blob: bbdf34c3429ab4889fe2a82b571855639299cc3e [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_slice_video_decode_accelerator.h"
#include <errno.h>
#include <fcntl.h>
#include <linux/media.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <memory>
#include "base/bind.h"
#include "base/callback.h"
#include "base/callback_helpers.h"
#include "base/command_line.h"
#include "base/cxx17_backports.h"
#include "base/memory/ptr_util.h"
#include "base/numerics/safe_conversions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/trace_event.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/media_switches.h"
#include "media/base/scopedfd_helper.h"
#include "media/base/unaligned_shared_memory.h"
#include "media/base/video_types.h"
#include "media/base/video_util.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_decode_surface.h"
#include "media/gpu/v4l2/v4l2_image_processor_backend.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/gpu/v4l2/v4l2_vda_helpers.h"
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_h264.h"
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_h264_legacy.h"
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_vp8.h"
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_vp8_legacy.h"
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_vp9_chromium.h"
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_vp9_legacy.h"
#include "ui/gfx/native_pixmap_handle.h"
#include "ui/gl/gl_context.h"
#include "ui/gl/gl_image.h"
#include "ui/gl/scoped_binders.h"
#define NOTIFY_ERROR(x) \
do { \
VLOGF(1) << "Setting error state: " << x; \
SetErrorState(x); \
} while (0)
#define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value, type_str) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
VPLOGF(1) << "ioctl() failed: " << type_str; \
return value; \
} \
} while (0)
#define IOCTL_OR_ERROR_RETURN(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0), #type)
#define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false, #type)
#define IOCTL_OR_LOG_ERROR(type, arg) \
do { \
if (device_->Ioctl(type, arg) != 0) \
VPLOGF(1) << "ioctl() failed: " << #type; \
} while (0)
namespace media {
// static
const uint32_t V4L2SliceVideoDecodeAccelerator::supported_input_fourccs_[] = {
V4L2_PIX_FMT_H264_SLICE, V4L2_PIX_FMT_VP8_FRAME, V4L2_PIX_FMT_VP9_FRAME,
};
// static
base::AtomicRefCount V4L2SliceVideoDecodeAccelerator::num_instances_(0);
V4L2SliceVideoDecodeAccelerator::OutputRecord::OutputRecord()
: picture_id(-1),
texture_id(0),
cleared(false),
num_times_sent_to_client(0) {}
V4L2SliceVideoDecodeAccelerator::OutputRecord::OutputRecord(OutputRecord&&) =
default;
V4L2SliceVideoDecodeAccelerator::OutputRecord::~OutputRecord() = default;
struct V4L2SliceVideoDecodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(
base::WeakPtr<VideoDecodeAccelerator::Client>& client,
scoped_refptr<base::SingleThreadTaskRunner> client_task_runner,
scoped_refptr<DecoderBuffer> buffer,
int32_t input_id);
~BitstreamBufferRef();
const base::WeakPtr<VideoDecodeAccelerator::Client> client;
const scoped_refptr<base::SingleThreadTaskRunner> client_task_runner;
scoped_refptr<DecoderBuffer> buffer;
off_t bytes_used;
const int32_t input_id;
};
V4L2SliceVideoDecodeAccelerator::BitstreamBufferRef::BitstreamBufferRef(
base::WeakPtr<VideoDecodeAccelerator::Client>& client,
scoped_refptr<base::SingleThreadTaskRunner> client_task_runner,
scoped_refptr<DecoderBuffer> buffer,
int32_t input_id)
: client(client),
client_task_runner(std::move(client_task_runner)),
buffer(std::move(buffer)),
bytes_used(0),
input_id(input_id) {}
V4L2SliceVideoDecodeAccelerator::BitstreamBufferRef::~BitstreamBufferRef() {
if (input_id >= 0) {
DVLOGF(5) << "returning input_id: " << input_id;
client_task_runner->PostTask(
FROM_HERE,
base::BindOnce(
&VideoDecodeAccelerator::Client::NotifyEndOfBitstreamBuffer, client,
input_id));
}
}
V4L2SliceVideoDecodeAccelerator::PictureRecord::PictureRecord(
bool cleared,
const Picture& picture)
: cleared(cleared), picture(picture) {}
V4L2SliceVideoDecodeAccelerator::PictureRecord::~PictureRecord() {}
V4L2SliceVideoDecodeAccelerator::V4L2SliceVideoDecodeAccelerator(
scoped_refptr<V4L2Device> device,
EGLDisplay egl_display,
const BindGLImageCallback& bind_image_cb,
const MakeGLContextCurrentCallback& make_context_current_cb)
: can_use_decoder_(num_instances_.Increment() < kMaxNumOfInstances),
output_planes_count_(0),
child_task_runner_(base::ThreadTaskRunnerHandle::Get()),
device_(std::move(device)),
decoder_thread_("V4L2SliceVideoDecodeAcceleratorThread"),
video_profile_(VIDEO_CODEC_PROFILE_UNKNOWN),
input_format_fourcc_(0),
state_(kUninitialized),
output_mode_(Config::OutputMode::ALLOCATE),
decoder_flushing_(false),
decoder_resetting_(false),
surface_set_change_pending_(false),
picture_clearing_count_(0),
egl_display_(egl_display),
bind_image_cb_(bind_image_cb),
make_context_current_cb_(make_context_current_cb),
gl_image_planes_count_(0),
weak_this_factory_(this) {
weak_this_ = weak_this_factory_.GetWeakPtr();
}
V4L2SliceVideoDecodeAccelerator::~V4L2SliceVideoDecodeAccelerator() {
DVLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!decoder_thread_.IsRunning());
DCHECK(requests_.empty());
DCHECK(output_buffer_map_.empty());
num_instances_.Decrement();
}
void V4L2SliceVideoDecodeAccelerator::NotifyError(Error error) {
// Notifying the client should only happen from the client's thread.
if (!child_task_runner_->BelongsToCurrentThread()) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2SliceVideoDecodeAccelerator::NotifyError,
weak_this_, error));
return;
}
// Notify the decoder's client an error has occurred.
if (client_) {
client_->NotifyError(error);
client_ptr_factory_.reset();
}
}
bool V4L2SliceVideoDecodeAccelerator::Initialize(const Config& config,
Client* client) {
VLOGF(2) << "profile: " << config.profile;
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(state_, kUninitialized);
if (!can_use_decoder_) {
VLOGF(1) << "Reached the maximum number of decoder instances";
return false;
}
if (config.is_encrypted()) {
NOTREACHED() << "Encrypted streams are not supported for this VDA";
return false;
}
if (config.output_mode != Config::OutputMode::ALLOCATE &&
config.output_mode != Config::OutputMode::IMPORT) {
NOTREACHED() << "Only ALLOCATE and IMPORT OutputModes are supported";
return false;
}
client_ptr_factory_.reset(
new base::WeakPtrFactory<VideoDecodeAccelerator::Client>(client));
client_ = client_ptr_factory_->GetWeakPtr();
// If we haven't been set up to decode on separate thread via
// TryToSetupDecodeOnSeparateThread(), use the main thread/client for
// decode tasks.
if (!decode_task_runner_) {
decode_task_runner_ = child_task_runner_;
DCHECK(!decode_client_);
decode_client_ = client_;
}
// We need the context to be initialized to query extensions.
if (make_context_current_cb_) {
if (egl_display_ == EGL_NO_DISPLAY) {
VLOGF(1) << "could not get EGLDisplay";
return false;
}
if (!make_context_current_cb_.Run()) {
VLOGF(1) << "could not make context current";
return false;
}
if (!gl::g_driver_egl.ext.b_EGL_KHR_fence_sync) {
VLOGF(1) << "context does not have EGL_KHR_fence_sync";
return false;
}
} else {
DVLOGF(2) << "No GL callbacks provided, initializing without GL support";
}
video_profile_ = config.profile;
input_format_fourcc_ =
V4L2Device::VideoCodecProfileToV4L2PixFmt(video_profile_, true);
if (!input_format_fourcc_ ||
!device_->Open(V4L2Device::Type::kDecoder, input_format_fourcc_)) {
VLOGF(1) << "Failed to open device for profile: " << config.profile
<< " fourcc: " << FourccToString(input_format_fourcc_);
return false;
}
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
reqbufs.memory = V4L2_MEMORY_MMAP;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
if (reqbufs.capabilities & V4L2_BUF_CAP_SUPPORTS_REQUESTS) {
supports_requests_ = true;
VLOGF(1) << "Using request API";
DCHECK(!media_fd_.is_valid());
// Let's try to open the media device
// TODO(crbug.com/985230): remove this hardcoding, replace with V4L2Device
// integration.
int media_fd = open("/dev/media-dec0", O_RDWR, 0);
if (media_fd < 0) {
PLOG(ERROR) << "Failed to open media device";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
media_fd_ = base::ScopedFD(media_fd);
} else {
VLOGF(1) << "Using config store";
}
// Check if |video_profile_| is supported by a decoder driver.
