| /* |
| * Copyright 2012 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkImageFilter.h" |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkRect.h" |
| #include "include/effects/SkComposeImageFilter.h" |
| #include "include/private/SkSafe32.h" |
| #include "src/core/SkFuzzLogging.h" |
| #include "src/core/SkImageFilterCache.h" |
| #include "src/core/SkImageFilter_Base.h" |
| #include "src/core/SkLocalMatrixImageFilter.h" |
| #include "src/core/SkMatrixImageFilter.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkSpecialImage.h" |
| #include "src/core/SkSpecialSurface.h" |
| #include "src/core/SkValidationUtils.h" |
| #include "src/core/SkWriteBuffer.h" |
| #if SK_SUPPORT_GPU |
| #include "include/gpu/GrContext.h" |
| #include "include/private/GrRecordingContext.h" |
| #include "src/gpu/GrColorSpaceXform.h" |
| #include "src/gpu/GrContextPriv.h" |
| #include "src/gpu/GrFixedClip.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrRenderTargetContext.h" |
| #include "src/gpu/GrTextureProxy.h" |
| #include "src/gpu/SkGr.h" |
| #endif |
| #include <atomic> |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| // SkImageFilter - A number of the public APIs on SkImageFilter downcast to SkImageFilter_Base |
| // in order to perform their actual work. |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Returns the number of inputs this filter will accept (some inputs can |
| * be NULL). |
| */ |
| int SkImageFilter::countInputs() const { return as_IFB(this)->fInputs.count(); } |
| |
| /** |
| * Returns the input filter at a given index, or NULL if no input is |
| * connected. The indices used are filter-specific. |
| */ |
| const SkImageFilter* SkImageFilter::getInput(int i) const { |
| SkASSERT(i < this->countInputs()); |
| return as_IFB(this)->fInputs[i].get(); |
| } |
| |
| bool SkImageFilter::isColorFilterNode(SkColorFilter** filterPtr) const { |
| return as_IFB(this)->onIsColorFilterNode(filterPtr); |
| } |
| |
| SkIRect SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm, |
| MapDirection direction, const SkIRect* inputRect) const { |
| // The old filterBounds() function uses SkIRects that are defined in layer space so, while |
| // we still are supporting it, bypass SkIF_B's new public filter bounds functions and go right |
| // to the internal layer-space calculations. |
| skif::Mapping mapping(SkMatrix::I(), ctm); |
| if (kReverse_MapDirection == direction) { |
| skif::LayerSpace<SkIRect> targetOutput(src); |
| skif::LayerSpace<SkIRect> content(inputRect ? *inputRect : src); |
| return SkIRect(as_IFB(this)->onGetInputLayerBounds(mapping, targetOutput, content)); |
| } else { |
| SkASSERT(!inputRect); |
| skif::LayerSpace<SkIRect> content(src); |
| skif::LayerSpace<SkIRect> output = as_IFB(this)->onGetOutputLayerBounds(mapping, content); |
| // Manually apply the crop rect for now, until cropping is performed by a dedicated SkIF. |
| SkIRect dst; |
| as_IFB(this)->getCropRect().applyTo( |
| SkIRect(output), ctm, as_IFB(this)->affectsTransparentBlack(), &dst); |
| return dst; |
| } |
| } |
| |
| SkRect SkImageFilter::computeFastBounds(const SkRect& src) const { |
| if (0 == this->countInputs()) { |
| return src; |
| } |
| SkRect combinedBounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src; |
| for (int i = 1; i < this->countInputs(); i++) { |
| const SkImageFilter* input = this->getInput(i); |
| if (input) { |
| combinedBounds.join(input->computeFastBounds(src)); |
| } else { |
| combinedBounds.join(src); |
| } |
| } |
| return combinedBounds; |
| } |
| |
| bool SkImageFilter::canComputeFastBounds() const { |
| if (as_IFB(this)->affectsTransparentBlack()) { |
