| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkBlurMask.h" |
| |
| #include "include/core/SkColorPriv.h" |
| #include "include/core/SkMath.h" |
| #include "include/private/SkTemplates.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkEndian.h" |
| #include "src/core/SkMaskBlurFilter.h" |
| #include "src/core/SkMathPriv.h" |
| |
| // This constant approximates the scaling done in the software path's |
| // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). |
| // IMHO, it actually should be 1: we blur "less" than we should do |
| // according to the CSS and canvas specs, simply because Safari does the same. |
| // Firefox used to do the same too, until 4.0 where they fixed it. So at some |
| // point we should probably get rid of these scaling constants and rebaseline |
| // all the blur tests. |
| static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f; |
| |
| SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) { |
| return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; |
| } |
| |
| SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) { |
| return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f; |
| } |
| |
| |
| template <typename AlphaIter> |
| static void merge_src_with_blur(uint8_t dst[], int dstRB, |
| AlphaIter src, int srcRB, |
| const uint8_t blur[], int blurRB, |
| int sw, int sh) { |
| dstRB -= sw; |
| blurRB -= sw; |
| while (--sh >= 0) { |
| AlphaIter rowSrc(src); |
| for (int x = sw - 1; x >= 0; --x) { |
| *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*rowSrc))); |
| ++dst; |
| ++rowSrc; |
| ++blur; |
| } |
| dst += dstRB; |
| src >>= srcRB; |
| blur += blurRB; |
| } |
| } |
| |
| template <typename AlphaIter> |
| static void clamp_solid_with_orig(uint8_t dst[], int dstRowBytes, |
| AlphaIter src, int srcRowBytes, |
| int sw, int sh) { |
| int x; |
| while (--sh >= 0) { |
| AlphaIter rowSrc(src); |
| for (x = sw - 1; x >= 0; --x) { |
| int s = *rowSrc; |
| int d = *dst; |
| *dst = SkToU8(s + d - SkMulDiv255Round(s, d)); |
| ++dst; |
| ++rowSrc; |
| } |
| dst += dstRowBytes - sw; |
| src >>= srcRowBytes; |
| } |
| } |
| |
| template <typename AlphaIter> |
| static void clamp_outer_with_orig(uint8_t dst[], int dstRowBytes, |
| AlphaIter src, int srcRowBytes, |
| int sw, int sh) { |
| int x; |
| while (--sh >= 0) { |
| AlphaIter rowSrc(src); |
| for (x = sw - 1; x >= 0; --x) { |
| int srcValue = *rowSrc; |
| if (srcValue) { |
| *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - srcValue))); |
| } |
| ++dst; |
| ++rowSrc; |
| } |
| dst += dstRowBytes - sw; |
| src >>= srcRowBytes; |
| } |
| } |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // we use a local function to wrap the class static method to work around |
| // a bug in gcc98 |
| void SkMask_FreeImage(uint8_t* image); |
| void SkMask_FreeImage(uint8_t* image) { |
| SkMask::FreeImage(image); |
| } |
| |
| bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src, SkScalar sigma, SkBlurStyle style, |
| SkIPoint* margin) { |
| if (src.fFormat != SkMask::kBW_Format && |
| src.fFormat != SkMask::kA8_Format && |
| src.fFormat != SkMask::kARGB32_Format && |
| src.fFormat != SkMask::kLCD16_Format) |
| { |
| return false; |
| } |
| |
| SkMaskBlurFilter blurFilter{sigma, sigma}; |
| if (blurFilter.hasNoBlur()) { |
| // If there is no effective blur most styles will just produce the original mask. |
| // However, kOuter_SkBlurStyle will produce an empty mask. |
| if (style == kOuter_SkBlurStyle) { |
| dst->fImage = nullptr; |
| dst->fBounds = SkIRect::MakeEmpty(); |
| dst->fRowBytes = dst->fBounds.width(); |
| dst->fFormat = SkMask::kA8_Format; |
| if (margin != nullptr) { |
| // This filter will disregard the src.fImage completely. |
| // The margin is actually {-(src.fBounds.width() / 2), -(src.fBounds.height() / 2)} |
| // but it is not clear if callers will fall over with negative margins. |
| *margin = SkIPoint{0,0}; |
| } |
| return true; |
| } |
