end within 'a'";
// Top border.
for (int pixel = 0; pixel < b - a - left_border; ++pixel) {
EXPECT_EQ(c, a[pixel]) << "Mismatch at " << pixel << " in top border.";
}
// Left border.
for (int height = 0; height < b_height; ++height) {
for (int width = left_border; width > 0; --width) {
EXPECT_EQ(c, b[height * b_stride - width])
<< "Mismatch at row " << height << " column " << left_border - width
<< " in left border.";
}
}
// Right border.
for (int height = 0; height < b_height; ++height) {
for (int width = b_width; width < b_width + right_border; ++width) {
EXPECT_EQ(c, b[height * b_stride + width])
<< "Mismatch at row " << height << " column " << width - b_width
<< " in right border.";
}
}
// Bottom border.
for (int pixel = static_cast<int>(b - a + b_size); pixel < a_size;
++pixel) {
EXPECT_EQ(c, a[pixel]) << "Mismatch at " << pixel << " in bottom border.";
}
return !HasFailure();
}
void TestWithRandomData(PredictFunc reference) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
// Run tests for almost all possible offsets.
for (int xoffset = 0; xoffset < 8; ++xoffset) {
for (int yoffset = 0; yoffset < 8; ++yoffset) {
if (xoffset == 0 && yoffset == 0) {
// This represents a copy which is not required to be handled by this
// module.
continue;
}
for (int i = 0; i < kSrcSize; ++i) {
src_[i] = rnd.Rand8();
}
reference(&src_[kSrcStride * 2 + 2], kSrcStride, xoffset, yoffset,
dst_c_, 16);
ASM_REGISTER_STATE_CHECK(predict_(&src_[kSrcStride * 2 + 2], kSrcStride,
xoffset, yoffset, dst_, dst_stride_));
ASSERT_TRUE(CompareBuffers(dst_c_, 16, dst_, dst_stride_));
ASSERT_TRUE(CheckBorder(padded_dst_, padded_dst_size_, dst_, width_,
height_, dst_stride_, 128));
}
}
}
void TestWithUnalignedDst(PredictFunc reference) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
// Only the 4x4 need to be able to handle unaligned writes.
if (width_ == 4 && height_ == 4) {
for (int xoffset = 0; xoffset < 8; ++xoffset) {
for (int yoffset = 0; yoffset < 8; ++yoffset) {
if (xoffset == 0 && yoffset == 0) {
continue;
}
for (int i = 0; i < kSrcSize; ++i) {
src_[i] = rnd.Rand8();
}
reference(&src_[kSrcStride * 2 + 2], kSrcStride, xoffset, yoffset,
dst_c_, 16);
for (int i = 1; i < 4; ++i) {
memset(padded_dst_, 128, padded_dst_size_);
ASM_REGISTER_STATE_CHECK(predict_(&src_[kSrcStride * 2 + 2],
kSrcStride, xoffset, yoffset,
dst_ + i, dst_stride_ + i));
ASSERT_TRUE(CompareBuffers(dst_c_, 16, dst_ + i, dst_stride_ + i));
ASSERT_TRUE(CheckBorder(padded_dst_, padded_dst_size_, dst_ + i,
width_, height_, dst_stride_ + i, 128));
}
}
}
}
}
void Run() {
for (int xoffset = 0; xoffset < 8; ++xoffset) {
for (int yoffset = 0; yoffset < 8; ++yoffset) {
if (xoffset == 0 && yoffset == 0) {
continue;
}
predict_(&src_[kSrcStride * 2 + 2], kSrcStride, xoffset, yoffset, dst_,
dst_stride_);
}
}
}
}; // namespace
class SixtapPredictTest : public PredictTestBase {};
TEST_P(SixtapPredictTest, TestWithRandomData) {
TestWithRandomData(vp8_sixtap_predict16x16_c);
}
TEST_P(SixtapPredictTest, TestWithUnalignedDst) {
TestWithUnalignedDst(vp8_sixtap_predict16x16_c);
}
TEST_P(SixtapPredictTest, TestWithPresetData) {
// Test input
static const uint8_t kTestData[kSrcSize] = {
184, 4, 191, 82, 92, 41, 0, 1, 226, 236, 172, 20, 182, 42, 226,
177, 79, 94, 77, 179, 203, 206, 198, 22, 192, 19, 75, 17, 192, 44,
233, 120, 48, 168, 203, 141, 210, 203, 143, 180, 184, 59, 201, 110, 102,
