| // Copyright (c) 2010-2017 The OTS Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // A parser for the Type 2 Charstring Format. |
| // http://www.adobe.com/devnet/font/pdfs/5177.Type2.pdf |
| |
| #include "cff_type2_charstring.h" |
| |
| #include <climits> |
| #include <cstdio> |
| #include <cstring> |
| #include <stack> |
| #include <string> |
| #include <utility> |
| |
| #define TABLE_NAME "CFF" |
| |
| namespace { |
| |
| // Type 2 Charstring Implementation Limits. See Appendix. B in Adobe Technical |
| // Note #5177. |
| const int32_t kMaxSubrsCount = 65536; |
| const size_t kMaxCharStringLength = 65535; |
| const size_t kMaxArgumentStack = 48; |
| const size_t kMaxNumberOfStemHints = 96; |
| const size_t kMaxSubrNesting = 10; |
| |
| // |dummy_result| should be a huge positive integer so callsubr and callgsubr |
| // will fail with the dummy value. |
| const int32_t dummy_result = INT_MAX; |
| |
| bool ExecuteType2CharString(ots::Font *font, |
| size_t call_depth, |
| const ots::CFFIndex& global_subrs_index, |
| const ots::CFFIndex& local_subrs_index, |
| ots::Buffer *cff_table, |
| ots::Buffer *char_string, |
| std::stack<int32_t> *argument_stack, |
| bool *out_found_endchar, |
| bool *out_found_width, |
| size_t *in_out_num_stems); |
| |
| #ifdef DUMP_T2CHARSTRING |
| // Converts |op| to a string and returns it. |
| const char *Type2CharStringOperatorToString(ots::Type2CharStringOperator op) { |
| switch (op) { |
| case ots::kHStem: |
| return "HStem"; |
| case ots::kVStem: |
| return "VStem"; |
| case ots::kVMoveTo: |
| return "VMoveTo"; |
| case ots::kRLineTo: |
| return "RLineTo"; |
| case ots::kHLineTo: |
| return "HLineTo"; |
| case ots::kVLineTo: |
| return "VLineTo"; |
| case ots::kRRCurveTo: |
| return "RRCurveTo"; |
| case ots::kCallSubr: |
| return "CallSubr"; |
| case ots::kReturn: |
| return "Return"; |
| case ots::kEndChar: |
| return "EndChar"; |
| case ots::kHStemHm: |
| return "HStemHm"; |
| case ots::kHintMask: |
| return "HintMask"; |
| case ots::kCntrMask: |
| return "CntrMask"; |
| case ots::kRMoveTo: |
| return "RMoveTo"; |
| case ots::kHMoveTo: |
| return "HMoveTo"; |
| case ots::kVStemHm: |
| return "VStemHm"; |
| case ots::kRCurveLine: |
| return "RCurveLine"; |
| case ots::kRLineCurve: |
| return "RLineCurve"; |
| case ots::kVVCurveTo: |
| return "VVCurveTo"; |
| case ots::kHHCurveTo: |
| return "HHCurveTo"; |
| case ots::kCallGSubr: |
| return "CallGSubr"; |
| case ots::kVHCurveTo: |
| return "VHCurveTo"; |
| case ots::kHVCurveTo: |
| return "HVCurveTo"; |
| case ots::kDotSection: |
| return "DotSection"; |
| case ots::kAnd: |
| return "And"; |
| case ots::kOr: |
| return "Or"; |
| case ots::kNot: |
| return "Not"; |
| case ots::kAbs: |
| return "Abs"; |
| case ots::kAdd: |
| return "Add"; |
| case ots::kSub: |
| return "Sub"; |
| case ots::kDiv: |
| return "Div"; |
| case ots::kNeg: |
| return "Neg"; |
| case ots::kEq: |
| return "Eq"; |
| case ots::kDrop: |
| return "Drop"; |
| case ots::kPut: |
| return "Put"; |
| case ots::kGet: |
| return "Get"; |
| case ots::kIfElse: |
| return "IfElse"; |
| case ots::kRandom: |
| return "Random"; |
| case ots::kMul: |
| return "Mul"; |
| case ots::kSqrt: |
| return "Sqrt"; |
| case ots::kDup: |
| return "Dup"; |
| case ots::kExch: |
| return "Exch"; |
| case ots::kIndex: |
| return "Index"; |
| case ots::kRoll: |
| return "Roll"; |
| case ots::kHFlex: |
| return "HFlex"; |
| case ots::kFlex: |
| return "Flex"; |
| case ots::kHFlex1: |
| return "HFlex1"; |
| case ots::kFlex1: |
| return "Flex1"; |
| } |
| |
| return "UNKNOWN"; |
| } |
| #endif |
| |
| // Read one or more bytes from the |char_string| buffer and stores the number |
| // read on |out_number|. If the number read is an operator (ex 'vstem'), sets |
| // true on |out_is_operator|. Returns true if the function read a number. |