if (!IsSupportedProfile(video_profile_)) {
VLOGF(1) << "Unsupported profile " << GetProfileName(video_profile_);
return false;
}
if (video_profile_ >= H264PROFILE_MIN && video_profile_ <= H264PROFILE_MAX) {
if (supports_requests_) {
decoder_ = std::make_unique<H264Decoder>(
std::make_unique<V4L2VideoDecoderDelegateH264>(this, device_.get()),
video_profile_);
} else {
decoder_ = std::make_unique<H264Decoder>(
std::make_unique<V4L2VideoDecoderDelegateH264Legacy>(this,
device_.get()),
video_profile_);
}
} else if (video_profile_ >= VP8PROFILE_MIN &&
video_profile_ <= VP8PROFILE_MAX) {
if (supports_requests_) {
decoder_ = std::make_unique<VP8Decoder>(
std::make_unique<V4L2VideoDecoderDelegateVP8>(this, device_.get()));
} else {
decoder_ = std::make_unique<VP8Decoder>(
std::make_unique<V4L2VideoDecoderDelegateVP8Legacy>(this,
device_.get()));
}
} else if (video_profile_ >= VP9PROFILE_MIN &&
video_profile_ <= VP9PROFILE_MAX) {
if (supports_requests_) {
decoder_ = std::make_unique<VP9Decoder>(
std::make_unique<V4L2VideoDecoderDelegateVP9Chromium>(this,
device_.get()),
video_profile_);
} else {
decoder_ = std::make_unique<VP9Decoder>(
std::make_unique<V4L2VideoDecoderDelegateVP9Legacy>(this,
device_.get()),
video_profile_);
}
} else {
NOTREACHED() << "Unsupported profile " << GetProfileName(video_profile_);
return false;
}
// Capabilities check.
struct v4l2_capability caps;
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYCAP, &caps);
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "ioctl() failed: VIDIOC_QUERYCAP"
<< ", caps check failed: 0x" << std::hex << caps.capabilities;
return false;
}
if (!SetupFormats())
return false;
if (!decoder_thread_.Start()) {
VLOGF(1) << "device thread failed to start";
return false;
}
decoder_thread_task_runner_ = decoder_thread_.task_runner();
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "media::V4l2SliceVideoDecodeAccelerator",
decoder_thread_task_runner_);
state_ = kInitialized;
output_mode_ = config.output_mode;
// InitializeTask will NOTIFY_ERROR on failure.
decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::InitializeTask,
base::Unretained(this)));
VLOGF(2) << "V4L2SliceVideoDecodeAccelerator initialized";
return true;
}
void V4L2SliceVideoDecodeAccelerator::InitializeTask() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(state_, kInitialized);
TRACE_EVENT0("media,gpu", "V4L2SVDA::InitializeTask");
if (IsDestroyPending())
return;
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!input_queue_ || !output_queue_) {
LOG(ERROR) << "Failed creating V4L2Queues";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!CreateInputBuffers()) {
LOG(ERROR) << "Failed CreateInputBuffers()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// Output buffers will be created once decoder gives us information
// about their size and required count.
state_ = kDecoding;
}
void V4L2SliceVideoDecodeAccelerator::Destroy() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
// Signal any waiting/sleeping tasks to early exit as soon as possible to
// avoid waiting too long for the decoder_thread_ to Stop().
destroy_pending_.Signal();
weak_this_factory_.InvalidateWeakPtrs();
if (decoder_thread_.IsRunning()) {
decoder_thread_task_runner_->PostTask(
FROM_HERE,
// The image processor's destructor may post new tasks to
// |decoder_thread_task_runner_|. In order to make sure that
// DestroyTask() runs last, we perform shutdown in two stages:
// 1) Destroy image processor so that no new task it posted by it
// 2) Post DestroyTask to |decoder_thread_task_runner_| so that it
// executes after all the tasks potentially posted by the IP.
base::BindOnce(
[](V4L2SliceVideoDecodeAccelerator* vda) {
// The image processor's thread was the user of the image
// processor device, so let it keep the last reference and destroy
// it in its own thread.
vda->image_processor_device_ = nullptr;
vda->image_processor_ = nullptr;
vda->surfaces_at_ip_ = {};
vda->decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::DestroyTask,
base::Unretained(vda)));
},
base::Unretained(this)));
// Wait for tasks to finish/early-exit.
decoder_thread_.Stop();
}
delete this;
VLOGF(2) << "Destroyed";
}
void V4L2SliceVideoDecodeAccelerator::DestroyTask() {
DVLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
TRACE_EVENT0("media,gpu", "V4L2SVDA::DestroyTask");
state_ = kDestroying;
decoder_->Reset();
decoder_current_bitstream_buffer_.reset();
while (!decoder_input_queue_.empty())
decoder_input_queue_.pop_front();
// Stop streaming and the V4L2 device poller.
StopDevicePoll();
DestroyInputBuffers();
DestroyOutputs(false);
media_fd_.reset();
input_queue_ = nullptr;
output_queue_ = nullptr;
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
// Clear the V4L2 devices in the decoder thread so the V4L2Device's
// destructor is called from the thread that used it.
device_ = nullptr;
DCHECK(surfaces_at_device_.empty());
DCHECK(surfaces_at_display_.empty());
DCHECK(decoder_display_queue_.empty());
}
bool V4L2SliceVideoDecodeAccelerator::SetupFormats() {
DCHECK_EQ(state_, kUninitialized);
size_t input_size;
gfx::Size max_resolution, min_resolution;
device_->GetSupportedResolution(input_format_fourcc_, &min_resolution,
&max_resolution);
if (max_resolution.width() > 1920 && max_resolution.height() > 1088)
input_size = kInputBufferMaxSizeFor4k;
else
input_size = kInputBufferMaxSizeFor1080p;
struct v4l2_fmtdesc fmtdesc;
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
bool is_format_supported = false;
while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
if (fmtdesc.pixelformat == input_format_fourcc_) {
is_format_supported = true;
break;
}
++fmtdesc.index;
}
if (!is_format_supported) {
DVLOGF(1) << "Input fourcc " << input_format_fourcc_
<< " not supported by device.";
return false;
}
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.pixelformat = input_format_fourcc_;
format.fmt.pix_mp.plane_fmt[0].sizeimage = input_size;
format.fmt.pix_mp.num_planes = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat, input_format_fourcc_);
// We have to set up the format for output, because the driver may not allow
// changing it once we start streaming; whether it can support our chosen
// output format or not may depend on the input format.
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
output_format_fourcc_ = absl::nullopt;
output_planes_count_ = 0;
while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
auto fourcc = Fourcc::FromV4L2PixFmt(fmtdesc.pixelformat);
if (fourcc && device_->CanCreateEGLImageFrom(*fourcc)) {
output_format_fourcc_ = fourcc;
output_planes_count_ = V4L2Device::GetNumPlanesOfV4L2PixFmt(
output_format_fourcc_->ToV4L2PixFmt());
break;
}
++fmtdesc.index;
}
DCHECK(!image_processor_device_);
if (!output_format_fourcc_) {
VLOGF(2) << "Could not find a usable output format. Trying image processor";
if (!V4L2ImageProcessorBackend::IsSupported()) {
VLOGF(1) << "Image processor not available";
return false;
}
image_processor_device_ = V4L2Device::Create();
if (!image_processor_device_) {
VLOGF(1) << "Could not create a V4L2Device for image processor";
return false;
}
output_format_fourcc_ =
v4l2_vda_helpers::FindImageProcessorInputFormat(device_.get());
if (!output_format_fourcc_) {
VLOGF(1) << "Can't find a usable input format from image processor";
return false;
}
output_planes_count_ = V4L2Device::GetNumPlanesOfV4L2PixFmt(
output_format_fourcc_->ToV4L2PixFmt());
gl_image_format_fourcc_ = v4l2_vda_helpers::FindImageProcessorOutputFormat(
image_processor_device_.get());
if (!gl_image_format_fourcc_) {
VLOGF(1) << "Can't find a usable output format from image processor";
return false;
}
gl_image_planes_count_ = V4L2Device::GetNumPlanesOfV4L2PixFmt(
gl_image_format_fourcc_->ToV4L2PixFmt());
} else {
gl_image_format_fourcc_ = output_format_fourcc_;
gl_image_planes_count_ = output_planes_count_;
}
// Only set fourcc for output; resolution, etc., will come from the
// driver once it extracts it from the stream.
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.pixelformat = output_format_fourcc_->ToV4L2PixFmt();
format.fmt.pix_mp.num_planes = V4L2Device::GetNumPlanesOfV4L2PixFmt(
output_format_fourcc_->ToV4L2PixFmt());
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat,
output_format_fourcc_->ToV4L2PixFmt());
DCHECK_EQ(static_cast<size_t>(format.fmt.pix_mp.num_planes),
output_planes_count_);
return true;
}
bool V4L2SliceVideoDecodeAccelerator::ResetImageProcessor() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(image_processor_);
if (!image_processor_->Reset())
return false;
surfaces_at_ip_ = {};
return true;
}
bool V4L2SliceVideoDecodeAccelerator::CreateImageProcessor() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!image_processor_);
const ImageProcessor::OutputMode image_processor_output_mode =
(output_mode_ == Config::OutputMode::ALLOCATE
? ImageProcessor::OutputMode::ALLOCATE
: ImageProcessor::OutputMode::IMPORT);
// Start with a brand new image processor device, since the old one was
// already opened and attempting to open it again is not supported.
image_processor_device_ = V4L2Device::Create();
if (!image_processor_device_) {
VLOGF(1) << "Could not create a V4L2Device for image processor";
return false;
}
image_processor_ = v4l2_vda_helpers::CreateImageProcessor(
*output_format_fourcc_, *gl_image_format_fourcc_, coded_size_,
gl_image_size_, GetRectSizeFromOrigin(decoder_->GetVisibleRect()),
VideoFrame::StorageType::STORAGE_DMABUFS, output_buffer_map_.size(),
image_processor_device_, image_processor_output_mode,
// Unretained(this) is safe for ErrorCB because |decoder_thread_| is owned
// by this V4L2VideoDecodeAccelerator and |this| must be valid when
// ErrorCB is executed.