| return false; |
| } |
| const SkIPoint border = blurFilter.blur(src, dst); |
| // If src.fImage is null, then this call is only to calculate the border. |
| if (src.fImage != nullptr && dst->fImage == nullptr) { |
| return false; |
| } |
| |
| if (margin != nullptr) { |
| *margin = border; |
| } |
| |
| if (src.fImage == nullptr) { |
| if (style == kInner_SkBlurStyle) { |
| dst->fBounds = src.fBounds; // restore trimmed bounds |
| dst->fRowBytes = dst->fBounds.width(); |
| } |
| return true; |
| } |
| |
| switch (style) { |
| case kNormal_SkBlurStyle: |
| break; |
| case kSolid_SkBlurStyle: { |
| auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes]; |
| switch (src.fFormat) { |
| case SkMask::kBW_Format: |
| clamp_solid_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| break; |
| case SkMask::kA8_Format: |
| clamp_solid_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| break; |
| case SkMask::kARGB32_Format: { |
| uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage); |
| clamp_solid_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| } break; |
| case SkMask::kLCD16_Format: { |
| uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage); |
| clamp_solid_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| } break; |
| default: |
| SK_ABORT("Unhandled format."); |
| } |
| } break; |
| case kOuter_SkBlurStyle: { |
| auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes]; |
| switch (src.fFormat) { |
| case SkMask::kBW_Format: |
| clamp_outer_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| break; |
| case SkMask::kA8_Format: |
| clamp_outer_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| break; |
| case SkMask::kARGB32_Format: { |
| uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage); |
| clamp_outer_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| } break; |
| case SkMask::kLCD16_Format: { |
| uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage); |
| clamp_outer_with_orig( |
| dstStart, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| } break; |
| default: |
| SK_ABORT("Unhandled format."); |
| } |
| } break; |
| case kInner_SkBlurStyle: { |
| // now we allocate the "real" dst, mirror the size of src |
| SkMask blur = *dst; |
| SkAutoMaskFreeImage autoFreeBlurMask(blur.fImage); |
| dst->fBounds = src.fBounds; |
| dst->fRowBytes = dst->fBounds.width(); |
| size_t dstSize = dst->computeImageSize(); |
| if (0 == dstSize) { |
| return false; // too big to allocate, abort |
| } |
| dst->fImage = SkMask::AllocImage(dstSize); |
| auto blurStart = &blur.fImage[border.x() + border.y() * blur.fRowBytes]; |
| switch (src.fFormat) { |
| case SkMask::kBW_Format: |
| merge_src_with_blur( |
| dst->fImage, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes, |
| blurStart, blur.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| break; |
| case SkMask::kA8_Format: |
| merge_src_with_blur( |
| dst->fImage, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes, |
| blurStart, blur.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| break; |
| case SkMask::kARGB32_Format: { |
| uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage); |
| merge_src_with_blur( |
| dst->fImage, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes, |
| blurStart, blur.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| } break; |
| case SkMask::kLCD16_Format: { |
| uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage); |
| merge_src_with_blur( |
| dst->fImage, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes, |
| blurStart, blur.fRowBytes, |
| src.fBounds.width(), src.fBounds.height()); |
| } break; |
| default: |
| SK_ABORT("Unhandled format."); |
| } |
| } break; |
| } |
| |
| return true; |
| } |
| |
| /* Convolving a box with itself three times results in a piecewise |
| quadratic function: |
| |
| 0 x <= -1.5 |
| 9/8 + 3/2 x + 1/2 x^2 -1.5 < x <= -.5 |
| 3/4 - x^2 -.5 < x <= .5 |
| 9/8 - 3/2 x + 1/2 x^2 0.5 < x <= 1.5 |
