blob: 1e853b0da7c95771fd3b48d8ba7cf222633a927d [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTSort_DEFINED
#define SkTSort_DEFINED
#include "include/core/SkTypes.h"
#include "include/private/SkTo.h"
#include "src/core/SkMathPriv.h"
#include <utility>
/* A comparison functor which performs the comparison 'a < b'. */
template <typename T> struct SkTCompareLT {
bool operator()(const T a, const T b) const { return a < b; }
};
/* A comparison functor which performs the comparison '*a < *b'. */
template <typename T> struct SkTPointerCompareLT {
bool operator()(const T* a, const T* b) const { return *a < *b; }
};
///////////////////////////////////////////////////////////////////////////////
/* Sifts a broken heap. The input array is a heap from root to bottom
* except that the root entry may be out of place.
*
* Sinks a hole from array[root] to leaf and then sifts the original array[root] element
* from the leaf level up.
*
* This version does extra work, in that it copies child to parent on the way down,
* then copies parent to child on the way back up. When copies are inexpensive,
* this is an optimization as this sift variant should only be used when
* the potentially out of place root entry value is expected to be small.
*
* @param root the one based index into array of the out-of-place root of the heap.
* @param bottom the one based index in the array of the last entry in the heap.
*/
template <typename T, typename C>
void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, C lessThan) {
T x = array[root-1];
size_t start = root;
size_t j = root << 1;
while (j <= bottom) {
if (j < bottom && lessThan(array[j-1], array[j])) {
++j;
}
array[root-1] = array[j-1];
root = j;
j = root << 1;
}
j = root >> 1;
while (j >= start) {
if (lessThan(array[j-1], x)) {
array[root-1] = array[j-1];
root = j;
j = root >> 1;
} else {
break;
}
}
array[root-1] = x;
}
/* Sifts a broken heap. The input array is a heap from root to bottom
* except that the root entry may be out of place.
*
* Sifts the array[root] element from the root down.
*
* @param root the one based index into array of the out-of-place root of the heap.
* @param bottom the one based index in the array of the last entry in the heap.
*/
template <typename T, typename C>
void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, C lessThan) {
T x = array[root-1];
size_t child = root << 1;
while (child <= bottom) {
if (child < bottom && lessThan(array[child-1], array[child])) {
++child;
}
if (lessThan(x, array[child-1])) {
array[root-1] = array[child-1];
root = child;
child = root << 1;
} else {
break;
}
}
array[root-1] = x;
}
/** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm. Be sure to
* specialize swap if T has an efficient swap operation.
*
* @param array the array to be sorted.
* @param count the number of elements in the array.
* @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
*/
template <typename T, typename C> void SkTHeapSort(T array[], size_t count, C lessThan) {
for (size_t i = count >> 1; i > 0; --i) {
SkTHeapSort_SiftDown(array, i, count, lessThan);
}
for (size_t i = count - 1; i > 0; --i) {
using std::swap;
swap(array[0], array[i]);
SkTHeapSort_SiftUp(array, 1, i, lessThan);
}
}
/** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */
template <typename T> void SkTHeapSort(T array[], size_t count) {
SkTHeapSort(array, count, SkTCompareLT<T>());
}
///////////////////////////////////////////////////////////////////////////////
/** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */
template <typename T, typename C> static void SkTInsertionSort(T* left, T* right, C lessThan) {
for (T* next = left + 1; next <= right; ++next) {
if (!lessThan(*next, *(next - 1))) {
continue;
}
T insert = std::move(*next);
T* hole = next;
do {
*hole = std::move(*(hole - 1));
--hole;
} while (left < hole && lessThan(insert, *(hole - 1)));
*hole = std::move(insert);
}
}
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename C>
static T* SkTQSort_Partition(T* left, T* right, T* pivot, C lessThan) {
using std::swap;
T pivotValue = *pivot;
swap(*pivot, *right);
T* newPivot = left;
while (left < right) {
if (lessThan(*left, pivotValue)) {
swap(*left, *newPivot);
newPivot += 1;
}
left += 1;
}
swap(*newPivot, *right);
return newPivot;
}
/* Intro Sort is a modified Quick Sort.
* When the region to be sorted is a small constant size it uses Insertion Sort.
* When depth becomes zero, it switches over to Heap Sort.
* This implementation recurses on the left region after pivoting and loops on the right,
* we already limit the stack depth by switching to heap sort,
* and cache locality on the data appears more important than saving a few stack frames.
*
* @param depth at this recursion depth, switch to Heap Sort.
* @param left the beginning of the region to be sorted.
* @param right the end of the region to be sorted (inclusive).
* @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
*/
template <typename T, typename C> void SkTIntroSort(int depth, T* left, T* right, C lessThan) {
while (true) {
if (right - left < 32) {
SkTInsertionSort(left, right, lessThan);
return;
}
if (depth == 0) {
SkTHeapSort<T>(left, right - left + 1, lessThan);
return;
}
--depth;
T* pivot = left + ((right - left) >> 1);
pivot = SkTQSort_Partition(left, right, pivot, lessThan);
SkTIntroSort(depth, left, pivot - 1, lessThan);
left = pivot + 1;
}
}
/** Sorts the region from left to right using comparator lessThan using a Quick Sort algorithm. Be
* sure to specialize swap if T has an efficient swap operation.
*
* @param left the beginning of the region to be sorted.
* @param right the end of the region to be sorted (inclusive).
* @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
*/
template <typename T, typename C> void SkTQSort(T* left, T* right, C lessThan) {
if (left >= right) {
return;
}
// Limit Intro Sort recursion depth to no more than 2 * ceil(log2(n)).
int depth = 2 * SkNextLog2(SkToU32(right - left));
SkTIntroSort(depth, left, right, lessThan);
}
/** Sorts the region from left to right using comparator '<' using a Quick Sort algorithm. */
template <typename T> void SkTQSort(T* left, T* right) {
SkTQSort(left, right, SkTCompareLT<T>());
}
/** Sorts the region from left to right using comparator '* < *' using a Quick Sort algorithm. */
template <typename T> void SkTQSort(T** left, T** right) {
SkTQSort(left, right, SkTPointerCompareLT<T>());
}
#endif