| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkBlitRow_opts_DEFINED |
| #define SkBlitRow_opts_DEFINED |
| |
| #include "include/private/SkColorData.h" |
| #include "include/private/SkVx.h" |
| #include "src/core/SkMSAN.h" |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| #include <immintrin.h> |
| |
| static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) { |
| // Abstractly srcover is |
| // b = s + d*(1-srcA) |
| // |
| // In terms of unorm8 bytes, that works out to |
| // b = s + (d*(255-srcA) + 127) / 255 |
| // |
| // But we approximate that to within a bit with |
| // b = s + (d*(255-srcA) + d) / 256 |
| // a.k.a |
| // b = s + (d*(256-srcA)) >> 8 |
| |
| // The bottleneck of this math is the multiply, and we want to do it as |
| // narrowly as possible, here getting inputs into 16-bit lanes and |
| // using 16-bit multiplies. We can do twice as many multiplies at once |
| // as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies |
| // are themselves a couple cycles quicker. Win-win. |
| |
| // We'll get everything in 16-bit lanes for two multiplies, one |
| // handling dst red and blue, the other green and alpha. (They're |
| // conveniently 16-bits apart, you see.) We don't need the individual |
| // src channels beyond alpha until the very end when we do the "s + " |
| // add, and we don't even need to unpack them; the adds cannot overflow. |
| |
| // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel. |
| const int _ = -1; // fills a literal 0 byte. |
| __m256i srcA_x2 = _mm256_shuffle_epi8(src, |
| _mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_, |
| 3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_)); |
| __m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256), |
| srcA_x2); |
| |
| // Scale red and blue, leaving results in the low byte of each 16-bit lane. |
| __m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst); |
| rb = _mm256_mullo_epi16(rb, scale_x2); |
| rb = _mm256_srli_epi16 (rb, 8); |
| |
| // Scale green and alpha, leaving results in the high byte, masking off the low bits. |
| __m256i ga = _mm256_srli_epi16(dst, 8); |
| ga = _mm256_mullo_epi16(ga, scale_x2); |
| ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga); |
| |
| return _mm256_add_epi32(src, _mm256_or_si256(rb, ga)); |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| #include <immintrin.h> |
| |
| static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) { |
| auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) { |
| const __m128i mask = _mm_set1_epi32(0xFF00FF); |
| __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale); |
| |
| // uint32_t rb = ((c & mask) * scale) >> 8 |
| __m128i rb = _mm_and_si128(mask, c); |
| rb = _mm_mullo_epi16(rb, s); |
| rb = _mm_srli_epi16(rb, 8); |
| |
| // uint32_t ag = ((c >> 8) & mask) * scale |
| __m128i ag = _mm_srli_epi16(c, 8); |
| ag = _mm_mullo_epi16(ag, s); |
| |
| // (rb & mask) | (ag & ~mask) |
| ag = _mm_andnot_si128(mask, ag); |
| return _mm_or_si128(rb, ag); |
| }; |
| return _mm_add_epi32(src, |
| SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256), |
| _mm_srli_epi32(src, 24)))); |
| } |
| #endif |
| |
| namespace SK_OPTS_NS { |
| |
| // Blend constant color over count src pixels, writing into dst. |
| inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) { |
| constexpr int N = 4; // 8, 16 also reasonable choices |
| using U32 = skvx::Vec< N, uint32_t>; |
| using U16 = skvx::Vec<4*N, uint16_t>; |
| using U8 = skvx::Vec<4*N, uint8_t>; |
| |
| auto kernel = [color](U32 src) { |
| unsigned invA = 255 - SkGetPackedA32(color); |
| invA += invA >> 7; |
| SkASSERT(0 < invA && invA < 256); // We handle alpha == 0 or alpha == 255 specially. |
| |
| // (src * invA + (color << 8) + 128) >> 8 |
| // Should all fit in 16 bits. |
| U8 s = skvx::bit_pun<U8>(src), |
| a = U8(invA); |
| U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))), |
| d = (mull(s,a) + (c << 8) + 128)>>8; |
| return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d)); |
| }; |
| |
| while (count >= N) { |
| kernel(U32::Load(src)).store(dst); |
| src += N; |
| dst += N; |
| count -= N; |
| } |
| while (count --> 0) { |
| *dst++ = kernel(U32{*src++})[0]; |
| } |
| } |
| |
| #if defined(SK_ARM_HAS_NEON) |
| |
| // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i], |
| // y[i] are the i-th lanes of the corresponding NEON vectors. |
| static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) { |
| uint16x8_t prod = vmull_u8(x, y); |
| return vraddhn_u16(prod, vrshrq_n_u16(prod, 8)); |
| } |
| |
| // The implementations of SkPMSrcOver below perform alpha blending consistently with |
| // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as: |
| // |
| // result_i = src_i + rint(g(src_alpha, dst_i)) |
| // |
| // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer. |
| |
| // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value |
| // of the same color component for 8 consecutive pixels. The result of this function follows the |
| // same convention. |
| static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) { |
| uint8x8_t nalphas = vmvn_u8(src.val[3]); |
| uint8x8x4_t result; |
| result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0])); |
| result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1])); |
| result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2])); |
| result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3])); |
| return result; |
| } |
| |
| // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive |
| // pixels. The return value follows the same convention. |
| static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) { |
| const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303); |
| uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices)); |
| return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst)); |
| } |
| |
| #endif |
| |
| /*not static*/ inline |
| void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) { |
| SkASSERT(alpha == 0xFF); |
| sk_msan_assert_initialized(src, src+len); |
| // Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| while (len >= 32) { |
| // Load 32 source pixels. |
| auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0), |
| s1 = _mm256_loadu_si256((const __m256i*)(src) + 1), |
| s2 = _mm256_loadu_si256((const __m256i*)(src) + 2), |
