blob: 6cebb11b22b392eb31886b97be3a1f94260bc056 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkBlitter.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkString.h"
#include "include/private/SkColorData.h"
#include "include/private/SkTo.h"
#include "src/core/SkAntiRun.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkMask.h"
#include "src/core/SkMaskFilterBase.h"
#include "src/core/SkPaintPriv.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkRegionPriv.h"
#include "src/core/SkTLazy.h"
#include "src/core/SkUtils.h"
#include "src/core/SkWriteBuffer.h"
#include "src/core/SkXfermodeInterpretation.h"
#include "src/shaders/SkShaderBase.h"
SkBlitter::~SkBlitter() {}
bool SkBlitter::isNullBlitter() const { return false; }
const SkPixmap* SkBlitter::justAnOpaqueColor(uint32_t* value) {
return nullptr;
}
/*
void SkBlitter::blitH(int x, int y, int width) {
SkDEBUGFAIL("unimplemented");
}
void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkDEBUGFAIL("unimplemented");
}
*/
inline static SkAlpha ScalarToAlpha(SkScalar a) {
SkAlpha alpha = (SkAlpha)(a * 255);
return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha;
}
void SkBlitter::blitFatAntiRect(const SkRect& rect) {
SkIRect bounds = rect.roundOut();
SkASSERT(bounds.width() >= 3);
// skbug.com/7813
// To ensure consistency of the threaded backend (a rect that's considered fat in the init-once
// phase must also be considered fat in the draw phase), we have to deal with rects with small
// heights because the horizontal tiling in the threaded backend may change the height.
//
// This also implies that we cannot do vertical tiling unless we can blit any rect (not just the
// fat one.)
if (bounds.height() == 0) {
return;
}
int runSize = bounds.width() + 1; // +1 so we can set runs[bounds.width()] = 0
void* storage = this->allocBlitMemory(runSize * (sizeof(int16_t) + sizeof(SkAlpha)));
int16_t* runs = reinterpret_cast<int16_t*>(storage);
SkAlpha* alphas = reinterpret_cast<SkAlpha*>(runs + runSize);
runs[0] = 1;
runs[1] = bounds.width() - 2;
runs[bounds.width() - 1] = 1;
runs[bounds.width()] = 0;
SkScalar partialL = bounds.fLeft + 1 - rect.fLeft;
SkScalar partialR = rect.fRight - (bounds.fRight - 1);
SkScalar partialT = bounds.fTop + 1 - rect.fTop;
SkScalar partialB = rect.fBottom - (bounds.fBottom - 1);
if (bounds.height() == 1) {
partialT = rect.fBottom - rect.fTop;
}
alphas[0] = ScalarToAlpha(partialL * partialT);
alphas[1] = ScalarToAlpha(partialT);
alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialT);
this->blitAntiH(bounds.fLeft, bounds.fTop, alphas, runs);
if (bounds.height() > 2) {
this->blitAntiRect(bounds.fLeft, bounds.fTop + 1, bounds.width() - 2, bounds.height() - 2,
ScalarToAlpha(partialL), ScalarToAlpha(partialR));
}
if (bounds.height() > 1) {
alphas[0] = ScalarToAlpha(partialL * partialB);
alphas[1] = ScalarToAlpha(partialB);
alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialB);
this->blitAntiH(bounds.fLeft, bounds.fBottom - 1, alphas, runs);
}
}
void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
if (alpha == 255) {
this->blitRect(x, y, 1, height);
} else {
int16_t runs[2];
runs[0] = 1;
runs[1] = 0;
while (--height >= 0) {
this->blitAntiH(x, y++, &alpha, runs);
}
}
}
void SkBlitter::blitRect(int x, int y, int width, int height) {
SkASSERT(width > 0);
while (--height >= 0) {
this->blitH(x, y++, width);
}
}
/// Default implementation doesn't check for easy optimizations
/// such as alpha == 255; also uses blitV(), which some subclasses
/// may not support.