| return false; |
| } |
| for (int i = 0; i < this->countInputs(); i++) { |
| const SkImageFilter* input = this->getInput(i); |
| if (input && !input->canComputeFastBounds()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool SkImageFilter::asAColorFilter(SkColorFilter** filterPtr) const { |
| SkASSERT(nullptr != filterPtr); |
| if (!this->isColorFilterNode(filterPtr)) { |
| return false; |
| } |
| if (nullptr != this->getInput(0) || (*filterPtr)->affectsTransparentBlack()) { |
| (*filterPtr)->unref(); |
| return false; |
| } |
| return true; |
| } |
| |
| sk_sp<SkImageFilter> SkImageFilter::MakeMatrixFilter(const SkMatrix& matrix, |
| SkFilterQuality filterQuality, |
| sk_sp<SkImageFilter> input) { |
| return SkMatrixImageFilter::Make(matrix, filterQuality, std::move(input)); |
| } |
| |
| sk_sp<SkImageFilter> SkImageFilter::makeWithLocalMatrix(const SkMatrix& matrix) const { |
| return SkLocalMatrixImageFilter::Make(matrix, this->refMe()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| // SkImageFilter_Base |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SK_USE_FLUENT_IMAGE_FILTER_TYPES |
| |
| static int32_t next_image_filter_unique_id() { |
| static std::atomic<int32_t> nextID{1}; |
| |
| int32_t id; |
| do { |
| id = nextID++; |
| } while (id == 0); |
| return id; |
| } |
| |
| SkImageFilter_Base::SkImageFilter_Base(sk_sp<SkImageFilter> const* inputs, |
| int inputCount, const CropRect* cropRect) |
| : fUsesSrcInput(false) |
| , fUniqueID(next_image_filter_unique_id()) { |
| fCropRect = cropRect ? *cropRect : CropRect(SkRect(), 0x0); |
| |
| fInputs.reset(inputCount); |
| |
| for (int i = 0; i < inputCount; ++i) { |
| if (!inputs[i] || as_IFB(inputs[i])->fUsesSrcInput) { |
| fUsesSrcInput = true; |
| } |
| fInputs[i] = inputs[i]; |
| } |
| } |
| |
| SkImageFilter_Base::~SkImageFilter_Base() { |
| SkImageFilterCache::Get()->purgeByImageFilter(this); |
| } |
| |
| bool SkImageFilter_Base::Common::unflatten(SkReadBuffer& buffer, int expectedCount) { |
| const int count = buffer.readInt(); |
| if (!buffer.validate(count >= 0)) { |
| return false; |
| } |
| if (!buffer.validate(expectedCount < 0 || count == expectedCount)) { |
| return false; |
| } |
| |
| SkASSERT(fInputs.empty()); |
| for (int i = 0; i < count; i++) { |
| fInputs.push_back(buffer.readBool() ? buffer.readImageFilter() : nullptr); |
| if (!buffer.isValid()) { |
| return false; |
| } |
| } |
| SkRect rect; |
| buffer.readRect(&rect); |
| if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) { |
| return false; |
| } |
| |
| uint32_t flags = buffer.readUInt(); |
| fCropRect = CropRect(rect, flags); |
| return buffer.isValid(); |
| } |
| |
| void SkImageFilter_Base::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeInt(fInputs.count()); |
| for (int i = 0; i < fInputs.count(); i++) { |
| const SkImageFilter* input = this->getInput(i); |
| buffer.writeBool(input != nullptr); |
| if (input != nullptr) { |
| buffer.writeFlattenable(input); |
| } |
| } |
| buffer.writeRect(fCropRect.rect()); |
| buffer.writeUInt(fCropRect.flags()); |
| } |
| |
| skif::FilterResult<For::kOutput> SkImageFilter_Base::filterImage(const skif::Context& context) const { |
| // TODO (michaelludwig) - Old filters have an implicit assumption that the source image |
| // (originally passed separately) has an origin of (0, 0). SkComposeImageFilter makes an effort |
| // to ensure that remains the case. Once everyone uses the new type systems for bounds, non |
| // (0, 0) source origins will be easy to support. |
| SkASSERT(context.source().layerOrigin().x() == 0 && context.source().layerOrigin().y() == 0); |