| bool ReadNextNumberFromType2CharString(ots::Buffer *char_string, |
| int32_t *out_number, |
| bool *out_is_operator) { |
| uint8_t v = 0; |
| if (!char_string->ReadU8(&v)) { |
| return OTS_FAILURE(); |
| } |
| *out_is_operator = false; |
| |
| // The conversion algorithm is described in Adobe Technical Note #5177, page |
| // 13, Table 1. |
| if (v <= 11) { |
| *out_number = v; |
| *out_is_operator = true; |
| } else if (v == 12) { |
| uint16_t result = (v << 8); |
| if (!char_string->ReadU8(&v)) { |
| return OTS_FAILURE(); |
| } |
| result += v; |
| *out_number = result; |
| *out_is_operator = true; |
| } else if (v <= 27) { |
| // Special handling for v==19 and v==20 are implemented in |
| // ExecuteType2CharStringOperator(). |
| *out_number = v; |
| *out_is_operator = true; |
| } else if (v == 28) { |
| if (!char_string->ReadU8(&v)) { |
| return OTS_FAILURE(); |
| } |
| uint16_t result = (v << 8); |
| if (!char_string->ReadU8(&v)) { |
| return OTS_FAILURE(); |
| } |
| result += v; |
| *out_number = result; |
| } else if (v <= 31) { |
| *out_number = v; |
| *out_is_operator = true; |
| } else if (v <= 246) { |
| *out_number = static_cast<int32_t>(v) - 139; |
| } else if (v <= 250) { |
| uint8_t w = 0; |
| if (!char_string->ReadU8(&w)) { |
| return OTS_FAILURE(); |
| } |
| *out_number = ((static_cast<int32_t>(v) - 247) * 256) + |
| static_cast<int32_t>(w) + 108; |
| } else if (v <= 254) { |
| uint8_t w = 0; |
| if (!char_string->ReadU8(&w)) { |
| return OTS_FAILURE(); |
| } |
| *out_number = -((static_cast<int32_t>(v) - 251) * 256) - |
| static_cast<int32_t>(w) - 108; |
| } else if (v == 255) { |
| // TODO(yusukes): We should not skip the 4 bytes. Note that when v is 255, |
| // we should treat the following 4-bytes as a 16.16 fixed-point number |
| // rather than 32bit signed int. |
| if (!char_string->Skip(4)) { |
| return OTS_FAILURE(); |
| } |
| *out_number = dummy_result; |
| } else { |
| return OTS_FAILURE(); |
| } |
| |
| return true; |
| } |
| |
| // Executes |op| and updates |argument_stack|. Returns true if the execution |
| // succeeds. If the |op| is kCallSubr or kCallGSubr, the function recursively |
| // calls ExecuteType2CharString() function. The arguments other than |op| and |
| // |argument_stack| are passed for that reason. |
| bool ExecuteType2CharStringOperator(ots::Font *font, |
| int32_t op, |
| size_t call_depth, |
| const ots::CFFIndex& global_subrs_index, |
| const ots::CFFIndex& local_subrs_index, |
| ots::Buffer *cff_table, |
| ots::Buffer *char_string, |
| std::stack<int32_t> *argument_stack, |
| bool *out_found_endchar, |
| bool *in_out_found_width, |
| size_t *in_out_num_stems) { |
| const size_t stack_size = argument_stack->size(); |
| |
| switch (op) { |
| case ots::kCallSubr: |
| case ots::kCallGSubr: { |
| const ots::CFFIndex& subrs_index = |
| (op == ots::kCallSubr ? local_subrs_index : global_subrs_index); |
| |
| if (stack_size < 1) { |
| return OTS_FAILURE(); |
| } |
| int32_t subr_number = argument_stack->top(); |
| argument_stack->pop(); |
| if (subr_number == dummy_result) { |
| // For safety, we allow subr calls only with immediate subr numbers for |
| // now. For example, we allow "123 callgsubr", but does not allow "100 12 |
| // add callgsubr". Please note that arithmetic and conditional operators |
| // always push the |dummy_result| in this implementation. |
| return OTS_FAILURE(); |
| } |
| |
| // See Adobe Technical Note #5176 (CFF), "16. Local/GlobalSubrs INDEXes." |
| int32_t bias = 32768; |
| if (subrs_index.count < 1240) { |
| bias = 107; |
| } else if (subrs_index.count < 33900) { |
| bias = 1131; |
| } |
| subr_number += bias; |
| |
| // Sanity checks of |subr_number|. |
| if (subr_number < 0) { |
| return OTS_FAILURE(); |
| } |
| if (subr_number >= kMaxSubrsCount) { |
| return OTS_FAILURE(); |
| } |
| if (subrs_index.offsets.size() <= static_cast<size_t>(subr_number + 1)) { |
