blob: 4baa5d3a444a3c46673c3a82cc5f363f237bbe93 [file] [log] [blame]
/*
* Copyright 2008 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// The copyright below was added in 2009, but I see no record of moto contributions...?
/* NEON optimized code (C) COPYRIGHT 2009 Motorola
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkShader.h"
#include "include/private/SkTo.h"
#include "src/core/SkBitmapProcState.h"
#include "src/core/SkUtils.h"
/*
* The decal_ functions require that
* 1. dx > 0
* 2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX
*
* In addition, we use SkFractionalInt to keep more fractional precision than
* just SkFixed, so we will abort the decal_ call if dx is very small, since
* the decal_ function just operates on SkFixed. If that were changed, we could
* skip the very_small test here.
*/
static inline bool can_truncate_to_fixed_for_decal(SkFixed fx,
SkFixed dx,
int count, unsigned max) {
SkASSERT(count > 0);
// if decal_ kept SkFractionalInt precision, this would just be dx <= 0
// I just made up the 1/256. Just don't want to perceive accumulated error
// if we truncate frDx and lose its low bits.
if (dx <= SK_Fixed1 / 256) {
return false;
}
// Note: it seems the test should be (fx <= max && lastFx <= max); but
// historically it's been a strict inequality check, and changing produces
// unexpected diffs. Further investigation is needed.
// We cast to unsigned so we don't have to check for negative values, which
// will now appear as very large positive values, and thus fail our test!
if ((unsigned)SkFixedFloorToInt(fx) >= max) {
return false;
}
// Promote to 64bit (48.16) to avoid overflow.
const uint64_t lastFx = fx + sk_64_mul(dx, count - 1);
return SkTFitsIn<int32_t>(lastFx) && (unsigned)SkFixedFloorToInt(SkTo<int32_t>(lastFx)) < max;
}
// When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ...
// When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1.
// The clamp routines may try to fall into one of these unclamped decal fast-paths.
// (Only clamp works in the right coordinate space to check for decal.)
static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
// can_truncate_to_fixed_for_decal() checked only that stepping fx+=dx count-1
// times doesn't overflow fx, so we take unusual care not to step count times.
for (; count > 2; count -= 2) {
*dst++ = pack_two_shorts( (fx + 0) >> 16,
(fx + dx) >> 16);
fx += dx+dx;
}
SkASSERT(count <= 2);
switch (count) {
case 2: ((uint16_t*)dst)[1] = SkToU16((fx + dx) >> 16);
case 1: ((uint16_t*)dst)[0] = SkToU16((fx + 0) >> 16);
}
}
// A generic implementation for unfiltered scale+translate, templated on tiling method.
template <unsigned (*tile)(SkFixed, int), bool tryDecal>
static void nofilter_scale(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
// Write out our 32-bit y, and get our intial fx.
SkFractionalInt fx;
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
*xy++ = tile(mapper.fixedY(), s.fPixmap.height() - 1);
fx = mapper.fractionalIntX();
}
const unsigned maxX = s.fPixmap.width() - 1;
if (0 == maxX) {
// If width == 1, all the x-values must refer to that pixel, and must be zero.
memset(xy, 0, count * sizeof(uint16_t));
return;
}
const SkFractionalInt dx = s.fInvSxFractionalInt;
if (tryDecal) {
const SkFixed fixedFx = SkFractionalIntToFixed(fx);
const SkFixed fixedDx = SkFractionalIntToFixed(dx);
if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
decal_nofilter_scale(xy, fixedFx, fixedDx, count);
return;
}
}
// Remember, each x-coordinate is 16-bit.
for (; count >= 2; count -= 2) {
*xy++ = pack_two_shorts(tile(SkFractionalIntToFixed(fx ), maxX),
tile(SkFractionalIntToFixed(fx + dx), maxX));
fx += dx+dx;
}
auto xx = (uint16_t*)xy;
while (count --> 0) {
*xx++ = tile(SkFractionalIntToFixed(fx), maxX);
fx += dx;
}
}
// Extract the high four fractional bits from fx, the lerp parameter when filtering.
static unsigned extract_low_bits_clamp(SkFixed fx, int /*max*/) {
// If we're already scaled up to by max like clamp/decal,
// just grab the high four fractional bits.
return (fx >> 12) & 0xf;
}
static unsigned extract_low_bits_repeat_mirror(SkFixed fx, int max) {
// In repeat or mirror fx is in [0,1], so scale up by max first.