void SkBlitter::blitAntiRect(int x, int y, int width, int height,
SkAlpha leftAlpha, SkAlpha rightAlpha) {
if (leftAlpha > 0) { // we may send in x = -1 with leftAlpha = 0
this->blitV(x, y, height, leftAlpha);
}
x++;
if (width > 0) {
this->blitRect(x, y, width, height);
x += width;
}
if (rightAlpha > 0) {
this->blitV(x, y, height, rightAlpha);
}
}
//////////////////////////////////////////////////////////////////////////////
static inline void bits_to_runs(SkBlitter* blitter, int x, int y,
const uint8_t bits[],
uint8_t left_mask, ptrdiff_t rowBytes,
uint8_t right_mask) {
int inFill = 0;
int pos = 0;
while (--rowBytes >= 0) {
uint8_t b = *bits++ & left_mask;
if (rowBytes == 0) {
b &= right_mask;
}
for (uint8_t test = 0x80U; test != 0; test >>= 1) {
if (b & test) {
if (!inFill) {
pos = x;
inFill = true;
}
} else {
if (inFill) {
blitter->blitH(pos, y, x - pos);
inFill = false;
}
}
x += 1;
}
left_mask = 0xFFU;
}
// final cleanup
if (inFill) {
blitter->blitH(pos, y, x - pos);
}
}
// maskBitCount is the number of 1's to place in the mask. It must be in the range between 1 and 8.
static uint8_t generate_right_mask(int maskBitCount) {
return static_cast<uint8_t>((0xFF00U >> maskBitCount) & 0xFF);
}
void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (mask.fFormat == SkMask::kLCD16_Format) {
return; // needs to be handled by subclass
}
if (mask.fFormat == SkMask::kBW_Format) {
int cx = clip.fLeft;
int cy = clip.fTop;
int maskLeft = mask.fBounds.fLeft;
int maskRowBytes = mask.fRowBytes;
int height = clip.height();
const uint8_t* bits = mask.getAddr1(cx, cy);
SkDEBUGCODE(const uint8_t* endOfImage =
mask.fImage + (mask.fBounds.height() - 1) * maskRowBytes
+ ((mask.fBounds.width() + 7) >> 3));
if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) {
while (--height >= 0) {
int affectedRightBit = mask.fBounds.width() - 1;
ptrdiff_t rowBytes = (affectedRightBit >> 3) + 1;
SkASSERT(bits + rowBytes <= endOfImage);
U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1);
bits_to_runs(this, cx, cy, bits, 0xFF, rowBytes, rightMask);
bits += maskRowBytes;
cy += 1;
}
} else {
// Bits is calculated as the offset into the mask at the point {cx, cy} therefore, all
// addressing into the bit mask is relative to that point. Since this is an address
// calculated from a arbitrary bit in that byte, calculate the left most bit.
int bitsLeft = cx - ((cx - maskLeft) & 7);
// Everything is relative to the bitsLeft.
int leftEdge = cx - bitsLeft;
SkASSERT(leftEdge >= 0);
int rightEdge = clip.fRight - bitsLeft;
SkASSERT(rightEdge > leftEdge);
// Calculate left byte and mask
const uint8_t* leftByte = bits;
U8CPU leftMask = 0xFFU >> (leftEdge & 7);
// Calculate right byte and mask
int affectedRightBit = rightEdge - 1;
const uint8_t* rightByte = bits + (affectedRightBit >> 3);
U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1);
// leftByte and rightByte are byte locations therefore, to get a count of bytes the
// code must add one.