| return OTS_FAILURE(); // The number is out-of-bounds. |
| } |
| |
| // Prepare ots::Buffer where we're going to jump. |
| const size_t length = |
| subrs_index.offsets[subr_number + 1] - subrs_index.offsets[subr_number]; |
| if (length > kMaxCharStringLength) { |
| return OTS_FAILURE(); |
| } |
| const size_t offset = subrs_index.offsets[subr_number]; |
| cff_table->set_offset(offset); |
| if (!cff_table->Skip(length)) { |
| return OTS_FAILURE(); |
| } |
| ots::Buffer char_string_to_jump(cff_table->buffer() + offset, length); |
| |
| return ExecuteType2CharString(font, |
| call_depth + 1, |
| global_subrs_index, |
| local_subrs_index, |
| cff_table, |
| &char_string_to_jump, |
| argument_stack, |
| out_found_endchar, |
| in_out_found_width, |
| in_out_num_stems); |
| } |
| |
| case ots::kReturn: |
| return true; |
| |
| case ots::kEndChar: |
| *out_found_endchar = true; |
| *in_out_found_width = true; // just in case. |
| return true; |
| |
| case ots::kHStem: |
| case ots::kVStem: |
| case ots::kHStemHm: |
| case ots::kVStemHm: { |
| bool successful = false; |
| if (stack_size < 2) { |
| return OTS_FAILURE(); |
| } |
| if ((stack_size % 2) == 0) { |
| successful = true; |
| } else if ((!(*in_out_found_width)) && (((stack_size - 1) % 2) == 0)) { |
| // The -1 is for "width" argument. For details, see Adobe Technical Note |
| // #5177, page 16, note 4. |
| successful = true; |
| } |
| (*in_out_num_stems) += (stack_size / 2); |
| if ((*in_out_num_stems) > kMaxNumberOfStemHints) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| *in_out_found_width = true; // always set true since "w" might be 0 byte. |
| return successful ? true : OTS_FAILURE(); |
| } |
| |
| case ots::kRMoveTo: { |
| bool successful = false; |
| if (stack_size == 2) { |
| successful = true; |
| } else if ((!(*in_out_found_width)) && (stack_size - 1 == 2)) { |
| successful = true; |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| *in_out_found_width = true; |
| return successful ? true : OTS_FAILURE(); |
| } |
| |
| case ots::kVMoveTo: |
| case ots::kHMoveTo: { |
| bool successful = false; |
| if (stack_size == 1) { |
| successful = true; |
| } else if ((!(*in_out_found_width)) && (stack_size - 1 == 1)) { |
| successful = true; |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| *in_out_found_width = true; |
| return successful ? true : OTS_FAILURE(); |
| } |
| |
| case ots::kHintMask: |
| case ots::kCntrMask: { |
| bool successful = false; |
| if (stack_size == 0) { |
| successful = true; |
| } else if ((!(*in_out_found_width)) && (stack_size == 1)) { |
| // A number for "width" is found. |
| successful = true; |
| } else if ((!(*in_out_found_width)) || // in this case, any sizes are ok. |
| ((stack_size % 2) == 0)) { |
| // The numbers are vstem definition. |
| // See Adobe Technical Note #5177, page 24, hintmask. |
| (*in_out_num_stems) += (stack_size / 2); |
| if ((*in_out_num_stems) > kMaxNumberOfStemHints) { |
| return OTS_FAILURE(); |
| } |
| successful = true; |
| } |
| if (!successful) { |
| return OTS_FAILURE(); |
| } |
| |
| if ((*in_out_num_stems) == 0) { |
| return OTS_FAILURE(); |
| } |
| const size_t mask_bytes = (*in_out_num_stems + 7) / 8; |
| if (!char_string->Skip(mask_bytes)) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| *in_out_found_width = true; |
| return true; |
| } |
| |
| case ots::kRLineTo: |
| if (!(*in_out_found_width)) { |
| // The first stack-clearing operator should be one of hstem, hstemhm, |
| // vstem, vstemhm, cntrmask, hintmask, hmoveto, vmoveto, rmoveto, or |
| // endchar. For details, see Adobe Technical Note #5177, page 16, note 4. |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 2) { |
| return OTS_FAILURE(); |
| } |
| if ((stack_size % 2) != 0) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kHLineTo: |