decoder_thread_.task_runner(),
base::BindRepeating(&V4L2SliceVideoDecodeAccelerator::ImageProcessorError,
base::Unretained(this)));
if (!image_processor_) {
LOG(ERROR) << "Error creating image processor";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
DCHECK_EQ(gl_image_size_, image_processor_->output_config().size);
return true;
}
bool V4L2SliceVideoDecodeAccelerator::CreateInputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK(!input_queue_->IsStreaming());
if (input_queue_->AllocateBuffers(kNumInputBuffers, V4L2_MEMORY_MMAP) <
kNumInputBuffers) {
LOG(ERROR) << "Failed AllocateBuffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (supports_requests_) {
requests_queue_ = device_->GetRequestsQueue();
if (requests_queue_ == nullptr)
return false;
}
return true;
}
bool V4L2SliceVideoDecodeAccelerator::CreateOutputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK(!output_queue_->IsStreaming());
DCHECK(output_buffer_map_.empty());
DCHECK(surfaces_at_display_.empty());
DCHECK(surfaces_at_ip_.empty());
DCHECK(surfaces_at_device_.empty());
gfx::Size pic_size = decoder_->GetPicSize();
size_t num_pictures = decoder_->GetRequiredNumOfPictures();
DCHECK_GT(num_pictures, 0u);
DCHECK(!pic_size.IsEmpty());
// Since VdaVideoDecoder doesn't allocate PictureBuffer with size adjusted by
// itself, we have to adjust here.
auto ret = input_queue_->GetFormat().first;
if (!ret) {
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
struct v4l2_format format = std::move(*ret);
format.fmt.pix_mp.width = pic_size.width();
format.fmt.pix_mp.height = pic_size.height();
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
PLOG(ERROR) << "Failed setting OUTPUT format to: " << input_format_fourcc_;
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Get the coded size from the CAPTURE queue
ret = output_queue_->GetFormat().first;
if (!ret) {
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
format = std::move(*ret);
coded_size_.SetSize(base::checked_cast<int>(format.fmt.pix_mp.width),
base::checked_cast<int>(format.fmt.pix_mp.height));
DCHECK_EQ(coded_size_.width() % 16, 0);
DCHECK_EQ(coded_size_.height() % 16, 0);
if (!gfx::Rect(coded_size_).Contains(decoder_->GetVisibleRect())) {
VLOGF(1) << "The visible rectangle is not contained in the coded size";
NOTIFY_ERROR(UNREADABLE_INPUT);
return false;
}
// Now that we know the desired buffers resolution, ask the image processor
// what it supports so we can request the correct picture buffers.
if (image_processor_device_) {
// Try to get an image size as close as possible to the final one (i.e.
// coded_size_ may include padding required by the decoder).
gl_image_size_ = GetRectSizeFromOrigin(decoder_->GetVisibleRect());
size_t planes_count;
if (!V4L2ImageProcessorBackend::TryOutputFormat(
output_format_fourcc_->ToV4L2PixFmt(),
gl_image_format_fourcc_->ToV4L2PixFmt(), coded_size_,
&gl_image_size_, &planes_count)) {
VLOGF(1) << "Failed to get output size and plane count of IP";
return false;
}
if (gl_image_planes_count_ != planes_count) {
VLOGF(1) << "IP buffers planes count returned by V4L2 (" << planes_count
<< ") doesn't match the computed number ("
<< gl_image_planes_count_ << ")";
return false;
}
} else {
gl_image_size_ = coded_size_;
}
if (!gfx::Rect(coded_size_).Contains(gfx::Rect(pic_size))) {
VLOGF(1) << "Got invalid adjusted coded size: " << coded_size_.ToString();
return false;
}
DVLOGF(3) << "buffer_count=" << num_pictures
<< ", pic size=" << pic_size.ToString()
<< ", coded size=" << coded_size_.ToString();
VideoPixelFormat pixel_format = gl_image_format_fourcc_->ToVideoPixelFormat();
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&VideoDecodeAccelerator::Client::ProvidePictureBuffersWithVisibleRect,
client_, num_pictures, pixel_format, 1, gl_image_size_,
decoder_->GetVisibleRect(), device_->GetTextureTarget()));
// Go into kAwaitingPictureBuffers to prevent us from doing any more decoding
// or event handling while we are waiting for AssignPictureBuffers(). Not
// having Pictures available would not have prevented us from making decoding
// progress entirely e.g. in the case of H.264 where we could further decode
// non-slice NALUs and could even get another resolution change before we were
// done with this one. After we get the buffers, we'll go back into kIdle and
// kick off further event processing, and eventually go back into kDecoding
// once no more events are pending (if any).
state_ = kAwaitingPictureBuffers;
return true;
}
void V4L2SliceVideoDecodeAccelerator::DestroyInputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread() ||
!decoder_thread_.IsRunning());
if (!input_queue_)
return;
DCHECK(!input_queue_->IsStreaming());
input_queue_->DeallocateBuffers();
}
void V4L2SliceVideoDecodeAccelerator::DismissPictures(
const std::vector<int32_t>& picture_buffer_ids,
base::WaitableEvent* done) {
DVLOGF(3);
DCHECK(child_task_runner_->BelongsToCurrentThread());
for (auto picture_buffer_id : picture_buffer_ids) {
DVLOGF(4) << "dismissing PictureBuffer id=" << picture_buffer_id;
client_->DismissPictureBuffer(picture_buffer_id);
}
done->Signal();
}
void V4L2SliceVideoDecodeAccelerator::ServiceDeviceTask(bool event) {
DVLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DVLOGF(3) << "buffer counts: "
<< "INPUT[" << decoder_input_queue_.size() << "]"
<< " => DEVICE[" << input_queue_->FreeBuffersCount() << "+"
<< input_queue_->QueuedBuffersCount() << "/"
<< input_queue_->AllocatedBuffersCount() << "]->["
<< output_queue_->FreeBuffersCount() << "+"
<< output_queue_->QueuedBuffersCount() << "/"
<< output_buffer_map_.size() << "]"
<< " => DISPLAYQ[" << decoder_display_queue_.size() << "]"
<< " => CLIENT[" << surfaces_at_display_.size() << "]";
if (IsDestroyPending())
return;
Dequeue();
}
void V4L2SliceVideoDecodeAccelerator::Dequeue() {
DVLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
while (input_queue_->QueuedBuffersCount() > 0) {
DCHECK(input_queue_->IsStreaming());
auto ret = input_queue_->DequeueBuffer();
if (ret.first == false) {
LOG(ERROR) << "Error in DequeueBuffer() on input queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
} else if (!ret.second) {
// we're just out of buffers to dequeue.
break;
}
DVLOGF(4) << "Dequeued input=" << ret.second->BufferId()
<< " count: " << input_queue_->QueuedBuffersCount();
}
while (output_queue_->QueuedBuffersCount() > 0) {
DCHECK(output_queue_->IsStreaming());
auto ret = output_queue_->DequeueBuffer();
if (ret.first == false) {
LOG(ERROR) << "Error in DequeueBuffer() on output queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
} else if (!ret.second) {
// we're just out of buffers to dequeue.
break;
}
const size_t buffer_id = ret.second->BufferId();
DVLOGF(4) << "Dequeued output=" << buffer_id << " count "
<< output_queue_->QueuedBuffersCount();
DCHECK(!surfaces_at_device_.empty());
auto surface = std::move(surfaces_at_device_.front());
surfaces_at_device_.pop();
DCHECK_EQ(static_cast<size_t>(surface->output_record()), buffer_id);
// If using an image processor, process the image before considering it
// decoded.
if (image_processor_) {
if (!ProcessFrame(std::move(ret.second), std::move(surface))) {
LOG(ERROR) << "Processing frame failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
} else {
DCHECK_EQ(decoded_buffer_map_.count(buffer_id), 0u);
decoded_buffer_map_.emplace(buffer_id, buffer_id);
surface->SetDecoded();
surface->SetReleaseCallback(
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::ReuseOutputBuffer,
base::Unretained(this), std::move(ret.second)));
}
}
// A frame was decoded, see if we can output it.
TryOutputSurfaces();
ProcessPendingEventsIfNeeded();
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2SliceVideoDecodeAccelerator::NewEventPending() {
// Switch to event processing mode if we are decoding. Otherwise we are either
// already in it, or we will potentially switch to it later, after finishing
// other tasks.
if (state_ == kDecoding)
state_ = kIdle;
ProcessPendingEventsIfNeeded();
}
bool V4L2SliceVideoDecodeAccelerator::FinishEventProcessing() {
DCHECK_EQ(state_, kIdle);
state_ = kDecoding;
ScheduleDecodeBufferTaskIfNeeded();
return true;
}
void V4L2SliceVideoDecodeAccelerator::ProcessPendingEventsIfNeeded() {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
// Process pending events, if any, in the correct order.