| |
| skif::FilterResult<For::kOutput> result; |
| if (!context.isValid()) { |
| return result; |
| } |
| |
| uint32_t srcGenID = fUsesSrcInput ? context.sourceImage()->uniqueID() : 0; |
| const SkIRect srcSubset = fUsesSrcInput ? context.sourceImage()->subset() |
| : SkIRect::MakeWH(0, 0); |
| |
| SkImageFilterCacheKey key(fUniqueID, context.mapping().layerMatrix(), context.clipBounds(), |
| srcGenID, srcSubset); |
| if (context.cache() && context.cache()->get(key, &result)) { |
| return result; |
| } |
| |
| result = this->onFilterImage(context); |
| |
| #if SK_SUPPORT_GPU |
| if (context.gpuBacked() && result.image() && !result.image()->isTextureBacked()) { |
| // Keep the result on the GPU - this is still required for some |
| // image filters that don't support GPU in all cases |
| auto asTexture = result.image()->makeTextureImage(context.getContext()); |
| result = skif::FilterResult<For::kOutput>(std::move(asTexture), result.layerOrigin()); |
| } |
| #endif |
| |
| if (context.cache()) { |
| context.cache()->set(key, this, result); |
| } |
| |
| return result; |
| } |
| |
| skif::LayerSpace<SkIRect> SkImageFilter_Base::getInputBounds( |
| const skif::Mapping& mapping, const skif::DeviceSpace<SkRect>& desiredOutput, |
| const skif::ParameterSpace<SkRect>* knownContentBounds) const { |
| // Map both the device-space desired coverage area and the known content bounds to layer space |
| skif::LayerSpace<SkIRect> desiredBounds = mapping.deviceToLayer(desiredOutput).roundOut(); |
| // If we have no known content bounds use the desired coverage area, because that is the most |
| // conservative possibility. |
| skif::LayerSpace<SkIRect> contentBounds = |
| knownContentBounds ? mapping.paramToLayer(*knownContentBounds).roundOut() |
| : desiredBounds; |
| |
| // Process the layer-space desired output with the filter DAG to determine required input |
| skif::LayerSpace<SkIRect> requiredInput = this->onGetInputLayerBounds( |
| mapping, desiredBounds, contentBounds); |
| // If we know what's actually going to be drawn into the layer, and we don't change transparent |
| // black, then we can further restrict the layer to what the known content is |
| if (knownContentBounds && !this->affectsTransparentBlack()) { |
| if (!requiredInput.intersect(contentBounds)) { |
| // Nothing would be output by the filter, so return empty rect |
| return skif::LayerSpace<SkIRect>(SkIRect::MakeEmpty()); |
| } |
| } |
| return requiredInput; |
| } |
| |
| skif::DeviceSpace<SkIRect> SkImageFilter_Base::getOutputBounds( |
| const skif::Mapping& mapping, const skif::ParameterSpace<SkRect>& contentBounds) const { |
| // Map the input content into the layer space where filtering will occur |
| skif::LayerSpace<SkRect> layerContent = mapping.paramToLayer(contentBounds); |
| // Determine the filter DAGs output bounds in layer space |
| skif::LayerSpace<SkIRect> filterOutput = this->onGetOutputLayerBounds( |
| mapping, layerContent.roundOut()); |
| // FIXME (michaelludwig) - To be removed once cropping is isolated, but remain consistent with |
| // old filterBounds(kForward) behavior. |
| SkIRect dst; |
| as_IFB(this)->getCropRect().applyTo( |
| SkIRect(filterOutput), mapping.layerMatrix(), |
| as_IFB(this)->affectsTransparentBlack(), &dst); |
| |
| // Map all the way to device space |
| return mapping.layerToDevice(skif::LayerSpace<SkIRect>(dst)); |
| } |
| |
| // TODO (michaelludwig) - Default to using the old onFilterImage, as filters are updated one by one. |
| // Once the old function is gone, this onFilterImage() will be made a pure virtual. |