| case ots::kVLineTo: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 1) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kRRCurveTo: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 6) { |
| return OTS_FAILURE(); |
| } |
| if ((stack_size % 6) != 0) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kRCurveLine: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 8) { |
| return OTS_FAILURE(); |
| } |
| if (((stack_size - 2) % 6) != 0) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kRLineCurve: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 8) { |
| return OTS_FAILURE(); |
| } |
| if (((stack_size - 6) % 2) != 0) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kVVCurveTo: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 4) { |
| return OTS_FAILURE(); |
| } |
| if (((stack_size % 4) != 0) && |
| (((stack_size - 1) % 4) != 0)) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kHHCurveTo: { |
| bool successful = false; |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 4) { |
| return OTS_FAILURE(); |
| } |
| if ((stack_size % 4) == 0) { |
| // {dxa dxb dyb dxc}+ |
| successful = true; |
| } else if (((stack_size - 1) % 4) == 0) { |
| // dy1? {dxa dxb dyb dxc}+ |
| successful = true; |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return successful ? true : OTS_FAILURE(); |
| } |
| |
| case ots::kVHCurveTo: |
| case ots::kHVCurveTo: { |
| bool successful = false; |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size < 4) { |
| return OTS_FAILURE(); |
| } |
| if (((stack_size - 4) % 8) == 0) { |
| // dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* |
| successful = true; |
| } else if ((stack_size >= 5) && |
| ((stack_size - 5) % 8) == 0) { |
| // dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf |
| successful = true; |
| } else if ((stack_size >= 8) && |
| ((stack_size - 8) % 8) == 0) { |
| // {dxa dxb dyb dyc dyd dxe dye dxf}+ |
| successful = true; |
| } else if ((stack_size >= 9) && |
| ((stack_size - 9) % 8) == 0) { |
| // {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf? |
| successful = true; |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return successful ? true : OTS_FAILURE(); |
| } |
| |
| case ots::kDotSection: |
| // Deprecated operator but harmless, we probably should drop it some how. |
| if (stack_size != 0) { |
| return OTS_FAILURE(); |
| } |
| return true; |
| |
| case ots::kAnd: |
| case ots::kOr: |
| case ots::kEq: |
| case ots::kAdd: |
| case ots::kSub: |
| if (stack_size < 2) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kNot: |
| case ots::kAbs: |
| case ots::kNeg: |
| if (stack_size < 1) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kDiv: |
| // TODO(yusukes): Should detect div-by-zero errors. |
| if (stack_size < 2) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kDrop: |
| if (stack_size < 1) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kPut: |
| case ots::kGet: |
| case ots::kIndex: |
| // For now, just call OTS_FAILURE since there is no way to check whether the |
| // index argument, |i|, is out-of-bounds or not. Fortunately, no OpenType |
| // fonts I have (except malicious ones!) use the operators. |
| // TODO(yusukes): Implement them in a secure way. |
| return OTS_FAILURE(); |
| |
| case ots::kRoll: |
| // Likewise, just call OTS_FAILURE for kRoll since there is no way to check |
| // whether |N| is smaller than the current stack depth or not. |
| // TODO(yusukes): Implement them in a secure way. |
| return OTS_FAILURE(); |
| |
| case ots::kRandom: |
| // For now, we don't handle the 'random' operator since the operator makes |
| // it hard to analyze hinting code statically. |
| return OTS_FAILURE(); |
| |
| case ots::kIfElse: |
| if (stack_size < 4) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kMul: |
| // TODO(yusukes): Should detect overflows. |
