| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkStream.h" |
| #include "include/core/SkTypeface.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkImagePriv.h" |
| #include "src/core/SkPaintPriv.h" |
| #include "src/core/SkPtrRecorder.h" |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer() |
| : fFactorySet(nullptr) |
| , fTFSet(nullptr) { |
| } |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) |
| : fFactorySet(nullptr) |
| , fTFSet(nullptr) |
| , fWriter(storage, storageSize) |
| {} |
| |
| SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} |
| |
| bool SkBinaryWriteBuffer::usingInitialStorage() const { |
| return fWriter.usingInitialStorage(); |
| } |
| |
| void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
| fWriter.write32(SkToU32(size)); |
| fWriter.writePad(data, size); |
| } |
| |
| void SkBinaryWriteBuffer::writeBool(bool value) { |
| fWriter.writeBool(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
| fWriter.writeScalar(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(SkScalar)); |
| } |
| |
| void SkBinaryWriteBuffer::writeInt(int32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(int32_t)); |
| } |
| |
| void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeString(const char* value) { |
| fWriter.writeString(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor(SkColor color) { |
| fWriter.write32(color); |
| } |
| |
| void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
| fWriter.write(&color, sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
| fWriter.writeScalar(point.fX); |
| fWriter.writeScalar(point.fY); |
| } |
| |
| void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { |
| this->writePad32(&point, sizeof(SkPoint3)); |
| } |
| |
| void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(point, count * sizeof(SkPoint)); |
| } |
| |
| void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
| fWriter.writeMatrix(matrix); |
| } |
| |
| void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
| fWriter.write(&rect, sizeof(SkIRect)); |
| } |
| |
| void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
| fWriter.writeRect(rect); |
| } |
| |
| void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
| fWriter.writeRegion(region); |
| } |
| |
| void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
| fWriter.writePath(path); |
| } |
| |
| size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
| fWriter.write32(SkToU32(length)); |
| size_t bytesWritten = fWriter.readFromStream(stream, length); |
| if (bytesWritten < length) { |
| fWriter.reservePad(length - bytesWritten); |
| } |
| return bytesWritten; |
| } |
| |
| bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { |
| return fWriter.writeToStream(stream); |
| } |
| |
| /* Format: |
| * (subset) bounds |
| * size (31bits) |
| * data [ encoded, with raw width/height ] |
| */ |
| void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
| const SkIRect bounds = SkImage_getSubset(image); |
| this->writeIRect(bounds); |
| |
| sk_sp<SkData> data; |
| if (fProcs.fImageProc) { |
| data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx); |
| } |
| if (!data) { |
| data = image->encodeToData(); |
| } |
| |
| size_t size = data ? data->size() : 0; |
| if (!SkTFitsIn<int32_t>(size)) { |
| size = 0; // too big to store |
| } |
| this->write32(SkToS32(size)); // writing 0 signals failure |
| if (size) { |
| this->writePad32(data->data(), size); |
| } |
| } |
| |
| void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
| // Write 32 bits (signed) |
| // 0 -- default font |
| // >0 -- index |
| // <0 -- custom (serial procs) |
| |
| if (obj == nullptr) { |
| fWriter.write32(0); |
| } else if (fProcs.fTypefaceProc) { |
| auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
| if (data) { |
| size_t size = data->size(); |
| if (!SkTFitsIn<int32_t>(size)) { |
| size = 0; // fall back to default font |
| } |
| int32_t ssize = SkToS32(size); |
| fWriter.write32(-ssize); // negative to signal custom |
| if (size) { |
| this->writePad32(data->data(), size); |
| } |
| return; |
| } |
| // no data means fall through for std behavior |
| } |
| fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
| } |
| |
| void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| SkPaintPriv::Flatten(paint, *this); |
| } |
| |
| void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { |
| fFactorySet = std::move(rec); |
| } |
| |
| void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { |
| fTFSet = std::move(rec); |
| } |
| |
| void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
| if (nullptr == flattenable) { |
| this->write32(0); |
| return; |
| } |
| |
| /* |
| * We can write 1 of 2 versions of the flattenable: |
| * 1. index into fFactorySet : This assumes the writer will later |
| * resolve the function-ptrs into strings for its reader. SkPicture |
| * does exactly this, by writing a table of names (matching the indices) |
| * up front in its serialized form. |
| * 2. string name of the flattenable or index into fFlattenableDict: We |
| * store the string to allow the reader to specify its own factories |
| * after write time. In order to improve compression, if we have |
| * already written the string, we write its index instead. |
| */ |
| |
| SkFlattenable::Factory factory = flattenable->getFactory(); |
| SkASSERT(factory); |
| |
| if (fFactorySet) { |
| this->write32(fFactorySet->add(factory)); |
| } else { |
| |
| if (uint32_t* indexPtr = fFlattenableDict.find(factory)) { |
| // We will write the index as a 32-bit int. We want the first byte |
| // that we send to be zero - this will act as a sentinel that we |
| // have an index (not a string). This means that we will send the |
| // the index shifted left by 8. The remaining 24-bits should be |
| // plenty to store the index. Note that this strategy depends on |
| // being little endian. |
| SkASSERT(0 == *indexPtr >> 24); |
| this->write32(*indexPtr << 8); |
| } else { |
| const char* name = flattenable->getTypeName(); |
| SkASSERT(name); |
| // Otherwise write the string. Clients should not use the empty |
| // string as a name, or we will have a problem. |
| SkASSERT(0 != strcmp("", name)); |
| this->writeString(name); |
| |
| // Add key to dictionary. |
| fFlattenableDict.set(factory, fFlattenableDict.count() + 1); |
| } |
| } |
| |
| // make room for the size of the flattened object |
| (void)fWriter.reserve(sizeof(uint32_t)); |
| // record the current size, so we can subtract after the object writes. |
| size_t offset = fWriter.bytesWritten(); |
| // now flatten the object |
| flattenable->flatten(*this); |
| size_t objSize = fWriter.bytesWritten() - offset; |
| // record the obj's size |
| fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
| } |