blob: 846e6b7650a571086e96e7899adca6ce5653f791 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/formats/webm/webm_crypto_helpers.h"
#include <memory>
#include "base/logging.h"
#include "base/sys_byteorder.h"
#include "media/base/decrypt_config.h"
#include "media/formats/webm/webm_constants.h"
namespace media {
namespace {
// Generates a 16 byte CTR counter block. The CTR counter block format is a
// CTR IV appended with a CTR block counter. |iv| is an 8 byte CTR IV.
// |iv_size| is the size of |iv| in btyes. Returns a string of
// kDecryptionKeySize bytes.
std::string GenerateWebMCounterBlock(const uint8_t* iv, int iv_size) {
std::string counter_block(reinterpret_cast<const char*>(iv), iv_size);
counter_block.append(DecryptConfig::kDecryptionKeySize - iv_size, 0);
return counter_block;
}
uint32_t ReadInteger(const uint8_t* buf, int size) {
// Read in the big-endian integer.
uint32_t value = 0;
for (int i = 0; i < size; ++i)
value = (value << 8) | buf[i];
return value;
}
bool ExtractSubsamples(const uint8_t* buf,
size_t frame_data_size,
size_t num_partitions,
std::vector<SubsampleEntry>* subsample_entries) {
subsample_entries->clear();
uint32_t clear_bytes = 0;
// Partition is the wall between alternating sections. Partition offsets are
// relative to the start of the actual frame data.
// Size of clear/cipher sections can be calculated from the difference between
// adjacent partition offsets.
// Here is an example with 4 partitions (5 sections):
// "clear |1 cipher |2 clear |3 cipher |4 clear"
// With the first and the last implicit partition included:
// "|0 clear |1 cipher |2 clear |3 cipher |4 clear |5"
// where partition_offset_0 = 0, partition_offset_5 = frame_data_size
// There are three subsamples in the above example:
// Subsample0.clear_bytes = partition_offset_1 - partition_offset_0
// Subsample0.cipher_bytes = partition_offset_2 - partition_offset_1
// ...
// Subsample2.clear_bytes = partition_offset_5 - partition_offset_4
// Subsample2.cipher_bytes = 0
uint32_t partition_offset = 0;
for (size_t i = 0, offset = 0; i <= num_partitions; ++i) {
const uint32_t prev_partition_offset = partition_offset;
partition_offset =
(i == num_partitions)
? frame_data_size
: ReadInteger(buf + offset, kWebMEncryptedFramePartitionOffsetSize);
offset += kWebMEncryptedFramePartitionOffsetSize;
if (partition_offset < prev_partition_offset) {
DVLOG(1) << "Partition should not be decreasing " << prev_partition_offset
<< " " << partition_offset;
return false;
}
uint32_t cipher_bytes = 0;
bool new_subsample_entry = false;
// Alternating clear and cipher sections.
if ((i % 2) == 0) {
clear_bytes = partition_offset - prev_partition_offset;
// Generate a new subsample when finishing reading partition offsets.
new_subsample_entry = i == num_partitions;
} else {
cipher_bytes = partition_offset - prev_partition_offset;
// Generate a new subsample after seeing a cipher section.
new_subsample_entry = true;
}
if (new_subsample_entry) {
if (clear_bytes == 0 && cipher_bytes == 0) {
DVLOG(1) << "Not expecting >2 partitions with the same offsets.";
return false;
}
subsample_entries->push_back(SubsampleEntry(clear_bytes, cipher_bytes));
}
}
return true;
}
} // namespace anonymous
bool WebMCreateDecryptConfig(const uint8_t* data,
int data_size,
const uint8_t* key_id,
int key_id_size,
std::unique_ptr<DecryptConfig>* decrypt_config,
int* data_offset) {
if (data_size < kWebMSignalByteSize) {
DVLOG(1) << "Got a block from an encrypted stream with no data.";
return false;
}
const uint8_t signal_byte = data[0];
int frame_offset = sizeof(signal_byte);
std::string counter_block;
std::vector<SubsampleEntry> subsample_entries;
if (signal_byte & kWebMFlagEncryptedFrame) {
if (data_size < kWebMSignalByteSize + kWebMIvSize) {
DVLOG(1) << "Got an encrypted block with not enough data " << data_size;
return false;
}
counter_block = GenerateWebMCounterBlock(data + frame_offset, kWebMIvSize);
frame_offset += kWebMIvSize;
if (signal_byte & kWebMFlagEncryptedFramePartitioned) {
if (data_size < frame_offset + kWebMEncryptedFrameNumPartitionsSize) {
DVLOG(1) << "Got a partitioned encrypted block with not enough data "
<< data_size;
return false;
}
const size_t num_partitions = data[frame_offset];
frame_offset += kWebMEncryptedFrameNumPartitionsSize;
const uint8_t* partition_data_start = data + frame_offset;
frame_offset += kWebMEncryptedFramePartitionOffsetSize * num_partitions;
if (data_size <= frame_offset) {
DVLOG(1) << "Got a partitioned encrypted block with " << num_partitions
<< " partitions but not enough data " << data_size;
return false;
}
const size_t frame_data_size = data_size - frame_offset;
if (!ExtractSubsamples(partition_data_start, frame_data_size,
num_partitions, &subsample_entries)) {
return false;
}
}
}
if (counter_block.empty()) {
// If the frame is unencrypted the DecryptConfig object should be NULL.
decrypt_config->reset();
} else {
*decrypt_config = DecryptConfig::CreateCencConfig(
std::string(reinterpret_cast<const char*>(key_id), key_id_size),
counter_block, subsample_entries);
}
*data_offset = frame_offset;
return true;
}
} // namespace media