// We always first process the surface set change, as it is an internal
// event from the decoder and interleaving it with external requests would
// put the decoder in an undefined state.
using ProcessFunc = bool (V4L2SliceVideoDecodeAccelerator::*)();
const ProcessFunc process_functions[] = {
&V4L2SliceVideoDecodeAccelerator::FinishSurfaceSetChange,
&V4L2SliceVideoDecodeAccelerator::FinishFlush,
&V4L2SliceVideoDecodeAccelerator::FinishReset,
&V4L2SliceVideoDecodeAccelerator::FinishEventProcessing,
};
for (const auto& fn : process_functions) {
if (state_ != kIdle)
return;
if (!(this->*fn)())
return;
}
}
void V4L2SliceVideoDecodeAccelerator::ReuseOutputBuffer(
V4L2ReadableBufferRef buffer) {
DVLOGF(4) << "Reusing output buffer, index=" << buffer->BufferId();
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(decoded_buffer_map_.count(buffer->BufferId()), 1u);
decoded_buffer_map_.erase(buffer->BufferId());
ScheduleDecodeBufferTaskIfNeeded();
}
bool V4L2SliceVideoDecodeAccelerator::StartDevicePoll() {
DVLOGF(3) << "Starting device poll";
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (!input_queue_->Streamon())
return false;
if (!output_queue_->Streamon())
return false;
// We can use base::Unretained here because the client thread will flush
// all tasks posted to the decoder thread before deleting the SVDA.
return device_->StartPolling(
base::BindRepeating(&V4L2SliceVideoDecodeAccelerator::ServiceDeviceTask,
base::Unretained(this)),
base::BindRepeating(&V4L2SliceVideoDecodeAccelerator::OnPollError,
base::Unretained(this)));
}
void V4L2SliceVideoDecodeAccelerator::OnPollError() {
LOG(ERROR) << "Error on Polling";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
bool V4L2SliceVideoDecodeAccelerator::StopDevicePoll() {
DVLOGF(3) << "Stopping device poll";
if (decoder_thread_.IsRunning())
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (!device_->StopPolling())
return false;
// We may be called before the queue is acquired.
if (input_queue_) {
if (!input_queue_->Streamoff())
return false;
DCHECK_EQ(input_queue_->QueuedBuffersCount(), 0u);
}
// We may be called before the queue is acquired.
if (output_queue_) {
if (!output_queue_->Streamoff())
return false;
DCHECK_EQ(output_queue_->QueuedBuffersCount(), 0u);
}
// Mark as decoded to allow reuse.
while (!surfaces_at_device_.empty())
surfaces_at_device_.pop();
// Drop all surfaces that were awaiting decode before being displayed,
// since we've just cancelled all outstanding decodes.
while (!decoder_display_queue_.empty())
decoder_display_queue_.pop();
DVLOGF(3) << "Device poll stopped";
return true;
}
void V4L2SliceVideoDecodeAccelerator::Decode(BitstreamBuffer bitstream_buffer) {
Decode(bitstream_buffer.ToDecoderBuffer(), bitstream_buffer.id());
}
void V4L2SliceVideoDecodeAccelerator::Decode(
scoped_refptr<DecoderBuffer> buffer,
int32_t bitstream_id) {
DVLOGF(4) << "input_id=" << bitstream_id
<< ", size=" << (buffer ? buffer->data_size() : 0);
DCHECK(decode_task_runner_->BelongsToCurrentThread());
if (bitstream_id < 0) {
LOG(ERROR) << "Invalid bitstream buffer, id: " << bitstream_id;
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::DecodeTask,
base::Unretained(this), std::move(buffer), bitstream_id));
}
void V4L2SliceVideoDecodeAccelerator::DecodeTask(
scoped_refptr<DecoderBuffer> buffer,
int32_t bitstream_id) {
DVLOGF(4) << "input_id=" << bitstream_id
<< " size=" << (buffer ? buffer->data_size() : 0);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (IsDestroyPending())
return;
std::unique_ptr<BitstreamBufferRef> bitstream_record(new BitstreamBufferRef(
decode_client_, decode_task_runner_, std::move(buffer), bitstream_id));
// Skip empty buffer.
if (!bitstream_record->buffer)
return;
decoder_input_queue_.push_back(std::move(bitstream_record));
TRACE_COUNTER_ID1("media,gpu", "V4L2SVDA decoder input BitstreamBuffers",
this, decoder_input_queue_.size());
ScheduleDecodeBufferTaskIfNeeded();
}
bool V4L2SliceVideoDecodeAccelerator::TrySetNewBistreamBuffer() {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK(!decoder_current_bitstream_buffer_);
if (decoder_input_queue_.empty())
return false;
decoder_current_bitstream_buffer_ = std::move(decoder_input_queue_.front());
decoder_input_queue_.pop_front();
if (decoder_current_bitstream_buffer_->input_id == kFlushBufferId) {
// This is a buffer we queued for ourselves to trigger flush at this time.
InitiateFlush();
return false;
}
decoder_->SetStream(decoder_current_bitstream_buffer_->input_id,
*decoder_current_bitstream_buffer_->buffer);
return true;
}
void V4L2SliceVideoDecodeAccelerator::ScheduleDecodeBufferTaskIfNeeded() {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (state_ == kDecoding) {
decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::DecodeBufferTask,
base::Unretained(this)));
}
}
void V4L2SliceVideoDecodeAccelerator::DecodeBufferTask() {
DVLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
TRACE_EVENT0("media,gpu", "V4L2SVDA::DecodeBufferTask");
if (IsDestroyPending())
return;
if (state_ != kDecoding) {
DVLOGF(3) << "Early exit, not in kDecoding";
return;
}
while (true) {
TRACE_EVENT_BEGIN0("media,gpu", "V4L2SVDA::DecodeBufferTask AVD::Decode");
const AcceleratedVideoDecoder::DecodeResult res = decoder_->Decode();
TRACE_EVENT_END0("media,gpu", "V4L2SVDA::DecodeBufferTask AVD::Decode");
switch (res) {
case AcceleratedVideoDecoder::kConfigChange:
if (decoder_->GetBitDepth() != 8u) {
LOG(ERROR) << "Unsupported bit depth: "
<< base::strict_cast<int>(decoder_->GetBitDepth());
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!IsSupportedProfile(decoder_->GetProfile())) {
LOG(ERROR) << "Unsupported profile: " << decoder_->GetProfile();
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
VLOGF(2) << "Decoder requesting a new set of surfaces";
InitiateSurfaceSetChange();
return;
case AcceleratedVideoDecoder::kRanOutOfStreamData:
decoder_current_bitstream_buffer_.reset();
if (!TrySetNewBistreamBuffer())
return;
break;
case AcceleratedVideoDecoder::kRanOutOfSurfaces:
// No more surfaces for the decoder, we'll come back once we have more.
DVLOGF(4) << "Ran out of surfaces";
return;
case AcceleratedVideoDecoder::kNeedContextUpdate:
DVLOGF(4) << "Awaiting context update";
return;
case AcceleratedVideoDecoder::kDecodeError:
LOG(ERROR) << "Error decoding stream";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
case AcceleratedVideoDecoder::kTryAgain:
NOTREACHED() << "Should not reach here unless this class accepts "
"encrypted streams.";
LOG(ERROR) << "No key for decoding stream.";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
}
void V4L2SliceVideoDecodeAccelerator::InitiateSurfaceSetChange() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(state_, kDecoding);
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2SVDA Resolution Change",
TRACE_ID_LOCAL(this));
DCHECK(!surface_set_change_pending_);
surface_set_change_pending_ = true;
NewEventPending();
}
bool V4L2SliceVideoDecodeAccelerator::FinishSurfaceSetChange() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (!surface_set_change_pending_)
return true;
if (!surfaces_at_device_.empty())
return false;
// Wait until all pending frames in image processor are processed.
if (image_processor_ && !surfaces_at_ip_.empty())
return false;
DCHECK_EQ(state_, kIdle);
DCHECK(decoder_display_queue_.empty());
// All output buffers should've been returned from decoder and device by now.
// The only remaining owner of surfaces may be display (client), and we will
// dismiss them when destroying output buffers below.
DCHECK_EQ(output_queue_->FreeBuffersCount() + surfaces_at_display_.size(),
output_buffer_map_.size());
if (!StopDevicePoll()) {
LOG(ERROR) << "Failed StopDevicePoll()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
image_processor_ = nullptr;
// Dequeued decoded surfaces may be pended in pending_picture_ready_ if they
// are waiting for some pictures to be cleared. We should post them right away
// because they are about to be dismissed and destroyed for surface set
// change.
SendPictureReady();
// This will return only once all buffers are dismissed and destroyed.
// This does not wait until they are displayed however, as display retains
// references to the buffers bound to textures and will release them
// after displaying.
if (!DestroyOutputs(true)) {
LOG(ERROR) << "Failed DestroyOutputs()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (!CreateOutputBuffers()) {
LOG(ERROR) << "Failed CreateOutputBuffers()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
surface_set_change_pending_ = false;
VLOGF(2) << "Surface set change finished";
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2SVDA Resolution Change",
TRACE_ID_LOCAL(this));
return true;
}
bool V4L2SliceVideoDecodeAccelerator::DestroyOutputs(bool dismiss) {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
std::vector<int32_t> picture_buffers_to_dismiss;
if (output_buffer_map_.empty())
return true;
for (auto& output_record : output_buffer_map_) {
picture_buffers_to_dismiss.push_back(output_record.picture_id);
}
if (dismiss) {
VLOGF(2) << "Scheduling picture dismissal";
base::WaitableEvent done(base::WaitableEvent::ResetPolicy::AUTOMATIC,
base::WaitableEvent::InitialState::NOT_SIGNALED);
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::DismissPictures,
weak_this_, picture_buffers_to_dismiss, &done));
done.Wait();
}
// At this point client can't call ReusePictureBuffer on any of the pictures
// anymore, so it's safe to destroy.
return DestroyOutputBuffers();
}
bool V4L2SliceVideoDecodeAccelerator::DestroyOutputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread() ||
!decoder_thread_.IsRunning());
DCHECK(surfaces_at_device_.empty());
DCHECK(decoder_display_queue_.empty());
if (!output_queue_ || output_buffer_map_.empty())
return true;
DCHECK(!output_queue_->IsStreaming());
DCHECK_EQ(output_queue_->QueuedBuffersCount(), 0u);
// Release all buffers waiting for an import buffer event.
output_wait_map_.clear();
// Release all buffers awaiting a fence since we are about to destroy them.
surfaces_awaiting_fence_ = {};
// It's ok to do this, client will retain references to textures, but we are
// not interested in reusing the surfaces anymore.