171, 32, 182, 10, 109, 105, 213, 60, 47, 236, 253, 67, 55, 14, 3,
99, 247, 124, 148, 159, 71, 34, 114, 19, 177, 38, 203, 237, 239, 58,
83, 155, 91, 10, 166, 201, 115, 124, 5, 163, 104, 2, 231, 160, 16,
234, 4, 8, 103, 153, 167, 174, 187, 26, 193, 109, 64, 141, 90, 48,
200, 174, 204, 36, 184, 114, 237, 43, 238, 242, 207, 86, 245, 182, 247,
6, 161, 251, 14, 8, 148, 182, 182, 79, 208, 120, 188, 17, 6, 23,
65, 206, 197, 13, 242, 126, 128, 224, 170, 110, 211, 121, 197, 200, 47,
188, 207, 208, 184, 221, 216, 76, 148, 143, 156, 100, 8, 89, 117, 14,
112, 183, 221, 54, 197, 208, 180, 69, 176, 94, 180, 131, 215, 121, 76,
7, 54, 28, 216, 238, 249, 176, 58, 142, 64, 215, 242, 72, 49, 104,
87, 161, 32, 52, 216, 230, 4, 141, 44, 181, 235, 224, 57, 195, 89,
134, 203, 144, 162, 163, 126, 156, 84, 185, 42, 148, 145, 29, 221, 194,
134, 52, 100, 166, 105, 60, 140, 110, 201, 184, 35, 181, 153, 93, 121,
243, 227, 68, 131, 134, 232, 2, 35, 60, 187, 77, 209, 76, 106, 174,
15, 241, 227, 115, 151, 77, 175, 36, 187, 121, 221, 223, 47, 118, 61,
168, 105, 32, 237, 236, 167, 213, 238, 202, 17, 170, 24, 226, 247, 131,
145, 6, 116, 117, 121, 11, 194, 41, 48, 126, 162, 13, 93, 209, 131,
154, 122, 237, 187, 103, 217, 99, 60, 200, 45, 78, 115, 69, 49, 106,
200, 194, 112, 60, 56, 234, 72, 251, 19, 120, 121, 182, 134, 215, 135,
10, 114, 2, 247, 46, 105, 209, 145, 165, 153, 191, 243, 12, 5, 36,
119, 206, 231, 231, 11, 32, 209, 83, 27, 229, 204, 149, 155, 83, 109,
35, 93, 223, 37, 84, 14, 142, 37, 160, 52, 191, 96, 40, 204, 101,
77, 67, 52, 53, 43, 63, 85, 253, 147, 113, 226, 96, 6, 125, 179,
115, 161, 17, 83, 198, 101, 98, 85, 139, 3, 137, 75, 99, 178, 23,
201, 255, 91, 253, 52, 134, 60, 138, 131, 208, 251, 101, 48, 2, 227,
228, 118, 132, 245, 202, 75, 91, 44, 160, 231, 47, 41, 50, 147, 220,
74, 92, 219, 165, 89, 16
};
// Expected results for xoffset = 2 and yoffset = 2.
static const int kExpectedDstStride = 16;
static const uint8_t kExpectedDst[256] = {
117, 102, 74, 135, 42, 98, 175, 206, 70, 73, 222, 197, 50, 24, 39,
49, 38, 105, 90, 47, 169, 40, 171, 215, 200, 73, 109, 141, 53, 85,
177, 164, 79, 208, 124, 89, 212, 18, 81, 145, 151, 164, 217, 153, 91,
154, 102, 102, 159, 75, 164, 152, 136, 51, 213, 219, 186, 116, 193, 224,
186, 36, 231, 208, 84, 211, 155, 167, 35, 59, 42, 76, 216, 149, 73,
201, 78, 149, 184, 100, 96, 196, 189, 198, 188, 235, 195, 117, 129, 120,
129, 49, 25, 133, 113, 69, 221, 114, 70, 143, 99, 157, 108, 189, 140,
78, 6, 55, 65, 240, 255, 245, 184, 72, 90, 100, 116, 131, 39, 60,
234, 167, 33, 160, 88, 185, 200, 157, 159, 176, 127, 151, 138, 102, 168,
106, 170, 86, 82, 219, 189, 76, 33, 115, 197, 106, 96, 198, 136, 97,
141, 237, 151, 98, 137, 191, 185, 2, 57, 95, 142, 91, 255, 185, 97,
137, 76, 162, 94, 173, 131, 193, 161, 81, 106, 72, 135, 222, 234, 137,
66, 137, 106, 243, 210, 147, 95, 15, 137, 110, 85, 66, 16, 96, 167,
147, 150, 173, 203, 140, 118, 196, 84, 147, 160, 19, 95, 101, 123, 74,
132, 202, 82, 166, 12, 131, 166, 189, 170, 159, 85, 79, 66, 57, 152,
132, 203, 194, 0, 1, 56, 146, 180, 224, 156, 28, 83, 181, 79, 76,
80, 46, 160, 175, 59, 106, 43, 87, 75, 136, 85, 189, 46, 71, 200,
90
};
ASM_REGISTER_STATE_CHECK(
predict_(const_cast<uint8_t *>(kTestData) + kSrcStride * 2 + 2,
kSrcStride, 2, 2, dst_, dst_stride_));
ASSERT_TRUE(
CompareBuffers(kExpectedDst, kExpectedDstStride, dst_, dst_stride_));
}
INSTANTIATE_TEST_SUITE_P(
C, SixtapPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_c),
make_tuple(8, 8, &vp8_sixtap_predict8x8_c),
make_tuple(8, 4, &vp8_sixtap_predict8x4_c),
make_tuple(4, 4, &vp8_sixtap_predict4x4_c)));
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, SixtapPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_neon),
make_tuple(8, 8, &vp8_sixtap_predict8x8_neon),
make_tuple(8, 4, &vp8_sixtap_predict8x4_neon),
make_tuple(4, 4, &vp8_sixtap_predict4x4_neon)));
#endif
#if HAVE_MMX
INSTANTIATE_TEST_SUITE_P(
MMX, SixtapPredictTest,
::testing::Values(make_tuple(4, 4, &vp8_sixtap_predict4x4_mmx)));
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, SixtapPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_sse2),
make_tuple(8, 8, &vp8_sixtap_predict8x8_sse2),
make_tuple(8, 4, &vp8_sixtap_predict8x4_sse2)));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(
SSSE3, SixtapPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_ssse3),
make_tuple(8, 8, &vp8_sixtap_predict8x8_ssse3),
make_tuple(8, 4, &vp8_sixtap_predict8x4_ssse3),
make_tuple(4, 4, &vp8_sixtap_predict4x4_ssse3)));
#endif
#if HAVE_MSA
INSTANTIATE_TEST_SUITE_P(
MSA, SixtapPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_msa),
make_tuple(8, 8, &vp8_sixtap_predict8x8_msa),
make_tuple(8, 4, &vp8_sixtap_predict8x4_msa),
make_tuple(4, 4, &vp8_sixtap_predict4x4_msa)));
#endif
#if HAVE_MMI
INSTANTIATE_TEST_SUITE_P(
MMI, SixtapPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_mmi),
make_tuple(8, 8, &vp8_sixtap_predict8x8_mmi),
make_tuple(8, 4, &vp8_sixtap_predict8x4_mmi),
make_tuple(4, 4, &vp8_sixtap_predict4x4_mmi)));
#endif
class BilinearPredictTest : public PredictTestBase {};
TEST_P(BilinearPredictTest, TestWithRandomData) {
TestWithRandomData(vp8_bilinear_predict16x16_c);
}
TEST_P(BilinearPredictTest, TestWithUnalignedDst) {
TestWithUnalignedDst(vp8_bilinear_predict16x16_c);
}
TEST_P(BilinearPredictTest, DISABLED_Speed) {
const int kCountSpeedTestBlock = 5000000 / (width_ * height_);
RunNTimes(kCountSpeedTestBlock);
char title[16];
snprintf(title, sizeof(title), "%dx%d", width_, height_);
PrintMedian(title);
}
INSTANTIATE_TEST_SUITE_P(
C, BilinearPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_c),
make_tuple(8, 8, &vp8_bilinear_predict8x8_c),
make_tuple(8, 4, &vp8_bilinear_predict8x4_c),
make_tuple(4, 4, &vp8_bilinear_predict4x4_c)));
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, BilinearPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_neon),
make_tuple(8, 8, &vp8_bilinear_predict8x8_neon),
make_tuple(8, 4, &vp8_bilinear_predict8x4_neon),
make_tuple(4, 4, &vp8_bilinear_predict4x4_neon)));
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, BilinearPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_sse2),
make_tuple(8, 8, &vp8_bilinear_predict8x8_sse2),
make_tuple(8, 4, &vp8_bilinear_predict8x4_sse2),
make_tuple(4, 4, &vp8_bilinear_predict4x4_sse2)));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(
SSSE3, BilinearPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_ssse3),
make_tuple(8, 8, &vp8_bilinear_predict8x8_ssse3)));
#endif
#if HAVE_MSA
INSTANTIATE_TEST_SUITE_P(
MSA, BilinearPredictTest,
::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_msa),
make_tuple(8, 8, &vp8_bilinear_predict8x8_msa),
make_tuple(8, 4, &vp8_bilinear_predict8x4_msa),
make_tuple(4, 4, &vp8_bilinear_predict4x4_msa)));
#endif
} // namespace