ptrdiff_t rowBytes = rightByte - leftByte + 1;
while (--height >= 0) {
SkASSERT(bits + rowBytes <= endOfImage);
bits_to_runs(this, bitsLeft, cy, bits, leftMask, rowBytes, rightMask);
bits += maskRowBytes;
cy += 1;
}
}
} else {
int width = clip.width();
SkAutoSTMalloc<64, int16_t> runStorage(width + 1);
int16_t* runs = runStorage.get();
const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop);
sk_memset16((uint16_t*)runs, 1, width);
runs[width] = 0;
int height = clip.height();
int y = clip.fTop;
while (--height >= 0) {
this->blitAntiH(clip.fLeft, y, aa, runs);
aa += mask.fRowBytes;
y += 1;
}
}
}
/////////////////////// these guys are not virtual, just a helpers
void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) {
if (clip.quickReject(mask.fBounds)) {
return;
}
SkRegion::Cliperator clipper(clip, mask.fBounds);
while (!clipper.done()) {
const SkIRect& cr = clipper.rect();
this->blitMask(mask, cr);
clipper.next();
}
}
void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) {
SkRegion::Cliperator clipper(clip, rect);
while (!clipper.done()) {
const SkIRect& cr = clipper.rect();
this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height());
clipper.next();
}
}
void SkBlitter::blitRegion(const SkRegion& clip) {
SkRegionPriv::VisitSpans(clip, [this](const SkIRect& r) {
this->blitRect(r.left(), r.top(), r.width(), r.height());
});
}
///////////////////////////////////////////////////////////////////////////////
void SkNullBlitter::blitH(int x, int y, int width) {}
void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {}
void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {}
void SkNullBlitter::blitRect(int x, int y, int width, int height) {}
void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {}
const SkPixmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) {
return nullptr;
}
bool SkNullBlitter::isNullBlitter() const { return true; }
///////////////////////////////////////////////////////////////////////////////
static int compute_anti_width(const int16_t runs[]) {
int width = 0;
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count == 0) {
break;
}
width += count;
runs += count;
}
return width;
}
static inline bool y_in_rect(int y, const SkIRect& rect) {
return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
}
static inline bool x_in_rect(int x, const SkIRect& rect) {
return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
}
void SkRectClipBlitter::blitH(int left, int y, int width) {
SkASSERT(width > 0);
if (!y_in_rect(y, fClipRect)) {
return;
}
int right = left + width;
if (left < fClipRect.fLeft) {
left = fClipRect.fLeft;
}
if (right > fClipRect.fRight) {
right = fClipRect.fRight;
}
width = right - left;
if (width > 0) {
fBlitter->blitH(left, y, width);
}
}
void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[],
const int16_t runs[]) {
if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) {
return;
}
int x0 = left;
int x1 = left + compute_anti_width(runs);
if (x1 <= fClipRect.fLeft) {
return;
}
SkASSERT(x0 < x1);
if (x0 < fClipRect.fLeft) {
int dx = fClipRect.fLeft - x0;
SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx);
runs += dx;
aa += dx;
x0 = fClipRect.fLeft;
}
SkASSERT(x0 < x1 && runs[x1 - x0] == 0);
if (x1 > fClipRect.fRight) {
x1 = fClipRect.fRight;
SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0);
((int16_t*)runs)[x1 - x0] = 0;
}
SkASSERT(x0 < x1 && runs[x1 - x0] == 0);
SkASSERT(compute_anti_width(runs) == x1 - x0);
fBlitter->blitAntiH(x0, y, aa, runs);
}
void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
SkASSERT(height > 0);
if (!x_in_rect(x, fClipRect)) {
return;
}
int y0 = y;
int y1 = y + height;
if (y0 < fClipRect.fTop) {
y0 = fClipRect.fTop;
}
if (y1 > fClipRect.fBottom) {
y1 = fClipRect.fBottom;
}
if (y0 < y1) {
fBlitter->blitV(x, y0, y1 - y0, alpha);
}
}
void SkRectClipBlitter::blitRect(int left, int y, int width, int height) {
SkIRect r;
r.setLTRB(left, y, left + width, y + height);
if (r.intersect(fClipRect)) {
fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
}
}
void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height,
SkAlpha leftAlpha, SkAlpha rightAlpha) {
SkIRect r;
// The *true* width of the rectangle blitted is width+2:
r.setLTRB(left, y, left + width + 2, y + height);
if (r.intersect(fClipRect)) {
if (r.fLeft != left) {
SkASSERT(r.fLeft > left);
leftAlpha = 255;
}
if (r.fRight != left + width + 2) {
SkASSERT(r.fRight < left + width + 2);
rightAlpha = 255;
}
if (255 == leftAlpha && 255 == rightAlpha) {
fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
} else if (1 == r.width()) {
if (r.fLeft == left) {
fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha);
} else {