| if (stack_size < 2) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kSqrt: |
| // TODO(yusukes): Should check if the argument is negative. |
| if (stack_size < 1) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kDup: |
| if (stack_size < 1) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| argument_stack->push(dummy_result); |
| if (argument_stack->size() > kMaxArgumentStack) { |
| return OTS_FAILURE(); |
| } |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kExch: |
| if (stack_size < 2) { |
| return OTS_FAILURE(); |
| } |
| argument_stack->pop(); |
| argument_stack->pop(); |
| argument_stack->push(dummy_result); |
| argument_stack->push(dummy_result); |
| // TODO(yusukes): Implement this. We should push a real value for all |
| // arithmetic and conditional operations. |
| return true; |
| |
| case ots::kHFlex: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size != 7) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kFlex: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size != 13) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kHFlex1: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size != 9) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| |
| case ots::kFlex1: |
| if (!(*in_out_found_width)) { |
| return OTS_FAILURE(); |
| } |
| if (stack_size != 11) { |
| return OTS_FAILURE(); |
| } |
| while (!argument_stack->empty()) |
| argument_stack->pop(); |
| return true; |
| } |
| |
| return OTS_FAILURE_MSG("Undefined operator: %d (0x%x)", op, op); |
| } |
| |
| // Executes |char_string| and updates |argument_stack|. |
| // |
| // call_depth: The current call depth. Initial value is zero. |
| // global_subrs_index: Global subroutines. |
| // local_subrs_index: Local subroutines for the current glyph. |
| // cff_table: A whole CFF table which contains all global and local subroutines. |
| // char_string: A charstring we'll execute. |char_string| can be a main routine |
| // in CharString INDEX, or a subroutine in GlobalSubr/LocalSubr. |
| // argument_stack: The stack which an operator in |char_string| operates. |
| // out_found_endchar: true is set if |char_string| contains 'endchar'. |
| // in_out_found_width: true is set if |char_string| contains 'width' byte (which |
| // is 0 or 1 byte.) |
| // in_out_num_stems: total number of hstems and vstems processed so far. |
| bool ExecuteType2CharString(ots::Font *font, |
| size_t call_depth, |
| const ots::CFFIndex& global_subrs_index, |
| const ots::CFFIndex& local_subrs_index, |
| ots::Buffer *cff_table, |
| ots::Buffer *char_string, |
| std::stack<int32_t> *argument_stack, |
| bool *out_found_endchar, |
| bool *in_out_found_width, |
| size_t *in_out_num_stems) { |
| if (call_depth > kMaxSubrNesting) { |
| return OTS_FAILURE(); |
| } |
| *out_found_endchar = false; |
| |
| const size_t length = char_string->length(); |
| while (char_string->offset() < length) { |
| int32_t operator_or_operand = 0; |
| bool is_operator = false; |
| if (!ReadNextNumberFromType2CharString(char_string, |
| &operator_or_operand, |
| &is_operator)) { |
| return OTS_FAILURE(); |
| } |
| |
| #ifdef DUMP_T2CHARSTRING |
| /* |
| You can dump all operators and operands (except mask bytes for hintmask |
| and cntrmask) by the following code: |
| */ |
| |
| if (!is_operator) { |
| std::fprintf(stderr, "#%d# ", operator_or_operand); |
| } else { |
| std::fprintf(stderr, "#%s#\n", |
| Type2CharStringOperatorToString( |
| ots::Type2CharStringOperator(operator_or_operand)) |
| ); |
| } |
| #endif |
| |
| if (!is_operator) { |
| argument_stack->push(operator_or_operand); |
| if (argument_stack->size() > kMaxArgumentStack) { |
| return OTS_FAILURE(); |
| } |
| continue; |
| } |
| |
| // An operator is found. Execute it. |
| if (!ExecuteType2CharStringOperator(font, |
| operator_or_operand, |
| call_depth, |
| global_subrs_index, |
| local_subrs_index, |