| 0 1.5 < x |
| |
| Mathematica: |
| |
| g[x_] := Piecewise [ { |
| {9/8 + 3/2 x + 1/2 x^2 , -1.5 < x <= -.5}, |
| {3/4 - x^2 , -.5 < x <= .5}, |
| {9/8 - 3/2 x + 1/2 x^2 , 0.5 < x <= 1.5} |
| }, 0] |
| |
| To get the profile curve of the blurred step function at the rectangle |
| edge, we evaluate the indefinite integral, which is piecewise cubic: |
| |
| 0 x <= -1.5 |
| 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3 -1.5 < x <= -0.5 |
| 1/2 + 3/4 x - 1/3 x^3 -.5 < x <= .5 |
| 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3 .5 < x <= 1.5 |
| 1 1.5 < x |
| |
| in Mathematica code: |
| |
| gi[x_] := Piecewise[ { |
| { 0 , x <= -1.5 }, |
| { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 }, |
| { 1/2 + 3/4 x - 1/3 x^3 , -.5 < x <= .5}, |
| { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3, .5 < x <= 1.5} |
| },1] |
| */ |
| |
| static float gaussianIntegral(float x) { |
| if (x > 1.5f) { |
| return 0.0f; |
| } |
| if (x < -1.5f) { |
| return 1.0f; |
| } |
| |
| float x2 = x*x; |
| float x3 = x2*x; |
| |
| if ( x > 0.5f ) { |
| return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x); |
| } |
| if ( x > -0.5f ) { |
| return 0.5f - (0.75f * x - x3 / 3.0f); |
| } |
| return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x); |
| } |
| |
| /* ComputeBlurProfile fills in an array of floating |
| point values between 0 and 255 for the profile signature of |
| a blurred half-plane with the given blur radius. Since we're |
| going to be doing screened multiplications (i.e., 1 - (1-x)(1-y)) |
| all the time, we actually fill in the profile pre-inverted |
| (already done 255-x). |
| */ |
| |
| void SkBlurMask::ComputeBlurProfile(uint8_t* profile, int size, SkScalar sigma) { |
| SkASSERT(SkScalarCeilToInt(6*sigma) == size); |
| |
| int center = size >> 1; |
| |
| float invr = 1.f/(2*sigma); |
| |
| profile[0] = 255; |
| for (int x = 1 ; x < size ; ++x) { |
| float scaled_x = (center - x - .5f) * invr; |
| float gi = gaussianIntegral(scaled_x); |
| profile[x] = 255 - (uint8_t) (255.f * gi); |
| } |
| } |
| |
| // TODO MAYBE: Maintain a profile cache to avoid recomputing this for |
| // commonly used radii. Consider baking some of the most common blur radii |
| // directly in as static data? |
| |
| // Implementation adapted from Michael Herf's approach: |
| // http://stereopsis.com/shadowrect/ |
| |
| uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, |
| int blurredWidth, int sharpWidth) { |
| // how far are we from the original edge? |
| int dx = SkAbs32(((loc << 1) + 1) - blurredWidth) - sharpWidth; |
| int ox = dx >> 1; |
| if (ox < 0) { |
| ox = 0; |
| } |
| |
| return profile[ox]; |
| } |
| |
| void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile, |
| unsigned int width, SkScalar sigma) { |
| |
| unsigned int profile_size = SkScalarCeilToInt(6*sigma); |
| SkAutoTMalloc<uint8_t> horizontalScanline(width); |
| |
| unsigned int sw = width - profile_size; |
| // nearest odd number less than the profile size represents the center |
| // of the (2x scaled) profile |
| int center = ( profile_size & ~1 ) - 1; |
| |
| int w = sw - center; |
| |
| for (unsigned int x = 0 ; x < width ; ++x) { |
| if (profile_size <= sw) { |
| pixels[x] = ProfileLookup(profile, x, width, w); |
| } else { |
| float span = float(sw)/(2*sigma); |
| float giX = 1.5f - (x+.5f)/(2*sigma); |
| pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span))); |
| } |
| } |
| } |
| |
| bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst, |
| const SkRect &src, SkBlurStyle style, |
| SkIPoint *margin, SkMask::CreateMode createMode) { |
| int profileSize = SkScalarCeilToInt(6*sigma); |
| if (profileSize <= 0) { |
| return false; // no blur to compute |
| } |
| |
| int pad = profileSize/2; |
| if (margin) { |
| margin->set( pad, pad ); |
| } |
| |
| dst->fBounds.setLTRB(SkScalarRoundToInt(src.fLeft - pad), |
| SkScalarRoundToInt(src.fTop - pad), |