| skif::FilterResult<For::kOutput> SkImageFilter_Base::onFilterImage(const skif::Context& context) const { |
| SkIPoint origin; |
| auto image = this->onFilterImage(context, &origin); |
| return skif::FilterResult<For::kOutput>(std::move(image), skif::LayerSpace<SkIPoint>(origin)); |
| } |
| |
| bool SkImageFilter_Base::canHandleComplexCTM() const { |
| // CropRects need to apply in the source coordinate system, but are not aware of complex CTMs |
| // when performing clipping. For a simple fix, any filter with a crop rect set cannot support |
| // complex CTMs until that's updated. |
| if (this->cropRectIsSet() || !this->onCanHandleComplexCTM()) { |
| return false; |
| } |
| const int count = this->countInputs(); |
| for (int i = 0; i < count; ++i) { |
| const SkImageFilter_Base* input = as_IFB(this->getInput(i)); |
| if (input && !input->canHandleComplexCTM()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void SkImageFilter::CropRect::applyTo(const SkIRect& imageBounds, const SkMatrix& ctm, |
| bool embiggen, SkIRect* cropped) const { |
| *cropped = imageBounds; |
| if (fFlags) { |
| SkRect devCropR; |
| ctm.mapRect(&devCropR, fRect); |
| SkIRect devICropR = devCropR.roundOut(); |
| |
| // Compute the left/top first, in case we need to modify the right/bottom for a missing edge |
| if (fFlags & kHasLeft_CropEdge) { |
| if (embiggen || devICropR.fLeft > cropped->fLeft) { |
| cropped->fLeft = devICropR.fLeft; |
| } |
| } else { |
| devICropR.fRight = Sk32_sat_add(cropped->fLeft, devICropR.width()); |
| } |
| if (fFlags & kHasTop_CropEdge) { |
| if (embiggen || devICropR.fTop > cropped->fTop) { |
| cropped->fTop = devICropR.fTop; |
| } |
| } else { |
| devICropR.fBottom = Sk32_sat_add(cropped->fTop, devICropR.height()); |
| } |
| if (fFlags & kHasWidth_CropEdge) { |
| if (embiggen || devICropR.fRight < cropped->fRight) { |
| cropped->fRight = devICropR.fRight; |
| } |
| } |
| if (fFlags & kHasHeight_CropEdge) { |
| if (embiggen || devICropR.fBottom < cropped->fBottom) { |
| cropped->fBottom = devICropR.fBottom; |
| } |
| } |
| } |
| } |
| |
| bool SkImageFilter_Base::applyCropRect(const Context& ctx, const SkIRect& srcBounds, |
| SkIRect* dstBounds) const { |
| SkIRect tmpDst = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection, nullptr); |
| fCropRect.applyTo(tmpDst, ctx.ctm(), this->affectsTransparentBlack(), dstBounds); |
| // Intersect against the clip bounds, in case the crop rect has |
| // grown the bounds beyond the original clip. This can happen for |
| // example in tiling, where the clip is much smaller than the filtered |
| // primitive. If we didn't do this, we would be processing the filter |
| // at the full crop rect size in every tile. |
| return dstBounds->intersect(ctx.clipBounds()); |
| } |
| |
| // Return a larger (newWidth x newHeight) copy of 'src' with black padding |
| // around it. |
| static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src, const SkImageFilter_Base::Context& ctx, |
| int newWidth, int newHeight, int offX, int offY) { |
| // We would like to operate in the source's color space (so that we return an "identical" |
| // image, other than the padding. To achieve that, we'd create a new context using |
| // src->getColorSpace() to replace ctx.colorSpace(). |
| |
| // That fails in at least two ways. For formats that are texturable but not renderable (like |
| // F16 on some ES implementations), we can't create a surface to do the work. For sRGB, images |
| // may be tagged with an sRGB color space (which leads to an sRGB config in makeSurface). But |
| // the actual config of that sRGB image on a device with no sRGB support is non-sRGB. |