// TODO: remove the +1 here and the -1 at the call sites...
return extract_low_bits_clamp((fx & 0xffff) * (max+1), max);
}
template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int), bool tryDecal>
static void filter_scale(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
auto pack = [](SkFixed f, unsigned max, SkFixed one) {
unsigned i = tile(f, max);
i = (i << 4) | extract_low_bits(f, max);
return (i << 14) | (tile((f + one), max));
};
const unsigned maxX = s.fPixmap.width() - 1;
const SkFractionalInt dx = s.fInvSxFractionalInt;
SkFractionalInt fx;
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const SkFixed fy = mapper.fixedY();
const unsigned maxY = s.fPixmap.height() - 1;
// compute our two Y values up front
*xy++ = pack(fy, maxY, s.fFilterOneY);
// now initialize fx
fx = mapper.fractionalIntX();
}
// For historical reasons we check both ends are < maxX rather than <= maxX.
// TODO: try changing this? See also can_truncate_to_fixed_for_decal().
if (tryDecal &&
(unsigned)SkFractionalIntToInt(fx ) < maxX &&
(unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) {
while (count --> 0) {
SkFixed fixedFx = SkFractionalIntToFixed(fx);
SkASSERT((fixedFx >> (16 + 14)) == 0);
*xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1);
fx += dx;
}
return;
}
while (count --> 0) {
SkFixed fixedFx = SkFractionalIntToFixed(fx);
*xy++ = pack(fixedFx, maxX, s.fFilterOneX);
fx += dx;
}
}
// Helper to ensure that when we shift down, we do it w/o sign-extension
// so the caller doesn't have to manually mask off the top 16 bits.
static inline unsigned SK_USHIFT16(unsigned x) {
return x >> 16;
}
static unsigned clamp(SkFixed fx, int max) {
return SkClampMax(fx >> 16, max);
}
static unsigned repeat(SkFixed fx, int max) {
SkASSERT(max < 65535);
return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1));
}
static unsigned mirror(SkFixed fx, int max) {
SkASSERT(max < 65535);
// s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval
SkFixed s = SkLeftShift(fx, 15) >> 31;
// This should be exactly the same as repeat(fx ^ s, max) from here on.
return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) );
}
// Mirror/Mirror's always just portable code.
static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = {
nofilter_scale<mirror, false>,
filter_scale<mirror, extract_low_bits_repeat_mirror, false>,
};
// Clamp/Clamp and Repeat/Repeat have NEON or portable implementations.
#if defined(SK_ARM_HAS_NEON)
#include <arm_neon.h>
// TODO: this is a fine drop-in for decal_nofilter_scale() generally.
static void decal_nofilter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
if (count >= 8) {
// SkFixed is 16.16 fixed point
SkFixed dx8 = dx * 8;
int32x4_t vdx8 = vdupq_n_s32(dx8);
// setup lbase and hbase
int32x4_t lbase, hbase;
lbase = vdupq_n_s32(fx);
lbase = vsetq_lane_s32(fx + dx, lbase, 1);
lbase = vsetq_lane_s32(fx + dx + dx, lbase, 2);
lbase = vsetq_lane_s32(fx + dx + dx + dx, lbase, 3);
hbase = lbase + vdupq_n_s32(4 * dx);
do {
// store the upper 16 bits
vst1q_u32(dst, vreinterpretq_u32_s16(
vuzpq_s16(vreinterpretq_s16_s32(lbase), vreinterpretq_s16_s32(hbase)).val[1]
));
// on to the next group of 8
lbase += vdx8;
hbase += vdx8;
dst += 4; // we did 8 elements but the result is twice smaller
count -= 8;
fx += dx8;
} while (count >= 8);
}
uint16_t* xx = (uint16_t*)dst;
for (int i = count; i > 0; --i) {
*xx++ = SkToU16(fx >> 16); fx += dx;
}
}
static void decal_filter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
if (count >= 8) {
SkFixed dx8 = dx * 8;
int32x4_t vdx8 = vdupq_n_s32(dx8);
int32x4_t wide_fx, wide_fx2;
wide_fx = vdupq_n_s32(fx);
wide_fx = vsetq_lane_s32(fx + dx, wide_fx, 1);
wide_fx = vsetq_lane_s32(fx + dx + dx, wide_fx, 2);
wide_fx = vsetq_lane_s32(fx + dx + dx + dx, wide_fx, 3);
wide_fx2 = vaddq_s32(wide_fx, vdupq_n_s32(4 * dx));
while (count >= 8) {
int32x4_t wide_out;