// This will prevent us from reusing old surfaces in case we have some
// ReusePictureBuffer() pending on ChildThread already. It's ok to ignore
// them, because we have already dismissed them (in DestroyOutputs()).
surfaces_at_display_.clear();
output_buffer_map_.clear();
output_queue_->DeallocateBuffers();
return true;
}
void V4L2SliceVideoDecodeAccelerator::AssignPictureBuffers(
const std::vector<PictureBuffer>& buffers) {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::AssignPictureBuffersTask,
base::Unretained(this), buffers));
}
void V4L2SliceVideoDecodeAccelerator::AssignPictureBuffersTask(
const std::vector<PictureBuffer>& buffers) {
VLOGF(2);
DCHECK(!output_queue_->IsStreaming());
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(state_, kAwaitingPictureBuffers);
TRACE_EVENT1("media,gpu", "V4L2SVDA::AssignPictureBuffersTask",
"buffers_size", buffers.size());
if (IsDestroyPending())
return;
const uint32_t req_buffer_count = decoder_->GetRequiredNumOfPictures();
if (buffers.size() < req_buffer_count) {
LOG(ERROR) << "Failed to provide requested picture buffers. "
<< "(Got " << buffers.size() << ", requested "
<< req_buffer_count << ")";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
const gfx::Size pic_size_received_from_client = buffers[0].size();
const gfx::Size pic_size_expected_from_client =
output_mode_ == Config::OutputMode::ALLOCATE
? GetRectSizeFromOrigin(decoder_->GetVisibleRect())
: coded_size_;
if (output_mode_ == Config::OutputMode::ALLOCATE &&
pic_size_expected_from_client != pic_size_received_from_client) {
// In ALLOCATE mode, we don't allow the client to adjust the size. That's
// because the client is responsible only for creating the GL texture and
// its dimensions should match the dimensions we use to create the GL image
// here (eventually).
LOG(ERROR)
<< "The client supplied a picture buffer with an unexpected size (Got "
<< pic_size_received_from_client.ToString() << ", expected "
<< pic_size_expected_from_client.ToString() << ")";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
} else if (output_mode_ == Config::OutputMode::IMPORT &&
!image_processor_device_ &&
pic_size_expected_from_client != pic_size_received_from_client) {
// If a client allocates a different frame size, S_FMT should be called with
// the size.
v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.width = pic_size_received_from_client.width();
format.fmt.pix_mp.height = pic_size_received_from_client.height();
format.fmt.pix_mp.pixelformat = output_format_fourcc_->ToV4L2PixFmt();
format.fmt.pix_mp.num_planes = output_planes_count_;
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
PLOG(ERROR) << "Failed with frame size adjusted by client"
<< pic_size_received_from_client.ToString();
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
coded_size_.SetSize(format.fmt.pix_mp.width, format.fmt.pix_mp.height);
// If size specified by ProvidePictureBuffers() is adjusted by the client,
// the size must not be adjusted by a v4l2 driver again.
if (coded_size_ != pic_size_received_from_client) {
LOG(ERROR) << "The size of PictureBuffer is invalid."
<< " size adjusted by the client = "
<< pic_size_received_from_client.ToString()
<< " size adjusted by a driver = " << coded_size_.ToString();
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
if (!gfx::Rect(coded_size_).Contains(gfx::Rect(decoder_->GetPicSize()))) {
LOG(ERROR) << "Got invalid adjusted coded size: "
<< coded_size_.ToString();
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
gl_image_size_ = coded_size_;
}
const v4l2_memory memory =
(image_processor_device_ || output_mode_ == Config::OutputMode::ALLOCATE
? V4L2_MEMORY_MMAP
: V4L2_MEMORY_DMABUF);
if (output_queue_->AllocateBuffers(buffers.size(), memory) !=
buffers.size()) {
LOG(ERROR) << "Could not allocate enough output buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
DCHECK(output_buffer_map_.empty());
DCHECK(output_wait_map_.empty());
output_buffer_map_.resize(buffers.size());
// In import mode we will create the IP when importing the first buffer.
if (image_processor_device_ && output_mode_ == Config::OutputMode::ALLOCATE) {
if (!CreateImageProcessor()) {
LOG(ERROR) << "Failed CreateImageProcessor()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
// Reserve all buffers until ImportBufferForPictureTask() is called
std::vector<V4L2WritableBufferRef> v4l2_buffers;
while (auto buffer_opt = output_queue_->GetFreeBuffer())
v4l2_buffers.push_back(std::move(*buffer_opt));
// Now setup the output record for each buffer and import it if needed.
for (auto&& buffer : v4l2_buffers) {
const int i = buffer.BufferId();
OutputRecord& output_record = output_buffer_map_[i];
DCHECK_EQ(output_record.picture_id, -1);
DCHECK_EQ(output_record.cleared, false);
output_record.picture_id = buffers[i].id();
output_record.texture_id = buffers[i].service_texture_ids().empty()
? 0
: buffers[i].service_texture_ids()[0];
output_record.client_texture_id = buffers[i].client_texture_ids().empty()
? 0
: buffers[i].client_texture_ids()[0];
// We move the buffer into output_wait_map_, so get a reference to
// its video frame if we need it to create the native pixmap for import.
scoped_refptr<VideoFrame> video_frame;
if (output_mode_ == Config::OutputMode::ALLOCATE &&
!image_processor_device_) {
video_frame = buffer.GetVideoFrame();
}
// The buffer will remain here until ImportBufferForPicture is called,
// either by the client, or by ourselves, if we are allocating.
DCHECK_EQ(output_wait_map_.count(buffers[i].id()), 0u);
output_wait_map_.emplace(buffers[i].id(), std::move(buffer));
// If we are in allocate mode, then we can already call
// ImportBufferForPictureTask().
if (output_mode_ == Config::OutputMode::ALLOCATE) {
gfx::NativePixmapHandle native_pixmap;
// If we are using an image processor, the DMABufs that we need to import
// are those of the image processor's buffers, not the decoders. So
// pass an empty native pixmap in that case.
if (!image_processor_device_) {
native_pixmap =
CreateGpuMemoryBufferHandle(video_frame.get()).native_pixmap_handle;
}
ImportBufferForPictureTask(output_record.picture_id,
std::move(native_pixmap));
} // else we'll get triggered via ImportBufferForPicture() from client.
DVLOGF(3) << "buffer[" << i << "]: picture_id=" << output_record.picture_id;
}
if (!StartDevicePoll()) {
LOG(ERROR) << "Failed StartDevicePoll()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
void V4L2SliceVideoDecodeAccelerator::CreateGLImageFor(
scoped_refptr<V4L2Device> gl_device,
size_t buffer_index,
int32_t picture_buffer_id,
gfx::NativePixmapHandle handle,
GLuint client_texture_id,
GLuint texture_id,
const gfx::Size& visible_size,
const Fourcc fourcc) {
DVLOGF(3) << "index=" << buffer_index;
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK_NE(texture_id, 0u);
TRACE_EVENT1("media,gpu", "V4L2SVDA::CreateGLImageFor", "picture_buffer_id",
picture_buffer_id);
if (!make_context_current_cb_) {
LOG(ERROR) << "GL callbacks required for binding to GLImages";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
if (!make_context_current_cb_.Run()) {
LOG(ERROR) << "No GL context";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
scoped_refptr<gl::GLImage> gl_image =
gl_device->CreateGLImage(visible_size, fourcc, std::move(handle));
if (!gl_image) {
LOG(ERROR) << "Could not create GLImage,"
<< " index=" << buffer_index << " texture_id=" << texture_id;
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
gl::ScopedTextureBinder bind_restore(gl_device->GetTextureTarget(),
texture_id);
bool ret = gl_image->BindTexImage(gl_device->GetTextureTarget());
if (!ret) {
LOG(ERROR) << "Error while binding tex image";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
ret = bind_image_cb_.Run(client_texture_id, gl_device->GetTextureTarget(),
gl_image, true);
if (!ret) {
LOG(ERROR) << "Error while running bind image callback";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
void V4L2SliceVideoDecodeAccelerator::ImportBufferForPicture(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
gfx::GpuMemoryBufferHandle gpu_memory_buffer_handle) {
DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(child_task_runner_->BelongsToCurrentThread());
if (output_mode_ != Config::OutputMode::IMPORT) {
LOG(ERROR) << "Cannot import in non-import mode";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2SliceVideoDecodeAccelerator::ImportBufferForPictureForImportTask,
base::Unretained(this), picture_buffer_id, pixel_format,
std::move(gpu_memory_buffer_handle.native_pixmap_handle)));
}
void V4L2SliceVideoDecodeAccelerator::ImportBufferForPictureForImportTask(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
gfx::NativePixmapHandle handle) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (pixel_format != gl_image_format_fourcc_->ToVideoPixelFormat()) {
LOG(ERROR) << "Unsupported import format: "
<< VideoPixelFormatToString(pixel_format) << ", expected "
<< VideoPixelFormatToString(
gl_image_format_fourcc_->ToVideoPixelFormat());
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
ImportBufferForPictureTask(picture_buffer_id, std::move(handle));
}
void V4L2SliceVideoDecodeAccelerator::ImportBufferForPictureTask(
int32_t picture_buffer_id,
gfx::NativePixmapHandle handle) {
DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (IsDestroyPending())
return;
const auto iter =
std::find_if(output_buffer_map_.begin(), output_buffer_map_.end(),
[picture_buffer_id](const OutputRecord& output_record) {
return output_record.picture_id == picture_buffer_id;
});
if (iter == output_buffer_map_.end()) {
// It's possible that we've already posted a DismissPictureBuffer for this
// picture, but it has not yet executed when this ImportBufferForPicture was
// posted to us by the client. In that case just ignore this (we've already
// dismissed it and accounted for that).
DVLOGF(3) << "got picture id=" << picture_buffer_id
<< " not in use (anymore?).";
return;
}
if (!output_wait_map_.count(iter->picture_id)) {
LOG(ERROR) << "Passed buffer is not waiting to be imported";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
// TODO(crbug.com/982172): ARC++ may adjust the size of the buffer due to
// allocator constraints, but the VDA API does not provide a way for it to
// communicate the actual buffer size. If we are importing, make sure that the
// actual buffer size is coherent with what we expect, and adjust our size if
// needed.
if (output_mode_ == Config::OutputMode::IMPORT) {
DCHECK_GT(handle.planes.size(), 0u);
const gfx::Size handle_size = v4l2_vda_helpers::NativePixmapSizeFromHandle(
handle, *gl_image_format_fourcc_, gl_image_size_);
// If this is the first picture, then adjust the EGL width.