| // |
| // Rather than try to special case these situations, we execute the image padding in the |
| // destination color space. This should not affect the output of the DAG in (almost) any case, |
| // because the result of this call is going to be used as an input, where it would have been |
| // switched to the destination space anyway. The one exception would be a filter that expected |
| // to consume unclamped F16 data, but the padded version of the image is pre-clamped to 8888. |
| // We can revisit this logic if that ever becomes an actual problem. |
| sk_sp<SkSpecialSurface> surf(ctx.makeSurface(SkISize::Make(newWidth, newHeight))); |
| if (!surf) { |
| return nullptr; |
| } |
| |
| SkCanvas* canvas = surf->getCanvas(); |
| SkASSERT(canvas); |
| |
| canvas->clear(0x0); |
| |
| src->draw(canvas, offX, offY, nullptr); |
| |
| return surf->makeImageSnapshot(); |
| } |
| |
| sk_sp<SkSpecialImage> SkImageFilter_Base::applyCropRectAndPad(const Context& ctx, |
| SkSpecialImage* src, |
| SkIPoint* srcOffset, |
| SkIRect* bounds) const { |
| const SkIRect srcBounds = SkIRect::MakeXYWH(srcOffset->x(), srcOffset->y(), |
| src->width(), src->height()); |
| |
| if (!this->applyCropRect(ctx, srcBounds, bounds)) { |
| return nullptr; |
| } |
| |
| if (srcBounds.contains(*bounds)) { |
| return sk_sp<SkSpecialImage>(SkRef(src)); |
| } else { |
| sk_sp<SkSpecialImage> img(pad_image(src, ctx, bounds->width(), bounds->height(), |
| Sk32_sat_sub(srcOffset->x(), bounds->x()), |
| Sk32_sat_sub(srcOffset->y(), bounds->y()))); |
| *srcOffset = SkIPoint::Make(bounds->x(), bounds->y()); |
| return img; |
| } |
| } |
| |
| // NOTE: The new onGetOutputLayerBounds() and onGetInputLayerBounds() default to calling into the |
| // deprecated onFilterBounds and onFilterNodeBounds. While these functions are not tagged, they do |
| // match the documented default behavior for the new bounds functions. |
| SkIRect SkImageFilter_Base::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, |
| MapDirection dir, const SkIRect* inputRect) const { |
| if (this->countInputs() < 1) { |
| return src; |
| } |
| |
| SkIRect totalBounds; |
| for (int i = 0; i < this->countInputs(); ++i) { |
| const SkImageFilter* filter = this->getInput(i); |
| SkIRect rect = filter ? filter->filterBounds(src, ctm, dir, inputRect) : src; |
| if (0 == i) { |
| totalBounds = rect; |
| } else { |
| totalBounds.join(rect); |
| } |
| } |
| |
| return totalBounds; |
| } |
| |
| SkIRect SkImageFilter_Base::onFilterNodeBounds(const SkIRect& src, const SkMatrix&, |
| MapDirection, const SkIRect*) const { |
| return src; |
| } |
| |
| skif::LayerSpace<SkIRect> SkImageFilter_Base::visitInputLayerBounds( |
| const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& desiredOutput, |
| const skif::LayerSpace<SkIRect>& contentBounds) const { |
| if (this->countInputs() < 1) { |
| // TODO (michaelludwig) - if a filter doesn't have any inputs, it doesn't need any |
| // implicit source image, so arguably we could return an empty rect here. 'desiredOutput' is |
| // consistent with original behavior, so empty bounds may have unintended side effects |
| // but should be explored later. |
| return desiredOutput; |
| } |
| |
| skif::LayerSpace<SkIRect> netInput; |
| for (int i = 0; i < this->countInputs(); ++i) { |
| const SkImageFilter* filter = this->getInput(i); |
| // The required input for this input filter, or 'targetOutput' if the filter is null and |
| // the source image is used (so must be sized to cover 'targetOutput'). |
| skif::LayerSpace<SkIRect> requiredInput = |
| filter ? as_IFB(filter)->onGetInputLayerBounds(mapping, desiredOutput, |