| SkScalarRoundToInt(src.fRight + pad), |
| SkScalarRoundToInt(src.fBottom + pad)); |
| |
| dst->fRowBytes = dst->fBounds.width(); |
| dst->fFormat = SkMask::kA8_Format; |
| dst->fImage = nullptr; |
| |
| int sw = SkScalarFloorToInt(src.width()); |
| int sh = SkScalarFloorToInt(src.height()); |
| |
| if (createMode == SkMask::kJustComputeBounds_CreateMode) { |
| if (style == kInner_SkBlurStyle) { |
| dst->fBounds = src.round(); // restore trimmed bounds |
| dst->fRowBytes = sw; |
| } |
| return true; |
| } |
| |
| SkAutoTMalloc<uint8_t> profile(profileSize); |
| |
| ComputeBlurProfile(profile, profileSize, sigma); |
| |
| size_t dstSize = dst->computeImageSize(); |
| if (0 == dstSize) { |
| return false; // too big to allocate, abort |
| } |
| |
| uint8_t* dp = SkMask::AllocImage(dstSize); |
| |
| dst->fImage = dp; |
| |
| int dstHeight = dst->fBounds.height(); |
| int dstWidth = dst->fBounds.width(); |
| |
| uint8_t *outptr = dp; |
| |
| SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth); |
| SkAutoTMalloc<uint8_t> verticalScanline(dstHeight); |
| |
| ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma); |
| ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma); |
| |
| for (int y = 0 ; y < dstHeight ; ++y) { |
| for (int x = 0 ; x < dstWidth ; x++) { |
| unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]); |
| *(outptr++) = maskval; |
| } |
| } |
| |
| if (style == kInner_SkBlurStyle) { |
| // now we allocate the "real" dst, mirror the size of src |
| size_t srcSize = (size_t)(src.width() * src.height()); |
| if (0 == srcSize) { |
| return false; // too big to allocate, abort |
| } |
| dst->fImage = SkMask::AllocImage(srcSize); |
| for (int y = 0 ; y < sh ; y++) { |
| uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad; |
| uint8_t *inner_scanline = dst->fImage + y*sw; |
| memcpy(inner_scanline, blur_scanline, sw); |
| } |
| SkMask::FreeImage(dp); |
| |
| dst->fBounds = src.round(); // restore trimmed bounds |
| dst->fRowBytes = sw; |
| |
| } else if (style == kOuter_SkBlurStyle) { |
| for (int y = pad ; y < dstHeight-pad ; y++) { |
| uint8_t *dst_scanline = dp + y*dstWidth + pad; |
| memset(dst_scanline, 0, sw); |
| } |
| } else if (style == kSolid_SkBlurStyle) { |
| for (int y = pad ; y < dstHeight-pad ; y++) { |
| uint8_t *dst_scanline = dp + y*dstWidth + pad; |
| memset(dst_scanline, 0xff, sw); |
| } |
| } |
| // normal and solid styles are the same for analytic rect blurs, so don't |
| // need to handle solid specially. |
| |
| return true; |
| } |
| |
| bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst, |
| const SkRRect &src, SkBlurStyle style, |
| SkIPoint *margin, SkMask::CreateMode createMode) { |
| // Temporary for now -- always fail, should cause caller to fall back |
| // to old path. Plumbing just to land API and parallelize effort. |
| |
| return false; |
| } |
| |
| // The "simple" blur is a direct implementation of separable convolution with a discrete |
| // gaussian kernel. It's "ground truth" in a sense; too slow to be used, but very |
| // useful for correctness comparisons. |
| |
| bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src, |
| SkBlurStyle style, SkIPoint* margin) { |
| |
| if (src.fFormat != SkMask::kA8_Format) { |
| return false; |
| } |
| |
| float variance = sigma * sigma; |
| |
| int windowSize = SkScalarCeilToInt(sigma*6); |
| // round window size up to nearest odd number |
| windowSize |= 1; |
| |
| SkAutoTMalloc<float> gaussWindow(windowSize); |
| |
| int halfWindow = windowSize >> 1; |
| |
| gaussWindow[halfWindow] = 1; |
| |
| float windowSum = 1; |
| for (int x = 1 ; x <= halfWindow ; ++x) { |
| float gaussian = expf(-x*x / (2*variance)); |
| gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian; |
| windowSum += 2*gaussian; |
| } |
| |
| // leave the filter un-normalized for now; we will divide by the normalization |
| // sum later; |
| |
| int pad = halfWindow; |
| if (margin) { |