SkASSERT(r.fLeft == left + width + 1);
fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha);
}
} else {
fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(),
leftAlpha, rightAlpha);
}
}
}
void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkIRect r = clip;
if (r.intersect(fClipRect)) {
fBlitter->blitMask(mask, r);
}
}
const SkPixmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) {
return fBlitter->justAnOpaqueColor(value);
}
///////////////////////////////////////////////////////////////////////////////
void SkRgnClipBlitter::blitH(int x, int y, int width) {
SkRegion::Spanerator span(*fRgn, y, x, x + width);
int left, right;
while (span.next(&left, &right)) {
SkASSERT(left < right);
fBlitter->blitH(left, y, right - left);
}
}
void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
const int16_t runs[]) {
int width = compute_anti_width(runs);
SkRegion::Spanerator span(*fRgn, y, x, x + width);
int left, right;
SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();)
int prevRite = x;
while (span.next(&left, &right)) {
SkASSERT(x <= left);
SkASSERT(left < right);
SkASSERT(left >= bounds.fLeft && right <= bounds.fRight);
SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left);
// now zero before left
if (left > prevRite) {
int index = prevRite - x;
((uint8_t*)aa)[index] = 0; // skip runs after right
((int16_t*)runs)[index] = SkToS16(left - prevRite);
}
prevRite = right;
}
if (prevRite > x) {
((int16_t*)runs)[prevRite - x] = 0;
if (x < 0) {
int skip = runs[0];
SkASSERT(skip >= -x);
aa += skip;
runs += skip;
x += skip;
}
fBlitter->blitAntiH(x, y, aa, runs);
}
}
void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
SkIRect bounds;
bounds.setXYWH(x, y, 1, height);
SkRegion::Cliperator iter(*fRgn, bounds);
while (!iter.done()) {
const SkIRect& r = iter.rect();
SkASSERT(bounds.contains(r));
fBlitter->blitV(x, r.fTop, r.height(), alpha);
iter.next();
}
}
void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) {
SkIRect bounds;
bounds.setXYWH(x, y, width, height);
SkRegion::Cliperator iter(*fRgn, bounds);
while (!iter.done()) {
const SkIRect& r = iter.rect();
SkASSERT(bounds.contains(r));
fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
iter.next();
}
}
void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height,
SkAlpha leftAlpha, SkAlpha rightAlpha) {
// The *true* width of the rectangle to blit is width + 2
SkIRect bounds;
bounds.setXYWH(x, y, width + 2, height);
SkRegion::Cliperator iter(*fRgn, bounds);
while (!iter.done()) {
const SkIRect& r = iter.rect();
SkASSERT(bounds.contains(r));
SkASSERT(r.fLeft >= x);
SkASSERT(r.fRight <= x + width + 2);
SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255;
SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ?
rightAlpha : 255;
if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) {
fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
} else if (1 == r.width()) {
if (r.fLeft == x) {
fBlitter->blitV(r.fLeft, r.fTop, r.height(),
effectiveLeftAlpha);
} else {
SkASSERT(r.fLeft == x + width + 1);
fBlitter->blitV(r.fLeft, r.fTop, r.height(),
effectiveRightAlpha);
}
} else {
fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(),
effectiveLeftAlpha, effectiveRightAlpha);
}
iter.next();
}
}
void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkRegion::Cliperator iter(*fRgn, clip);
const SkIRect& r = iter.rect();
SkBlitter* blitter = fBlitter;
while (!iter.done()) {
blitter->blitMask(mask, r);
iter.next();
}
}
const SkPixmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) {
return fBlitter->justAnOpaqueColor(value);
}
///////////////////////////////////////////////////////////////////////////////
SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip,
const SkIRect* ir) {
if (clip) {
const SkIRect& clipR = clip->getBounds();
if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) {
blitter = &fNullBlitter;
} else if (clip->isRect()) {
if (ir == nullptr || !clipR.contains(*ir)) {
fRectBlitter.init(blitter, clipR);
blitter = &fRectBlitter;
}
} else {
fRgnBlitter.init(blitter, clip);
blitter = &fRgnBlitter;
}
}
return blitter;
}
///////////////////////////////////////////////////////////////////////////////
#include "src/core/SkCoreBlitters.h"
// hack for testing, not to be exposed to clients
bool gSkForceRasterPipelineBlitter;
bool SkBlitter::UseRasterPipelineBlitter(const SkPixmap& device, const SkPaint& paint,
const SkMatrix& matrix) {
if (gSkForceRasterPipelineBlitter) {
return true;
}
#if 0 || defined(SK_FORCE_RASTER_PIPELINE_BLITTER)
return true;
#else
const SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter());
// The legacy blitters cannot handle any of these complex features (anymore).