| contentBounds) |
| : desiredOutput; |
| // Accumulate with all other filters |
| if (i == 0) { |
| netInput = requiredInput; |
| } else { |
| netInput.join(requiredInput); |
| } |
| } |
| return netInput; |
| } |
| |
| skif::LayerSpace<SkIRect> SkImageFilter_Base::visitOutputLayerBounds( |
| const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& contentBounds) const { |
| if (this->countInputs() < 1) { |
| // TODO (michaelludwig) - if a filter doesn't have any inputs, it presumably is determining |
| // its output size from something other than the implicit source contentBounds, in which |
| // case it shouldn't be calling this helper function, so explore adding an unreachable test |
| return contentBounds; |
| } |
| |
| skif::LayerSpace<SkIRect> netOutput; |
| for (int i = 0; i < this->countInputs(); ++i) { |
| const SkImageFilter* filter = this->getInput(i); |
| // The output for just this input filter, or 'contentBounds' if the filter is null and |
| // the source image is used (i.e. the identity filter applied to the source). |
| skif::LayerSpace<SkIRect> output = |
| filter ? as_IFB(filter)->onGetOutputLayerBounds(mapping, contentBounds) |
| : contentBounds; |
| // Accumulate with all other filters |
| if (i == 0) { |
| netOutput = output; |
| } else { |
| netOutput.join(output); |
| } |
| } |
| return netOutput; |
| } |
| |
| skif::LayerSpace<SkIRect> SkImageFilter_Base::onGetInputLayerBounds( |
| const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& desiredOutput, |
| const skif::LayerSpace<SkIRect>& contentBounds, VisitChildren recurse) const { |
| // Call old functions for now since they may have been overridden by a subclass that's not been |
| // updated yet; normally this would just default to visitInputLayerBounds() |
| SkIRect content = SkIRect(contentBounds); |
| SkIRect input = this->onFilterNodeBounds(SkIRect(desiredOutput), mapping.layerMatrix(), |
| kReverse_MapDirection, &content); |
| if (recurse == VisitChildren::kYes) { |
| SkIRect aggregate = this->onFilterBounds(input, mapping.layerMatrix(), |
| kReverse_MapDirection, &input); |
| return skif::LayerSpace<SkIRect>(aggregate); |
| } else { |
| return skif::LayerSpace<SkIRect>(input); |
| } |
| } |
| |
| skif::LayerSpace<SkIRect> SkImageFilter_Base::onGetOutputLayerBounds( |
| const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& contentBounds) const { |
| // Call old functions for now; normally this would default to visitOutputLayerBounds() |
| SkIRect aggregate = this->onFilterBounds(SkIRect(contentBounds), mapping.layerMatrix(), |
| kForward_MapDirection, nullptr); |
| SkIRect output = this->onFilterNodeBounds(aggregate, mapping.layerMatrix(), |
| kForward_MapDirection, nullptr); |
| return skif::LayerSpace<SkIRect>(output); |
| } |
| |
| template<skif::Usage kU> |
| skif::FilterResult<kU> SkImageFilter_Base::filterInput(int index, const skif::Context& ctx) const { |
| // Sanity checks for the index-specific input usages |
| SkASSERT(kU != skif::Usage::kInput0 || index == 0); |
| SkASSERT(kU != skif::Usage::kInput1 || index == 1); |
| |
| const SkImageFilter* input = this->getInput(index); |
| if (!input) { |
| // Convert from the generic kInput of the source image to kU |
| return static_cast<skif::FilterResult<kU>>(ctx.source()); |
| } |
| |
| skif::FilterResult<For::kOutput> result = as_IFB(input)->filterImage(this->mapContext(ctx)); |
| SkASSERT(!result.image() || ctx.gpuBacked() == result.image()->isTextureBacked()); |
| |
| // Map the output result of the input image filter to the input usage requested for this filter |
| return static_cast<skif::FilterResult<kU>>(std::move(result)); |