int32x4_t wide_out2;
wide_out = vshlq_n_s32(vshrq_n_s32(wide_fx, 12), 14);
wide_out = wide_out | (vshrq_n_s32(wide_fx,16) + vdupq_n_s32(1));
wide_out2 = vshlq_n_s32(vshrq_n_s32(wide_fx2, 12), 14);
wide_out2 = wide_out2 | (vshrq_n_s32(wide_fx2,16) + vdupq_n_s32(1));
vst1q_u32(dst, vreinterpretq_u32_s32(wide_out));
vst1q_u32(dst+4, vreinterpretq_u32_s32(wide_out2));
dst += 8;
fx += dx8;
wide_fx += vdx8;
wide_fx2 += vdx8;
count -= 8;
}
}
if (count & 1)
{
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
while ((count -= 2) >= 0)
{
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
}
static inline int16x8_t clamp8(int32x4_t low, int32x4_t high, unsigned max) {
int16x8_t res;
// get the hi 16s of all those 32s
res = vuzpq_s16(vreinterpretq_s16_s32(low), vreinterpretq_s16_s32(high)).val[1];
// clamp
res = vmaxq_s16(res, vdupq_n_s16(0));
res = vminq_s16(res, vdupq_n_s16(max));
return res;
}
static inline int32x4_t clamp4(int32x4_t f, unsigned max) {
int32x4_t res;
// get the hi 16s of all those 32s
res = vshrq_n_s32(f, 16);
// clamp
res = vmaxq_s32(res, vdupq_n_s32(0));
res = vminq_s32(res, vdupq_n_s32(max));
return res;
}
static inline int32x4_t extract_low_bits_clamp4(int32x4_t fx, unsigned) {
int32x4_t ret;
ret = vshrq_n_s32(fx, 12);
/* We don't need the mask below because the caller will
* overwrite the non-masked bits
*/
//ret = vandq_s32(ret, vdupq_n_s32(0xF));
return ret;
}
static inline int16x8_t repeat8(int32x4_t low, int32x4_t high, unsigned max) {
uint16x8_t res;
uint32x4_t tmpl, tmph;
// get the lower 16 bits
res = vuzpq_u16(vreinterpretq_u16_s32(low), vreinterpretq_u16_s32(high)).val[0];
// bare multiplication, not SkFixedMul
tmpl = vmull_u16(vget_low_u16(res), vdup_n_u16(max+1));
tmph = vmull_u16(vget_high_u16(res), vdup_n_u16(max+1));
// extraction of the 16 upper bits
res = vuzpq_u16(vreinterpretq_u16_u32(tmpl), vreinterpretq_u16_u32(tmph)).val[1];
return vreinterpretq_s16_u16(res);
}
static inline int32x4_t repeat4(int32x4_t f, unsigned max) {
uint16x4_t res;
uint32x4_t tmp;
// get the lower 16 bits
res = vmovn_u32(vreinterpretq_u32_s32(f));
// bare multiplication, not SkFixedMul
tmp = vmull_u16(res, vdup_n_u16(max+1));
// extraction of the 16 upper bits
tmp = vshrq_n_u32(tmp, 16);
return vreinterpretq_s32_u32(tmp);
}
static inline int32x4_t extract_low_bits_repeat_mirror4(int32x4_t fx, unsigned max) {
uint16x4_t res;
uint32x4_t tmp;
int32x4_t ret;
// get the lower 16 bits
res = vmovn_u32(vreinterpretq_u32_s32(fx));
// bare multiplication, not SkFixedMul
tmp = vmull_u16(res, vdup_n_u16(max + 1));
// shift and mask
ret = vshrq_n_s32(vreinterpretq_s32_u32(tmp), 12);
/* We don't need the mask below because the caller will
* overwrite the non-masked bits
*/
//ret = vandq_s32(ret, vdupq_n_s32(0xF));
return ret;
}
template <unsigned (*tile)(SkFixed, int),
int16x8_t (*tile8)(int32x4_t, int32x4_t, unsigned),
bool tryDecal>
static void nofilter_scale_neon(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
// we store y, x, x, x, x, x
const unsigned maxX = s.fPixmap.width() - 1;
SkFractionalInt fx;
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const unsigned maxY = s.fPixmap.height() - 1;
*xy++ = tile(mapper.fixedY(), maxY);
fx = mapper.fractionalIntX();
}
if (0 == maxX) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
const SkFractionalInt dx = s.fInvSxFractionalInt;
// test if we don't need to apply the tile proc
const SkFixed fixedFx = SkFractionalIntToFixed(fx);
const SkFixed fixedDx = SkFractionalIntToFixed(dx);
if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
decal_nofilter_scale_neon(xy, fixedFx, fixedDx, count);
return;
}
if (count >= 8) {
SkFractionalInt dx2 = dx+dx;
SkFractionalInt dx4 = dx2+dx2;
SkFractionalInt dx8 = dx4+dx4;
// now build fx/fx+dx/fx+2dx/fx+3dx
SkFractionalInt fx1, fx2, fx3;
int32x4_t lbase, hbase;
int16_t *dst16 = (int16_t *)xy;
fx1 = fx+dx;
fx2 = fx1+dx;