if (device.alphaType() == kUnpremul_SkAlphaType ||
matrix.hasPerspective() ||
paint.getColorFilter() ||
paint.getBlendMode() > SkBlendMode::kLastCoeffMode ||
paint.getFilterQuality() == kHigh_SkFilterQuality ||
(mf && mf->getFormat() == SkMask::k3D_Format)) {
return true;
}
// All the real legacy fast paths are for shaders and SrcOver.
// Choosing SkRasterPipelineBlitter will also let us to hit its single-color memset path.
if (!paint.getShader() && paint.getBlendMode() != SkBlendMode::kSrcOver) {
return true;
}
auto cs = device.colorSpace();
// We check (indirectly via makeContext()) later on if the shader can handle the colorspace
// in legacy mode, so here we just focus on if a single color needs raster-pipeline.
if (cs && !paint.getShader()) {
if (!paint.getColor4f().fitsInBytes() || !cs->isSRGB()) {
return true;
}
}
// Only kN32 and 565 are handled by legacy blitters now, 565 mostly just for Android.
return device.colorType() != kN32_SkColorType
&& device.colorType() != kRGB_565_SkColorType;
#endif
}
SkBlitter* SkBlitter::Choose(const SkPixmap& device,
const SkMatrix& matrix,
const SkPaint& origPaint,
SkArenaAlloc* alloc,
bool drawCoverage) {
SkASSERT(alloc);
if (kUnknown_SkColorType == device.colorType()) {
return alloc->make<SkNullBlitter>();
}
// We may tweak the original paint as we go.
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
// We have the most fast-paths for SrcOver, so see if we can act like SrcOver.
if (paint->getBlendMode() != SkBlendMode::kSrcOver) {
switch (SkInterpretXfermode(*paint, SkColorTypeIsAlwaysOpaque(device.colorType()))) {
case kSrcOver_SkXfermodeInterpretation:
paint.writable()->setBlendMode(SkBlendMode::kSrcOver);
break;
case kSkipDrawing_SkXfermodeInterpretation:
return alloc->make<SkNullBlitter>();
default:
break;
}
}
// A Clear blend mode will ignore the entire color pipeline, as if Src mode with 0x00000000.
if (paint->getBlendMode() == SkBlendMode::kClear) {
SkPaint* p = paint.writable();
p->setShader(nullptr);
p->setColorFilter(nullptr);
p->setBlendMode(SkBlendMode::kSrc);
p->setColor(0x00000000);
}
#ifndef SK_SUPPORT_LEGACY_COLORFILTER_NO_SHADER
if (paint->getColorFilter() && !paint->getShader()) {
// apply the filter to the paint's color, and then remove the filter
auto dstCS = device.colorSpace();
SkPaint* p = paint.writable();
p->setColor(p->getColorFilter()->filterColor4f(p->getColor4f(), sk_srgb_singleton(), dstCS),
dstCS);
p->setColorFilter(nullptr);
}
#endif
if (drawCoverage) {
if (device.colorType() == kAlpha_8_SkColorType) {
SkASSERT(!paint->getShader());
SkASSERT(paint->isSrcOver());
return alloc->make<SkA8_Coverage_Blitter>(device, *paint);
}
return alloc->make<SkNullBlitter>();
}
if (paint->isDither() && !SkPaintPriv::ShouldDither(*paint, device.colorType())) {
paint.writable()->setDither(false);
}
#if defined(SK_USE_SKVM_BLITTER)
if (auto blitter = SkCreateSkVMBlitter(device, *paint, matrix, alloc)) {
return blitter;
}
#endif
// We'll end here for many interesting cases: color spaces, color filters, most color types.
if (UseRasterPipelineBlitter(device, *paint, matrix)) {
auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc);
SkASSERT(blitter);
return blitter;
}
// Everything but legacy kN32_SkColorType and kRGB_565_SkColorType should already be handled.