// Otherwise just check that it remains the same.
if (state_ == kAwaitingPictureBuffers) {
DCHECK_GE(handle_size.width(), gl_image_size_.width());
DVLOGF(3) << "Original gl_image_size=" << gl_image_size_.ToString()
<< ", adjusted buffer size=" << handle_size.ToString();
gl_image_size_ = handle_size;
}
DCHECK_EQ(gl_image_size_, handle_size);
// For allocate mode, the IP will already have been created in
// AssignPictureBuffersTask.
if (image_processor_device_ && !image_processor_) {
DCHECK_EQ(kAwaitingPictureBuffers, state_);
// This is the first buffer import. Create the image processor and change
// the decoder state. The client may adjust the coded width. We don't have
// the final coded size in AssignPictureBuffers yet. Use the adjusted
// coded width to create the image processor.
if (!CreateImageProcessor())
return;
}
}
// Put us in kIdle to allow further event processing.
// ProcessPendingEventsIfNeeded() will put us back into kDecoding after all
// other pending events are processed successfully.
if (state_ == kAwaitingPictureBuffers) {
state_ = kIdle;
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2SliceVideoDecodeAccelerator::ProcessPendingEventsIfNeeded,
base::Unretained(this)));
}
// If we are importing, create the output VideoFrame that we will render
// into.
if (output_mode_ == Config::OutputMode::IMPORT) {
DCHECK_GT(handle.planes.size(), 0u);
DCHECK(!iter->output_frame);
// Duplicate the buffer FDs for the VideoFrame instance.
std::vector<base::ScopedFD> duped_fds;
std::vector<ColorPlaneLayout> color_planes;
for (const gfx::NativePixmapPlane& plane : handle.planes) {
duped_fds.emplace_back(HANDLE_EINTR(dup(plane.fd.get())));
if (!duped_fds.back().is_valid()) {
PLOG(ERROR) << "Failed to duplicate plane FD!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
color_planes.push_back(
ColorPlaneLayout(base::checked_cast<int32_t>(plane.stride),
base::checked_cast<size_t>(plane.offset),
base::checked_cast<size_t>(plane.size)));
}
auto layout = VideoFrameLayout::CreateWithPlanes(
gl_image_format_fourcc_->ToVideoPixelFormat(), gl_image_size_,
std::move(color_planes));
if (!layout) {
LOG(ERROR) << "Cannot create layout!";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
const gfx::Rect visible_rect = decoder_->GetVisibleRect();
iter->output_frame = VideoFrame::WrapExternalDmabufs(
*layout, visible_rect, visible_rect.size(), std::move(duped_fds),
base::TimeDelta());
}
// We should only create the GL image if rendering is enabled
// (texture_id !=0). Moreover, if an image processor is in use, we will
// create the GL image when its buffer becomes visible in FrameProcessed().
if (iter->texture_id != 0 && !image_processor_) {
DCHECK_EQ(Config::OutputMode::ALLOCATE, output_mode_);
DCHECK_GT(handle.planes.size(), 0u);
size_t index = iter - output_buffer_map_.begin();
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::CreateGLImageFor,
weak_this_, device_, index, picture_buffer_id,
std::move(handle), iter->client_texture_id,
iter->texture_id,
GetRectSizeFromOrigin(decoder_->GetVisibleRect()),
*gl_image_format_fourcc_));
}
// Buffer is now ready to be used.
DCHECK_EQ(output_wait_map_.count(picture_buffer_id), 1u);
output_wait_map_.erase(picture_buffer_id);
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2SliceVideoDecodeAccelerator::ReusePictureBuffer(
int32_t picture_buffer_id) {
DCHECK(child_task_runner_->BelongsToCurrentThread());
DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
std::unique_ptr<gl::GLFenceEGL> egl_fence;
if (make_context_current_cb_) {
if (!make_context_current_cb_.Run()) {
LOG(ERROR) << "could not make context current";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
egl_fence = gl::GLFenceEGL::Create();
if (!egl_fence) {
LOG(ERROR) << "gl::GLFenceEGL::Create() failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::ReusePictureBufferTask,
base::Unretained(this), picture_buffer_id,
std::move(egl_fence)));
}
void V4L2SliceVideoDecodeAccelerator::ReusePictureBufferTask(
int32_t picture_buffer_id,
std::unique_ptr<gl::GLFenceEGL> egl_fence) {
DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (IsDestroyPending())
return;
V4L2DecodeSurfaceByPictureBufferId::iterator it =
surfaces_at_display_.find(picture_buffer_id);
if (it == surfaces_at_display_.end()) {
// It's possible that we've already posted a DismissPictureBuffer for this
// picture, but it has not yet executed when this ReusePictureBuffer was
// posted to us by the client. In that case just ignore this (we've already
// dismissed it and accounted for that) and let the fence object get
// destroyed.
DVLOGF(3) << "got picture id=" << picture_buffer_id
<< " not in use (anymore?).";
return;
}
DCHECK_EQ(decoded_buffer_map_.count(it->second->output_record()), 1u);
const size_t output_map_index =
decoded_buffer_map_[it->second->output_record()];
DCHECK_LT(output_map_index, output_buffer_map_.size());
OutputRecord& output_record = output_buffer_map_[output_map_index];
if (!output_record.at_client()) {
LOG(ERROR) << "picture_buffer_id not reusable";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
--output_record.num_times_sent_to_client;
// A output buffer might be sent multiple times. We only use the last fence.
// When the last fence is signaled, all the previous fences must be executed.
if (!output_record.at_client()) {
// Take ownership of the EGL fence.
if (egl_fence)
surfaces_awaiting_fence_.push(
std::make_pair(std::move(egl_fence), std::move(it->second)));
surfaces_at_display_.erase(it);
}
}
void V4L2SliceVideoDecodeAccelerator::Flush() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2SliceVideoDecodeAccelerator::FlushTask,
base::Unretained(this)));
}
void V4L2SliceVideoDecodeAccelerator::FlushTask() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (IsDestroyPending())
return;
// Queue an empty buffer which - when reached - will trigger flush sequence.
decoder_input_queue_.push_back(std::make_unique<BitstreamBufferRef>(
decode_client_, decode_task_runner_, nullptr, kFlushBufferId));
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2SliceVideoDecodeAccelerator::InitiateFlush() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2SVDA Flush",
TRACE_ID_LOCAL(this));
// This will trigger output for all remaining surfaces in the decoder.
// However, not all of them may be decoded yet (they would be queued
// in hardware then).
if (!decoder_->Flush()) {
LOG(ERROR) << "Failed flushing the decoder.";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// Put the decoder in an idle state, ready to resume.
decoder_->Reset();
DCHECK(!decoder_flushing_);
decoder_flushing_ = true;
NewEventPending();
}
bool V4L2SliceVideoDecodeAccelerator::FinishFlush() {
VLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (!decoder_flushing_)
return true;
if (!surfaces_at_device_.empty())
return false;
// Even if all output buffers have been returned, the decoder may still
// be holding on an input device. Wait until the queue is actually drained.
if (input_queue_->QueuedBuffersCount() != 0)
return false;
// Wait until all pending image processor tasks are completed.
if (image_processor_ && !surfaces_at_ip_.empty())
return false;
DCHECK_EQ(state_, kIdle);
// At this point, all remaining surfaces are decoded and dequeued, and since
// we have already scheduled output for them in InitiateFlush(), their
// respective PictureReady calls have been posted (or they have been queued on
// pending_picture_ready_). So at this time, once we SendPictureReady(),
// we will have all remaining PictureReady() posted to the client and we
// can post NotifyFlushDone().
DCHECK(decoder_display_queue_.empty());
// Decoder should have already returned all surfaces and all surfaces are
// out of hardware. There can be no other owners of input buffers.
DCHECK_EQ(input_queue_->FreeBuffersCount(),
input_queue_->AllocatedBuffersCount());
SendPictureReady();
decoder_flushing_ = false;
VLOGF(2) << "Flush finished";
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::NotifyFlushDone, client_));
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2SVDA Flush",
TRACE_ID_LOCAL(this));
return true;
}
void V4L2SliceVideoDecodeAccelerator::Reset() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2SliceVideoDecodeAccelerator::ResetTask,
base::Unretained(this)));
}
void V4L2SliceVideoDecodeAccelerator::ResetTask() {
VLOGF(2);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2SVDA Reset",
TRACE_ID_LOCAL(this));
if (IsDestroyPending())
return;
if (decoder_resetting_) {
// This is a bug in the client, multiple Reset()s before NotifyResetDone()
// are not allowed.
NOTREACHED() << "Client should not be requesting multiple Reset()s";
return;
}
// Put the decoder in an idle state, ready to resume.
decoder_->Reset();
// Drop all remaining inputs.
decoder_current_bitstream_buffer_.reset();
while (!decoder_input_queue_.empty())
decoder_input_queue_.pop_front();
decoder_resetting_ = true;
NewEventPending();
}
bool V4L2SliceVideoDecodeAccelerator::FinishReset() {
VLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
if (!decoder_resetting_)
return true;
if (!surfaces_at_device_.empty())
return false;
// Drop all buffers in image processor.
if (image_processor_ && !ResetImageProcessor()) {
LOG(ERROR) << "Fail to reset image processor";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
DCHECK_EQ(state_, kIdle);
DCHECK(!decoder_flushing_);
SendPictureReady();
// Drop any pending outputs.
while (!decoder_display_queue_.empty())
decoder_display_queue_.pop();
// At this point we can have no input buffers in the decoder, because we
// Reset()ed it in ResetTask(), and have not scheduled any new Decode()s
// having been in kIdle since. We don't have any surfaces in the HW either -
// we just checked that surfaces_at_device_.empty(), and inputs are tied
// to surfaces. Since there can be no other owners of input buffers, we can
// simply mark them all as available.