fx3 = fx2+dx;
lbase = vdupq_n_s32(SkFractionalIntToFixed(fx));
lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx1), lbase, 1);
lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx2), lbase, 2);
lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx3), lbase, 3);
hbase = vaddq_s32(lbase, vdupq_n_s32(SkFractionalIntToFixed(dx4)));
// store & bump
while (count >= 8) {
int16x8_t fx8;
fx8 = tile8(lbase, hbase, maxX);
vst1q_s16(dst16, fx8);
// but preserving base & on to the next
lbase = vaddq_s32 (lbase, vdupq_n_s32(SkFractionalIntToFixed(dx8)));
hbase = vaddq_s32 (hbase, vdupq_n_s32(SkFractionalIntToFixed(dx8)));
dst16 += 8;
count -= 8;
fx += dx8;
}
xy = (uint32_t *) dst16;
}
uint16_t* xx = (uint16_t*)xy;
for (int i = count; i > 0; --i) {
*xx++ = tile(SkFractionalIntToFixed(fx), maxX);
fx += dx;
}
}
template <unsigned (*tile )(SkFixed, int),
int32x4_t (*tile4)(int32x4_t, unsigned),
unsigned (*extract_low_bits )(SkFixed, int),
int32x4_t (*extract_low_bits4)(int32x4_t, unsigned),
bool tryDecal>
static void filter_scale_neon(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
auto pack = [&](SkFixed f, unsigned max, SkFixed one) {
unsigned i = tile(f, max);
i = (i << 4) | extract_low_bits(f, max);
return (i << 14) | (tile((f + one), max));
};
auto pack4 = [&](int32x4_t f, unsigned max, SkFixed one) {
int32x4_t ret, res;
res = tile4(f, max);
ret = extract_low_bits4(f, max);
ret = vsliq_n_s32(ret, res, 4);
res = tile4(f + vdupq_n_s32(one), max);
ret = vorrq_s32(vshlq_n_s32(ret, 14), res);
return ret;
};
const unsigned maxX = s.fPixmap.width() - 1;
const SkFixed one = s.fFilterOneX;
const SkFractionalInt dx = s.fInvSxFractionalInt;
SkFractionalInt fx;
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const SkFixed fy = mapper.fixedY();
const unsigned maxY = s.fPixmap.height() - 1;
// compute our two Y values up front
*xy++ = pack(fy, maxY, s.fFilterOneY);
// now initialize fx
fx = mapper.fractionalIntX();
}
// test if we don't need to apply the tile proc
const SkFixed fixedFx = SkFractionalIntToFixed(fx);
const SkFixed fixedDx = SkFractionalIntToFixed(dx);
if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
decal_filter_scale_neon(xy, fixedFx, fixedDx, count);
return;
}
if (count >= 4) {
int32x4_t wide_fx;
wide_fx = vdupq_n_s32(SkFractionalIntToFixed(fx));
wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx), wide_fx, 1);
wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx), wide_fx, 2);
wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx+dx), wide_fx, 3);
while (count >= 4) {
int32x4_t res;
res = pack4(wide_fx, maxX, one);
vst1q_u32(xy, vreinterpretq_u32_s32(res));
wide_fx += vdupq_n_s32(SkFractionalIntToFixed(dx+dx+dx+dx));
fx += dx+dx+dx+dx;
xy += 4;
count -= 4;
}
}
while (--count >= 0) {
*xy++ = pack(SkFractionalIntToFixed(fx), maxX, one);
fx += dx;
}
}
static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
nofilter_scale_neon<clamp, clamp8, true>,
filter_scale_neon<clamp,
clamp4,
extract_low_bits_clamp,
extract_low_bits_clamp4,
true>,
};
static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
nofilter_scale_neon<repeat, repeat8, false>,
filter_scale_neon<repeat,
repeat4,
extract_low_bits_repeat_mirror,
extract_low_bits_repeat_mirror4,
false>,
};
#else
static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
nofilter_scale<clamp, true>,
filter_scale<clamp, extract_low_bits_clamp, true>,
};
static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
nofilter_scale<repeat, false>,
filter_scale<repeat, extract_low_bits_repeat_mirror, false>,
};
#endif
///////////////////////////////////////////////////////////////////////////////
// This next chunk has some specializations for unfiltered translate-only matrices.
static inline U16CPU int_clamp(int x, int n) {
if (x < 0) { x = 0; }
if (x >= n) { x = n - 1; }
return x;
}
/* returns 0...(n-1) given any x (positive or negative).