| } |
| // Instantiate filterInput() for kInput, kInput0, and kInput1. This does not provide a definition |
| // for kOutput, which should never be used anyways, and this way the linker will fail for us then. |
| template skif::FilterResult<For::kInput> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
| template skif::FilterResult<For::kInput0> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
| template skif::FilterResult<For::kInput1> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
| |
| SkImageFilter_Base::Context SkImageFilter_Base::mapContext(const Context& ctx) const { |
| // We don't recurse through the child input filters because that happens automatically |
| // as part of the filterImage() evaluation. In this case, we want the bounds for the |
| // edge from this node to its children, without the effects of the child filters. |
| skif::LayerSpace<SkIRect> childOutput = this->onGetInputLayerBounds( |
| ctx.mapping(), ctx.desiredOutput(), ctx.desiredOutput(), VisitChildren::kNo); |
| return ctx.withNewDesiredOutput(childOutput); |
| } |
| |
| #if SK_SUPPORT_GPU |
| sk_sp<SkSpecialImage> SkImageFilter_Base::DrawWithFP(GrRecordingContext* context, |
| std::unique_ptr<GrFragmentProcessor> fp, |
| const SkIRect& bounds, |
| SkColorType colorType, |
| const SkColorSpace* colorSpace, |
| GrProtected isProtected) { |
| GrPaint paint; |
| paint.addColorFragmentProcessor(std::move(fp)); |
| paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| auto renderTargetContext = |
| context->priv().makeDeferredRenderTargetContext(SkBackingFit::kApprox, |
| bounds.width(), |
| bounds.height(), |
| SkColorTypeToGrColorType(colorType), |
| sk_ref_sp(colorSpace), |
| 1, |
| GrMipMapped::kNo, |
| kBottomLeft_GrSurfaceOrigin, |
| nullptr, |
| SkBudgeted::kYes, |
| isProtected); |
| if (!renderTargetContext) { |
| return nullptr; |
| } |
| |
| SkIRect dstIRect = SkIRect::MakeWH(bounds.width(), bounds.height()); |
| SkRect srcRect = SkRect::Make(bounds); |
| SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height()); |
| GrFixedClip clip(dstIRect); |
| renderTargetContext->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), dstRect, |
| srcRect); |
| |
| return SkSpecialImage::MakeDeferredFromGpu( |
| context, dstIRect, kNeedNewImageUniqueID_SpecialImage, |
| renderTargetContext->asTextureProxyRef(), renderTargetContext->colorInfo().colorType(), |
| renderTargetContext->colorInfo().refColorSpace()); |
| } |
| |
| sk_sp<SkSpecialImage> SkImageFilter_Base::ImageToColorSpace(SkSpecialImage* src, |
| SkColorType colorType, |
| SkColorSpace* colorSpace) { |
| // There are several conditions that determine if we actually need to convert the source to the |
| // destination's color space. Rather than duplicate that logic here, just try to make an xform |
| // object. If that produces something, then both are tagged, and the source is in a different |
| // gamut than the dest. There is some overhead to making the xform, but those are cached, and |
| // if we get one back, that means we're about to use it during the conversion anyway. |
| auto colorSpaceXform = GrColorSpaceXform::Make(src->getColorSpace(), src->alphaType(), |
| colorSpace, kPremul_SkAlphaType); |
| |
| if (!colorSpaceXform) { |
| // No xform needed, just return the original image |
| return sk_ref_sp(src); |
| } |
| |
| sk_sp<SkSpecialSurface> surf(src->makeSurface(colorType, colorSpace, |
| SkISize::Make(src->width(), src->height()))); |
| if (!surf) { |
| return sk_ref_sp(src); |
| } |
| |
| SkCanvas* canvas = surf->getCanvas(); |
| SkASSERT(canvas); |
| SkPaint p; |