| margin->set( pad, pad ); |
| } |
| |
| dst->fBounds = src.fBounds; |
| dst->fBounds.outset(pad, pad); |
| |
| dst->fRowBytes = dst->fBounds.width(); |
| dst->fFormat = SkMask::kA8_Format; |
| dst->fImage = nullptr; |
| |
| if (src.fImage) { |
| |
| size_t dstSize = dst->computeImageSize(); |
| if (0 == dstSize) { |
| return false; // too big to allocate, abort |
| } |
| |
| int srcWidth = src.fBounds.width(); |
| int srcHeight = src.fBounds.height(); |
| int dstWidth = dst->fBounds.width(); |
| |
| const uint8_t* srcPixels = src.fImage; |
| uint8_t* dstPixels = SkMask::AllocImage(dstSize); |
| SkAutoMaskFreeImage autoFreeDstPixels(dstPixels); |
| |
| // do the actual blur. First, make a padded copy of the source. |
| // use double pad so we never have to check if we're outside anything |
| |
| int padWidth = srcWidth + 4*pad; |
| int padHeight = srcHeight; |
| int padSize = padWidth * padHeight; |
| |
| SkAutoTMalloc<uint8_t> padPixels(padSize); |
| memset(padPixels, 0, padSize); |
| |
| for (int y = 0 ; y < srcHeight; ++y) { |
| uint8_t* padptr = padPixels + y * padWidth + 2*pad; |
| const uint8_t* srcptr = srcPixels + y * srcWidth; |
| memcpy(padptr, srcptr, srcWidth); |
| } |
| |
| // blur in X, transposing the result into a temporary floating point buffer. |
| // also double-pad the intermediate result so that the second blur doesn't |
| // have to do extra conditionals. |
| |
| int tmpWidth = padHeight + 4*pad; |
| int tmpHeight = padWidth - 2*pad; |
| int tmpSize = tmpWidth * tmpHeight; |
| |
| SkAutoTMalloc<float> tmpImage(tmpSize); |
| memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0])); |
| |
| for (int y = 0 ; y < padHeight ; ++y) { |
| uint8_t *srcScanline = padPixels + y*padWidth; |
| for (int x = pad ; x < padWidth - pad ; ++x) { |
| float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output |
| uint8_t *windowCenter = srcScanline + x; |
| for (int i = -pad ; i <= pad ; ++i) { |
| *outPixel += gaussWindow[pad+i]*windowCenter[i]; |
| } |
| *outPixel /= windowSum; |
| } |
| } |
| |
| // blur in Y; now filling in the actual desired destination. We have to do |
| // the transpose again; these transposes guarantee that we read memory in |
| // linear order. |
| |
| for (int y = 0 ; y < tmpHeight ; ++y) { |
| float *srcScanline = tmpImage + y*tmpWidth; |
| for (int x = pad ; x < tmpWidth - pad ; ++x) { |
| float *windowCenter = srcScanline + x; |
| float finalValue = 0; |
| for (int i = -pad ; i <= pad ; ++i) { |
| finalValue += gaussWindow[pad+i]*windowCenter[i]; |
| } |
| finalValue /= windowSum; |
| uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output |
| int integerPixel = int(finalValue + 0.5f); |
| *outPixel = SkClampMax( SkClampPos(integerPixel), 255 ); |
| } |
| } |
| |
| dst->fImage = dstPixels; |
| switch (style) { |
| case kNormal_SkBlurStyle: |
| break; |
| case kSolid_SkBlurStyle: { |
| clamp_solid_with_orig( |
| dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes, |
| srcWidth, srcHeight); |
| } break; |
| case kOuter_SkBlurStyle: { |
| clamp_outer_with_orig( |
| dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, |
| SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes, |
| srcWidth, srcHeight); |
| } break; |
| case kInner_SkBlurStyle: { |
| // now we allocate the "real" dst, mirror the size of src |
| size_t srcSize = src.computeImageSize(); |
| if (0 == srcSize) { |
| return false; // too big to allocate, abort |
| } |
| dst->fImage = SkMask::AllocImage(srcSize); |
| merge_src_with_blur(dst->fImage, src.fRowBytes, |
| SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes, |
| dstPixels + pad*dst->fRowBytes + pad, |
| dst->fRowBytes, srcWidth, srcHeight); |
| SkMask::FreeImage(dstPixels); |
| } break; |
| } |
| autoFreeDstPixels.release(); |
| } |
| |
| if (style == kInner_SkBlurStyle) { |
| dst->fBounds = src.fBounds; // restore trimmed bounds |
| dst->fRowBytes = src.fRowBytes; |
| } |
| |
| return true; |
| } |