DCHECK_EQ(input_queue_->QueuedBuffersCount(), 0u);
decoder_resetting_ = false;
VLOGF(2) << "Reset finished";
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::NotifyResetDone, client_));
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2SVDA Reset",
TRACE_ID_LOCAL(this));
return true;
}
bool V4L2SliceVideoDecodeAccelerator::IsDestroyPending() {
return destroy_pending_.IsSignaled();
}
void V4L2SliceVideoDecodeAccelerator::SetErrorState(Error error) {
// We can touch decoder_state_ only if this is the decoder thread or the
// decoder thread isn't running.
if (decoder_thread_.IsRunning() &&
!decoder_thread_task_runner_->BelongsToCurrentThread()) {
decoder_thread_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::SetErrorState,
base::Unretained(this), error));
return;
}
// Notifying the client of an error will only happen if we are already
// initialized, as the API does not allow doing so before that. Subsequent
// errors and errors while destroying will be suppressed.
if (state_ != kError && state_ != kUninitialized && state_ != kDestroying)
NotifyError(error);
state_ = kError;
}
bool V4L2SliceVideoDecodeAccelerator::SubmitSlice(
V4L2DecodeSurface* dec_surface,
const uint8_t* data,
size_t size) {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
V4L2WritableBufferRef& input_buffer = dec_surface->input_buffer();
const size_t plane_size = input_buffer.GetPlaneSize(0);
const size_t bytes_used = input_buffer.GetPlaneBytesUsed(0);
if (bytes_used + size > plane_size) {
VLOGF(1) << "Input buffer too small";
return false;
}
uint8_t* mapping = static_cast<uint8_t*>(input_buffer.GetPlaneMapping(0));
DCHECK_NE(mapping, nullptr);
memcpy(mapping + bytes_used, data, size);
input_buffer.SetPlaneBytesUsed(0, bytes_used + size);
return true;
}
void V4L2SliceVideoDecodeAccelerator::DecodeSurface(
scoped_refptr<V4L2DecodeSurface> dec_surface) {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DVLOGF(3) << "Submitting decode for surface: " << dec_surface->ToString();
if (!dec_surface->Submit()) {
LOG(ERROR) << "Error while submitting frame for decoding!";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
surfaces_at_device_.push(dec_surface);
}
void V4L2SliceVideoDecodeAccelerator::SurfaceReady(
scoped_refptr<V4L2DecodeSurface> dec_surface,
int32_t bitstream_id,
const gfx::Rect& visible_rect,
const VideoColorSpace& /* color_space */) {
DVLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
dec_surface->SetVisibleRect(visible_rect);
decoder_display_queue_.push(std::make_pair(bitstream_id, dec_surface));
TryOutputSurfaces();
}
void V4L2SliceVideoDecodeAccelerator::TryOutputSurfaces() {
while (!decoder_display_queue_.empty()) {
scoped_refptr<V4L2DecodeSurface> dec_surface =
decoder_display_queue_.front().second;
if (!dec_surface->decoded())
break;
int32_t bitstream_id = decoder_display_queue_.front().first;
decoder_display_queue_.pop();
OutputSurface(bitstream_id, dec_surface);
}
}
void V4L2SliceVideoDecodeAccelerator::OutputSurface(
int32_t bitstream_id,
scoped_refptr<V4L2DecodeSurface> dec_surface) {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(decoded_buffer_map_.count(dec_surface->output_record()), 1u);
const size_t output_map_index =
decoded_buffer_map_[dec_surface->output_record()];
DCHECK_LT(output_map_index, output_buffer_map_.size());
OutputRecord& output_record = output_buffer_map_[output_map_index];
if (!output_record.at_client()) {
bool inserted =
surfaces_at_display_
.insert(std::make_pair(output_record.picture_id, dec_surface))
.second;
DCHECK(inserted);
} else {
// The surface is already sent to client, and not returned back yet.
DCHECK(surfaces_at_display_.find(output_record.picture_id) !=
surfaces_at_display_.end());
CHECK(surfaces_at_display_[output_record.picture_id].get() ==
dec_surface.get());
}
DCHECK_NE(output_record.picture_id, -1);
++output_record.num_times_sent_to_client;
// TODO(hubbe): Insert correct color space. http://crbug.com/647725
Picture picture(output_record.picture_id, bitstream_id,
dec_surface->visible_rect(), gfx::ColorSpace(),
true /* allow_overlay */);
DVLOGF(4) << dec_surface->ToString()
<< ", bitstream_id: " << picture.bitstream_buffer_id()
<< ", picture_id: " << picture.picture_buffer_id()
<< ", visible_rect: " << picture.visible_rect().ToString();
pending_picture_ready_.push(PictureRecord(output_record.cleared, picture));
SendPictureReady();
output_record.cleared = true;
}
void V4L2SliceVideoDecodeAccelerator::CheckGLFences() {
DVLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
while (!surfaces_awaiting_fence_.empty() &&
surfaces_awaiting_fence_.front().first->HasCompleted()) {
// Buffer at the front of the queue goes back to V4L2Queue's free list
// and can be reused.
surfaces_awaiting_fence_.pop();
}
// If we have no free buffers available, then preemptively schedule a
// call to DecodeBufferTask() in a short time, otherwise we may starve out
// of buffers because fences will not call back into us once they are
// signaled. The delay chosen roughly corresponds to the time a frame is
// displayed, which should be optimal in most cases.
if (output_queue_->FreeBuffersCount() == 0) {
constexpr int64_t kRescheduleDelayMs = 17;
decoder_thread_.task_runner()->PostDelayedTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::DecodeBufferTask,
base::Unretained(this)),
base::Milliseconds(kRescheduleDelayMs));
}
}
scoped_refptr<V4L2DecodeSurface>
V4L2SliceVideoDecodeAccelerator::CreateSurface() {
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(state_, kDecoding);
TRACE_COUNTER_ID2(
"media,gpu", "V4L2 input buffers", this, "free",
input_queue_->FreeBuffersCount(), "in use",
input_queue_->AllocatedBuffersCount() - input_queue_->FreeBuffersCount());
TRACE_COUNTER_ID2("media,gpu", "V4L2 output buffers", this, "free",
output_queue_->FreeBuffersCount(), "in use",
output_queue_->AllocatedBuffersCount() -
output_queue_->AllocatedBuffersCount());
TRACE_COUNTER_ID2("media,gpu", "V4L2 output buffers", this, "at client",
GetNumOfOutputRecordsAtClient(), "at device",
GetNumOfOutputRecordsAtDevice());
// Release some output buffers if their fence has been signaled.
CheckGLFences();
auto input_buffer = input_queue_->GetFreeBuffer();
// All buffers that are returned to the output free queue have their GL
// fence signaled, so we can use them directly.
auto output_buffer = output_queue_->GetFreeBuffer();
if (!input_buffer || !output_buffer)
return nullptr;
int input = input_buffer->BufferId();
int output = output_buffer->BufferId();
scoped_refptr<V4L2DecodeSurface> dec_surface;
size_t index = output_buffer->BufferId();
OutputRecord& output_record = output_buffer_map_[index];
DCHECK_NE(output_record.picture_id, -1);
if (supports_requests_) {
// Get a free request from the queue for a new surface.
absl::optional<V4L2RequestRef> request_ref =
requests_queue_->GetFreeRequest();
if (!request_ref) {
LOG(ERROR) << "Failed getting a request";
NOTIFY_ERROR(PLATFORM_FAILURE);
return nullptr;
}
dec_surface = new V4L2RequestDecodeSurface(
std::move(*input_buffer), std::move(*output_buffer),
output_record.output_frame, std::move(*request_ref));
} else {
dec_surface = new V4L2ConfigStoreDecodeSurface(std::move(*input_buffer),
std::move(*output_buffer),
output_record.output_frame);
}
DVLOGF(4) << "Created surface " << input << " -> " << output;
return dec_surface;
}
void V4L2SliceVideoDecodeAccelerator::SendPictureReady() {
DVLOGF(4);
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
bool send_now =
(decoder_resetting_ || decoder_flushing_ || surface_set_change_pending_);
while (!pending_picture_ready_.empty()) {
bool cleared = pending_picture_ready_.front().cleared;
const Picture& picture = pending_picture_ready_.front().picture;
if (cleared && picture_clearing_count_ == 0) {
DVLOGF(4) << "Posting picture ready to decode task runner for: "
<< picture.picture_buffer_id();
// This picture is cleared. It can be posted to a thread different than
// the main GPU thread to reduce latency. This should be the case after
// all pictures are cleared at the beginning.
decode_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::PictureReady, decode_client_, picture));
pending_picture_ready_.pop();
} else if (!cleared || send_now) {
DVLOGF(4) << "cleared=" << pending_picture_ready_.front().cleared
<< ", decoder_resetting_=" << decoder_resetting_
<< ", decoder_flushing_=" << decoder_flushing_
<< ", surface_set_change_pending_="
<< surface_set_change_pending_
<< ", picture_clearing_count_=" << picture_clearing_count_;
DVLOGF(4) << "Posting picture ready to GPU for: "
<< picture.picture_buffer_id();
// If the picture is not cleared, post it to the child thread because it
// has to be cleared in the child thread. A picture only needs to be
// cleared once. If the decoder is resetting or flushing or changing
// resolution, send all pictures to ensure PictureReady arrive before
// reset done, flush done, or picture dismissed.
child_task_runner_->PostTaskAndReply(
FROM_HERE, base::BindOnce(&Client::PictureReady, client_, picture),
// Unretained is safe. If Client::PictureReady gets to run, |this| is
// alive. Destroy() will wait the decode thread to finish.