| p.setBlendMode(SkBlendMode::kSrc); |
| src->draw(canvas, 0, 0, &p); |
| return surf->makeImageSnapshot(); |
| } |
| #endif |
| |
| // In repeat mode, when we are going to sample off one edge of the srcBounds we require the |
| // opposite side be preserved. |
| SkIRect SkImageFilter_Base::DetermineRepeatedSrcBound(const SkIRect& srcBounds, |
| const SkIVector& filterOffset, |
| const SkISize& filterSize, |
| const SkIRect& originalSrcBounds) { |
| SkIRect tmp = srcBounds; |
| tmp.adjust(-filterOffset.fX, -filterOffset.fY, |
| filterSize.fWidth - filterOffset.fX, filterSize.fHeight - filterOffset.fY); |
| |
| if (tmp.fLeft < originalSrcBounds.fLeft || tmp.fRight > originalSrcBounds.fRight) { |
| tmp.fLeft = originalSrcBounds.fLeft; |
| tmp.fRight = originalSrcBounds.fRight; |
| } |
| if (tmp.fTop < originalSrcBounds.fTop || tmp.fBottom > originalSrcBounds.fBottom) { |
| tmp.fTop = originalSrcBounds.fTop; |
| tmp.fBottom = originalSrcBounds.fBottom; |
| } |
| |
| return tmp; |
| } |
| |
| void SkImageFilter_Base::PurgeCache() { |
| SkImageFilterCache::Get()->purge(); |
| } |
| |
| static sk_sp<SkImageFilter> apply_ctm_to_filter(sk_sp<SkImageFilter> input, const SkMatrix& ctm, |
| SkMatrix* remainder) { |
| if (ctm.isScaleTranslate() || as_IFB(input)->canHandleComplexCTM()) { |
| // The filter supports the CTM, so leave it as-is and 'remainder' stores the whole CTM |
| *remainder = ctm; |
| return input; |
| } |
| |
| // We have a complex CTM and a filter that can't support them, so it needs to use the matrix |
| // transform filter that resamples the image contents. Decompose the simple portion of the ctm |
| // into 'remainder' |
| SkMatrix ctmToEmbed; |
| SkSize scale; |
| if (ctm.decomposeScale(&scale, &ctmToEmbed)) { |
| // decomposeScale splits ctm into scale * ctmToEmbed, so bake ctmToEmbed into DAG |
| // with a matrix filter and return scale as the remaining matrix for the real CTM. |
| remainder->setScale(scale.fWidth, scale.fHeight); |
| |
| // ctmToEmbed is passed to SkMatrixImageFilter, which performs its transforms as if it were |
| // a pre-transformation before applying the image-filter context's CTM. In this case, we |
| // need ctmToEmbed to be a post-transformation (i.e. after the scale matrix since |
| // decomposeScale produces ctm = ctmToEmbed * scale). Giving scale^-1 * ctmToEmbed * scale |
| // to the matrix filter achieves this effect. |
| // TODO (michaelludwig) - When the original root node of a filter can be drawn directly to a |
| // device using ctmToEmbed, this abuse of SkMatrixImageFilter can go away. |
| ctmToEmbed.preScale(scale.fWidth, scale.fHeight); |
| ctmToEmbed.postScale(1.f / scale.fWidth, 1.f / scale.fHeight); |
| } else { |
| // Unable to decompose |
| // FIXME Ideally we'd embed the entire CTM as part of the matrix image filter, but |
| // the device <-> src bounds calculations for filters are very brittle under perspective, |
| // and can easily run into precision issues (wrong bounds that clip), or performance issues |
| // (producing large source-space images where 80% of the image is compressed into a few |
| // device pixels). A longer term solution for perspective-space image filtering is needed |
| // see skbug.com/9074 |
| if (ctm.hasPerspective()) { |
| *remainder = ctm; |
| return input; |
| } |
| |
| ctmToEmbed = ctm; |
| remainder->setIdentity(); |
| } |
| |
| return SkMatrixImageFilter::Make(ctmToEmbed, kLow_SkFilterQuality, input); |
| } |
| |
| sk_sp<SkImageFilter> SkImageFilter_Base::applyCTM(const SkMatrix& ctm, SkMatrix* remainder) const { |
| return apply_ctm_to_filter(this->refMe(), ctm, remainder); |
| } |