As an example, if n (which is always positive) is 5...
x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3
*/
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
static inline U16CPU int_repeat(int x, int n) {
return sk_int_mod(x, n);
}
static inline U16CPU int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
static void fill_sequential(uint16_t xptr[], int pos, int count) {
while (count --> 0) {
*xptr++ = pos++;
}
}
static void fill_backwards(uint16_t xptr[], int pos, int count) {
while (count --> 0) {
SkASSERT(pos >= 0);
*xptr++ = pos--;
}
}
static void clampx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
const SkBitmapProcStateAutoMapper mapper(s, x, y);
*xy++ = int_clamp(mapper.intY(), s.fPixmap.height());
int xpos = mapper.intX();
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int n;
// fill before 0 as needed
if (xpos < 0) {
n = -xpos;
if (n > count) {
n = count;
}
memset(xptr, 0, n * sizeof(uint16_t));
count -= n;
if (0 == count) {
return;
}
xptr += n;
xpos = 0;
}
// fill in 0..width-1 if needed
if (xpos < width) {
n = width - xpos;
if (n > count) {
n = count;
}
fill_sequential(xptr, xpos, n);
count -= n;
if (0 == count) {
return;
}
xptr += n;
}
// fill the remaining with the max value
sk_memset16(xptr, width - 1, count);
}
static void repeatx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
const SkBitmapProcStateAutoMapper mapper(s, x, y);
*xy++ = int_repeat(mapper.intY(), s.fPixmap.height());
int xpos = mapper.intX();
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int start = sk_int_mod(xpos, width);
int n = width - start;
if (n > count) {
n = count;
}
fill_sequential(xptr, start, n);
xptr += n;
count -= n;
while (count >= width) {
fill_sequential(xptr, 0, width);
xptr += width;
count -= width;
}
if (count > 0) {
fill_sequential(xptr, 0, count);
}
}
static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
const SkBitmapProcStateAutoMapper mapper(s, x, y);
*xy++ = int_mirror(mapper.intY(), s.fPixmap.height());
int xpos = mapper.intX();
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
// need to know our start, and our initial phase (forward or backward)
bool forward;
int n;
int start = sk_int_mod(xpos, 2 * width);
if (start >= width) {
start = width + ~(start - width);
forward = false;
n = start + 1; // [start .. 0]
} else {
forward = true;
n = width - start; // [start .. width)
}
if (n > count) {
n = count;
}
if (forward) {
fill_sequential(xptr, start, n);
} else {
fill_backwards(xptr, start, n);
}
forward = !forward;
xptr += n;
count -= n;
while (count >= width) {
if (forward) {
fill_sequential(xptr, 0, width);
} else {
fill_backwards(xptr, width - 1, width);
}
forward = !forward;
xptr += width;
count -= width;
}
if (count > 0) {
if (forward) {
fill_sequential(xptr, 0, count);
} else {
fill_backwards(xptr, width - 1, count);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// The main entry point to the file, choosing between everything above.
SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) {
SkASSERT(fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask));
SkASSERT(fTileModeX == fTileModeY);
SkASSERT(fTileModeX != SkTileMode::kDecal);
// Check for our special case translate methods when there is no scale/affine/perspective.
if (translate_only_matrix && kNone_SkFilterQuality == fFilterQuality) {
switch (fTileModeX) {
default: SkASSERT(false);
case SkTileMode::kClamp: return clampx_nofilter_trans;
case SkTileMode::kRepeat: return repeatx_nofilter_trans;
case SkTileMode::kMirror: return mirrorx_nofilter_trans;
}
}
// The arrays are all [ nofilter, filter ].
int index = fFilterQuality > kNone_SkFilterQuality ? 1 : 0;
if (fTileModeX == SkTileMode::kClamp) {
// clamp gets special version of filterOne, working in non-normalized space (allowing decal)
fFilterOneX = SK_Fixed1;
fFilterOneY = SK_Fixed1;
return ClampX_ClampY_Procs[index];
}
// all remaining procs use this form for filterOne, putting them into normalized space.
fFilterOneX = SK_Fixed1 / fPixmap.width();
fFilterOneY = SK_Fixed1 / fPixmap.height();
if (fTileModeX == SkTileMode::kRepeat) {
return RepeatX_RepeatY_Procs[index];
}
return MirrorX_MirrorY_Procs[index];
}