| cff_table, |
| char_string, |
| argument_stack, |
| out_found_endchar, |
| in_out_found_width, |
| in_out_num_stems)) { |
| return OTS_FAILURE(); |
| } |
| if (*out_found_endchar) { |
| return true; |
| } |
| if (operator_or_operand == ots::kReturn) { |
| return true; |
| } |
| } |
| |
| // No endchar operator is found. |
| return OTS_FAILURE(); |
| } |
| |
| // Selects a set of subroutings for |glyph_index| from |cff| and sets it on |
| // |out_local_subrs_to_use|. Returns true on success. |
| bool SelectLocalSubr(const std::map<uint16_t, uint8_t> &fd_select, |
| const std::vector<ots::CFFIndex *> &local_subrs_per_font, |
| const ots::CFFIndex *local_subrs, |
| uint16_t glyph_index, // 0-origin |
| const ots::CFFIndex **out_local_subrs_to_use) { |
| *out_local_subrs_to_use = NULL; |
| |
| // First, find local subrs from |local_subrs_per_font|. |
| if ((fd_select.size() > 0) && |
| (!local_subrs_per_font.empty())) { |
| // Look up FDArray index for the glyph. |
| std::map<uint16_t, uint8_t>::const_iterator iter = |
| fd_select.find(glyph_index); |
| if (iter == fd_select.end()) { |
| return OTS_FAILURE(); |
| } |
| const uint8_t fd_index = iter->second; |
| if (fd_index >= local_subrs_per_font.size()) { |
| return OTS_FAILURE(); |
| } |
| *out_local_subrs_to_use = local_subrs_per_font.at(fd_index); |
| } else if (local_subrs) { |
| // Second, try to use |local_subrs|. Most Latin fonts don't have FDSelect |
| // entries. If The font has a local subrs index associated with the Top |
| // DICT (not FDArrays), use it. |
| *out_local_subrs_to_use = local_subrs; |
| } else { |
| // Just return NULL. |
| *out_local_subrs_to_use = NULL; |
| } |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| namespace ots { |
| |
| bool ValidateType2CharStringIndex( |
| ots::Font *font, |
| const CFFIndex& char_strings_index, |
| const CFFIndex& global_subrs_index, |
| const std::map<uint16_t, uint8_t> &fd_select, |
| const std::vector<CFFIndex *> &local_subrs_per_font, |
| const CFFIndex *local_subrs, |
| Buffer* cff_table) { |
| if (char_strings_index.offsets.size() == 0) { |
| return OTS_FAILURE(); // no charstring. |
| } |
| |
| // For each glyph, validate the corresponding charstring. |
| for (unsigned i = 1; i < char_strings_index.offsets.size(); ++i) { |
| // Prepare a Buffer object, |char_string|, which contains the charstring |
| // for the |i|-th glyph. |
| const size_t length = |
| char_strings_index.offsets[i] - char_strings_index.offsets[i - 1]; |
| if (length > kMaxCharStringLength) { |
| return OTS_FAILURE(); |
| } |
| const size_t offset = char_strings_index.offsets[i - 1]; |
| cff_table->set_offset(offset); |
| if (!cff_table->Skip(length)) { |
| return OTS_FAILURE(); |
| } |
| Buffer char_string(cff_table->buffer() + offset, length); |
| |
| // Get a local subrs for the glyph. |
| const unsigned glyph_index = i - 1; // index in the map is 0-origin. |
| const CFFIndex *local_subrs_to_use = NULL; |
| if (!SelectLocalSubr(fd_select, |
| local_subrs_per_font, |
| local_subrs, |
| glyph_index, |
| &local_subrs_to_use)) { |
| return OTS_FAILURE(); |
| } |
| // If |local_subrs_to_use| is still NULL, use an empty one. |
| CFFIndex default_empty_subrs; |
| if (!local_subrs_to_use){ |
| local_subrs_to_use = &default_empty_subrs; |
| } |
| |
| // Check a charstring for the |i|-th glyph. |
| std::stack<int32_t> argument_stack; |
| bool found_endchar = false; |
| bool found_width = false; |
| size_t num_stems = 0; |
| if (!ExecuteType2CharString(font, |
| 0 /* initial call_depth is zero */, |
| global_subrs_index, *local_subrs_to_use, |
| cff_table, &char_string, &argument_stack, |
| &found_endchar, &found_width, &num_stems)) { |
| return OTS_FAILURE(); |
| } |
| if (!found_endchar) { |
| return OTS_FAILURE(); |
| } |
| } |
| return true; |
| } |
| |
| } // namespace ots |
| |
| #undef TABLE_NAME |