SkASSERT(device.colorType() == kN32_SkColorType ||
device.colorType() == kRGB_565_SkColorType);
// And we should either have a shader, be blending with SrcOver, or both.
SkASSERT(paint->getShader() || paint->getBlendMode() == SkBlendMode::kSrcOver);
// Legacy blitters keep their shader state on a shader context.
SkShaderBase::Context* shaderContext = nullptr;
if (paint->getShader()) {
shaderContext = as_SB(paint->getShader())->makeContext(
{*paint, matrix, nullptr, device.colorType(), device.colorSpace()},
alloc);
// Creating the context isn't always possible... we'll just fall back to raster pipeline.
if (!shaderContext) {
auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc);
SkASSERT(blitter);
return blitter;
}
}
if (device.colorType() == kN32_SkColorType) {
if (shaderContext) {
return alloc->make<SkARGB32_Shader_Blitter>(device, *paint, shaderContext);
} else if (paint->getColor() == SK_ColorBLACK) {
return alloc->make<SkARGB32_Black_Blitter>(device, *paint);
} else if (paint->getAlpha() == 0xFF) {
return alloc->make<SkARGB32_Opaque_Blitter>(device, *paint);
} else {
return alloc->make<SkARGB32_Blitter>(device, *paint);
}
} else if (device.colorType() == kRGB_565_SkColorType) {
if (shaderContext && SkRGB565_Shader_Blitter::Supports(device, *paint)) {
return alloc->make<SkRGB565_Shader_Blitter>(device, *paint, shaderContext);
} else {
return SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc);
}
} else {
SkASSERT(false);
return alloc->make<SkNullBlitter>();
}
}
///////////////////////////////////////////////////////////////////////////////
SkShaderBlitter::SkShaderBlitter(const SkPixmap& device, const SkPaint& paint,
SkShaderBase::Context* shaderContext)
: INHERITED(device)
, fShader(paint.getShader())
, fShaderContext(shaderContext) {
SkASSERT(fShader);
SkASSERT(fShaderContext);
fShader->ref();
fShaderFlags = fShaderContext->getFlags();
fConstInY = SkToBool(fShaderFlags & SkShaderBase::kConstInY32_Flag);
}
SkShaderBlitter::~SkShaderBlitter() {
fShader->unref();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkRectClipCheckBlitter::blitH(int x, int y, int width) {
SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1)));
fBlitter->blitH(x, y, width);
}
void SkRectClipCheckBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) {
const int16_t* iter = runs;
for (; *iter; iter += *iter)
;
int width = iter - runs;
SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1)));
fBlitter->blitAntiH(x, y, aa, runs);
}
void SkRectClipCheckBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, height)));
fBlitter->blitV(x, y, height, alpha);
}
void SkRectClipCheckBlitter::blitRect(int x, int y, int width, int height) {
SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, height)));
fBlitter->blitRect(x, y, width, height);
}
void SkRectClipCheckBlitter::blitAntiRect(int x, int y, int width, int height,
SkAlpha leftAlpha, SkAlpha rightAlpha) {
bool skipLeft = !leftAlpha;
bool skipRight = !rightAlpha;
#ifdef SK_DEBUG
SkIRect r = SkIRect::MakeXYWH(x + skipLeft, y, width + 2 - skipRight - skipLeft, height);
SkASSERT(r.isEmpty() || fClipRect.contains(r));
#endif
fBlitter->blitAntiRect(x, y, width, height, leftAlpha, rightAlpha);
}
void SkRectClipCheckBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkASSERT(fClipRect.contains(clip));
fBlitter->blitMask(mask, clip);
}
const SkPixmap* SkRectClipCheckBlitter::justAnOpaqueColor(uint32_t* value) {
return fBlitter->justAnOpaqueColor(value);
}
void SkRectClipCheckBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 2, 1)));
fBlitter->blitAntiH2(x, y, a0, a1);
}
void SkRectClipCheckBlitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, 2)));
fBlitter->blitAntiV2(x, y, a0, a1);
}
#endif