| s3 = _mm256_loadu_si256((const __m256i*)(src) + 3); |
| |
| const auto alphaMask = _mm256_set1_epi32(0xFF000000); |
| |
| auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0))); |
| if (_mm256_testz_si256(ORed, alphaMask)) { |
| // All 32 source pixels are transparent. Nothing to do. |
| src += 32; |
| dst += 32; |
| len -= 32; |
| continue; |
| } |
| |
| auto d0 = (__m256i*)(dst) + 0, |
| d1 = (__m256i*)(dst) + 1, |
| d2 = (__m256i*)(dst) + 2, |
| d3 = (__m256i*)(dst) + 3; |
| |
| auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0))); |
| if (_mm256_testc_si256(ANDed, alphaMask)) { |
| // All 32 source pixels are opaque. SrcOver becomes Src. |
| _mm256_storeu_si256(d0, s0); |
| _mm256_storeu_si256(d1, s1); |
| _mm256_storeu_si256(d2, s2); |
| _mm256_storeu_si256(d3, s3); |
| src += 32; |
| dst += 32; |
| len -= 32; |
| continue; |
| } |
| |
| // TODO: This math is wrong. |
| // Do SrcOver. |
| _mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0))); |
| _mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1))); |
| _mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2))); |
| _mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3))); |
| src += 32; |
| dst += 32; |
| len -= 32; |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| while (len >= 16) { |
| // Load 16 source pixels. |
| auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
| s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
| s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
| s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
| |
| const auto alphaMask = _mm_set1_epi32(0xFF000000); |
| |
| auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
| if (_mm_testz_si128(ORed, alphaMask)) { |
| // All 16 source pixels are transparent. Nothing to do. |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| auto d0 = (__m128i*)(dst) + 0, |
| d1 = (__m128i*)(dst) + 1, |
| d2 = (__m128i*)(dst) + 2, |
| d3 = (__m128i*)(dst) + 3; |
| |
| auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
| if (_mm_testc_si128(ANDed, alphaMask)) { |
| // All 16 source pixels are opaque. SrcOver becomes Src. |
| _mm_storeu_si128(d0, s0); |
| _mm_storeu_si128(d1, s1); |
| _mm_storeu_si128(d2, s2); |
| _mm_storeu_si128(d3, s3); |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| // TODO: This math is wrong. |
| // Do SrcOver. |
| _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
| _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
| _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
| _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
| src += 16; |
| dst += 16; |
| len -= 16; |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| while (len >= 16) { |
| // Load 16 source pixels. |
| auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
| s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
| s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
| s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
| |
| const auto alphaMask = _mm_set1_epi32(0xFF000000); |
| |
| auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
| if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask), |
| _mm_setzero_si128()))) { |
| // All 16 source pixels are transparent. Nothing to do. |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| auto d0 = (__m128i*)(dst) + 0, |
| d1 = (__m128i*)(dst) + 1, |
| d2 = (__m128i*)(dst) + 2, |
| d3 = (__m128i*)(dst) + 3; |
| |
| auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
| if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask), |
| alphaMask))) { |
| // All 16 source pixels are opaque. SrcOver becomes Src. |
| _mm_storeu_si128(d0, s0); |
| _mm_storeu_si128(d1, s1); |
| _mm_storeu_si128(d2, s2); |
| _mm_storeu_si128(d3, s3); |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| // TODO: This math is wrong. |
| // Do SrcOver. |
| _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
| _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
| _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
| _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
| |
| src += 16; |
| dst += 16; |
| len -= 16; |
| } |
| |
| #elif defined(SK_ARM_HAS_NEON) |
| // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it |
| // underperformed on some of the platforms under test for inputs with frequent transitions of |
| // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth |
| // revisiting the situation in the future. |
| while (len >= 8) { |
| // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component |
| // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8 |
| // pixels). |
| uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src)); |
| src += 8; |
| len -= 8; |
| |
| // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels |
| // are all transparent), the second when all alphas are fully set (they are all opaque). |
| uint8x8_t alphas = src_col.val[3]; |
| uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0); |
| if (alphas_u64 == 0) { |
| // All pixels transparent. |
| dst += 8; |
| continue; |
| } |
| |
| if (~alphas_u64 == 0) { |
| // All pixels opaque. |
| vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col); |
| dst += 8; |
| continue; |
| } |
| |
| uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst)); |
| vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col)); |
| dst += 8; |
| } |
| |
| // Deal with leftover pixels. |
| for (; len >= 2; len -= 2, src += 2, dst += 2) { |
| uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src)); |
| uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst)); |
| vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2)); |
| } |
| |
| if (len != 0) { |
| uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src)); |
| vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0); |
| } |
| return; |
| #endif |
| |
| while (len-- > 0) { |
| // This 0xFF000000 is not semantically necessary, but for compatibility |
| // with chromium:611002 we need to keep it until we figure out where |
| // the non-premultiplied src values (like 0x00FFFFFF) are coming from. |
| // TODO(mtklein): sort this out and assert *src is premul here. |
| if (*src & 0xFF000000) { |
| *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst); |
| } |
| src++; |
| dst++; |
| } |
| } |
| |
| } // SK_OPTS_NS |
| |
| #endif//SkBlitRow_opts_DEFINED |