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::PictureCleared,
base::Unretained(this)));
picture_clearing_count_++;
pending_picture_ready_.pop();
} else {
// This picture is cleared. But some pictures are about to be cleared on
// the child thread. To preserve the order, do not send this until those
// pictures are cleared.
break;
}
}
}
void V4L2SliceVideoDecodeAccelerator::PictureCleared() {
DVLOGF(4) << "clearing count=" << picture_clearing_count_;
DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
DCHECK_GT(picture_clearing_count_, 0);
picture_clearing_count_--;
SendPictureReady();
}
bool V4L2SliceVideoDecodeAccelerator::TryToSetupDecodeOnSeparateThread(
const base::WeakPtr<Client>& decode_client,
const scoped_refptr<base::SingleThreadTaskRunner>& decode_task_runner) {
decode_client_ = decode_client;
decode_task_runner_ = decode_task_runner;
return true;
}
// static
VideoDecodeAccelerator::SupportedProfiles
V4L2SliceVideoDecodeAccelerator::GetSupportedProfiles() {
scoped_refptr<V4L2Device> device = V4L2Device::Create();
if (!device)
return SupportedProfiles();
return device->GetSupportedDecodeProfiles(
base::size(supported_input_fourccs_), supported_input_fourccs_);
}
bool V4L2SliceVideoDecodeAccelerator::IsSupportedProfile(
VideoCodecProfile profile) {
DCHECK(device_);
if (supported_profiles_.empty()) {
SupportedProfiles profiles = GetSupportedProfiles();
for (const SupportedProfile& profile : profiles)
supported_profiles_.push_back(profile.profile);
}
return std::find(supported_profiles_.begin(), supported_profiles_.end(),
profile) != supported_profiles_.end();
}
size_t V4L2SliceVideoDecodeAccelerator::GetNumOfOutputRecordsAtDevice() const {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
return output_queue_->QueuedBuffersCount();
}
size_t V4L2SliceVideoDecodeAccelerator::GetNumOfOutputRecordsAtClient() const {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
return std::count_if(output_buffer_map_.begin(), output_buffer_map_.end(),
[](const auto& r) { return r.at_client(); });
}
void V4L2SliceVideoDecodeAccelerator::ImageProcessorError() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
LOG(ERROR) << "Image processor error";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
bool V4L2SliceVideoDecodeAccelerator::ProcessFrame(
V4L2ReadableBufferRef buffer,
scoped_refptr<V4L2DecodeSurface> surface) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
scoped_refptr<VideoFrame> input_frame = buffer->GetVideoFrame();
if (!input_frame) {
VLOGF(1) << "Could not get the input frame for the image processor!";
return false;
}
// The |input_frame| has a potentially incorrect visible rectangle and natural
// size: that frame gets created by V4L2Buffer::CreateVideoFrame() which uses
// v4l2_format::fmt.pix_mp.width and v4l2_format::fmt.pix_mp.height as the
// visible rectangle and natural size. However, those dimensions actually
// correspond to the coded size. Therefore, we should wrap |input_frame| into
// another frame with the right visible rectangle and natural size.
DCHECK(input_frame->visible_rect().origin().IsOrigin());
const gfx::Rect visible_rect = image_processor_->input_config().visible_rect;
const gfx::Size natural_size = visible_rect.size();
if (!gfx::Rect(input_frame->coded_size()).Contains(visible_rect) ||
!input_frame->visible_rect().Contains(visible_rect)) {
VLOGF(1) << "The visible rectangle is invalid!";
return false;
}
if (!gfx::Rect(input_frame->natural_size())
.Contains(gfx::Rect(natural_size))) {
VLOGF(1) << "The natural size is too large!";
return false;
}
scoped_refptr<VideoFrame> cropped_input_frame = VideoFrame::WrapVideoFrame(
input_frame, input_frame->format(), visible_rect, natural_size);
if (!cropped_input_frame) {
VLOGF(1) << "Could not wrap the input frame for the image processor!";
return false;
}
if (image_processor_->output_mode() == ImageProcessor::OutputMode::IMPORT) {
// In IMPORT mode we can decide ourselves which IP buffer to use, so choose
// the one with the same index number as our decoded buffer.
const OutputRecord& output_record = output_buffer_map_[buffer->BufferId()];
scoped_refptr<VideoFrame> output_frame = output_record.output_frame;
// We will set a destruction observer to the output frame, so wrap the
// imported frame into another one that we can destruct.
scoped_refptr<VideoFrame> wrapped_frame = VideoFrame::WrapVideoFrame(
output_frame, output_frame->format(), output_frame->visible_rect(),
output_frame->visible_rect().size());
DCHECK(wrapped_frame);
image_processor_->Process(
std::move(cropped_input_frame), std::move(wrapped_frame),
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::FrameProcessed,
base::Unretained(this), surface, buffer->BufferId()));
} else {
// In ALLOCATE mode we cannot choose which IP buffer to use. We will get
// the surprise when FrameProcessed() is invoked...
if (!image_processor_->Process(
std::move(cropped_input_frame),
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::FrameProcessed,
base::Unretained(this), surface)))
return false;
}
surfaces_at_ip_.push(std::make_pair(std::move(surface), std::move(buffer)));
return true;
}
void V4L2SliceVideoDecodeAccelerator::FrameProcessed(
scoped_refptr<V4L2DecodeSurface> surface,
size_t ip_buffer_index,
scoped_refptr<VideoFrame> frame) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
// TODO(crbug.com/921825): Remove this workaround once reset callback is
// implemented.
if (surfaces_at_ip_.empty() || surfaces_at_ip_.front().first != surface ||
output_buffer_map_.empty()) {
// This can happen if image processor is reset.
// V4L2SliceVideoDecodeAccelerator::Reset() makes
// |buffers_at_ip_| empty.
// During ImageProcessor::Reset(), some FrameProcessed() can have been
// posted to |decoder_thread|. |bitsream_buffer_id| is pushed to
// |buffers_at_ip_| in ProcessFrame(). Although we
// are not sure a new bitstream buffer id is pushed after Reset() and before
// FrameProcessed(), We should skip the case of mismatch of bitstream buffer
// id for safety.
// For |output_buffer_map_|, it is cleared in Destroy(). Destroy() destroys
// ImageProcessor which may call FrameProcessed() in parallel similar to
// Reset() case.
DVLOGF(4) << "Ignore processed frame after reset";
return;
}
DCHECK_LT(ip_buffer_index, output_buffer_map_.size());
OutputRecord& ip_output_record = output_buffer_map_[ip_buffer_index];
// If the picture has not been cleared yet, this means it is the first time
// we are seeing this buffer from the image processor. Schedule a call to
// CreateGLImageFor before the picture is sent to the client. It is
// guaranteed that CreateGLImageFor will complete before the picture is sent
// to the client as both events happen on the child thread due to the picture
// uncleared status.
if (ip_output_record.texture_id != 0 && !ip_output_record.cleared) {
DCHECK(frame->HasDmaBufs());
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2SliceVideoDecodeAccelerator::CreateGLImageFor, weak_this_,
image_processor_device_, ip_buffer_index,
ip_output_record.picture_id,
CreateGpuMemoryBufferHandle(frame.get()).native_pixmap_handle,
ip_output_record.client_texture_id, ip_output_record.texture_id,
GetRectSizeFromOrigin(decoder_->GetVisibleRect()),
*gl_image_format_fourcc_));
}
DCHECK(!surfaces_at_ip_.empty());
DCHECK_EQ(surfaces_at_ip_.front().first, surface);
V4L2ReadableBufferRef decoded_buffer =
std::move(surfaces_at_ip_.front().second);
surfaces_at_ip_.pop();
DCHECK_EQ(decoded_buffer->BufferId(),
static_cast<size_t>(surface->output_record()));
// Keep the decoder buffer until the IP frame is itself released.
// We need to keep this V4L2 frame because the decode surface still references
// its index and we will use its OutputRecord to reference the IP buffer.
frame->AddDestructionObserver(
base::BindOnce(&V4L2SliceVideoDecodeAccelerator::ReuseOutputBuffer,
base::Unretained(this), decoded_buffer));
// This holds the IP video frame until everyone is done with it
surface->SetReleaseCallback(
base::BindOnce([](scoped_refptr<VideoFrame> frame) {}, frame));
DCHECK_EQ(decoded_buffer_map_.count(decoded_buffer->BufferId()), 0u);
decoded_buffer_map_.emplace(decoded_buffer->BufferId(), ip_buffer_index);
surface->SetDecoded();
TryOutputSurfaces();
ProcessPendingEventsIfNeeded();
ScheduleDecodeBufferTaskIfNeeded();
}
// base::trace_event::MemoryDumpProvider implementation.
bool V4L2SliceVideoDecodeAccelerator::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
// OnMemoryDump() must be performed on |decoder_thread_|.
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// VIDEO_OUTPUT queue's memory usage.
const size_t input_queue_buffers_count =
input_queue_->AllocatedBuffersCount();
size_t input_queue_memory_usage = 0;
std::string input_queue_buffers_memory_type =
V4L2MemoryToString(input_queue_->GetMemoryType());
input_queue_memory_usage += input_queue_->GetMemoryUsage();
// VIDEO_CAPTURE queue's memory usage.
const size_t output_queue_buffers_count = output_buffer_map_.size();
size_t output_queue_memory_usage = 0;
std::string output_queue_buffers_memory_type =
V4L2MemoryToString(output_queue_->GetMemoryType());
if (output_mode_ == Config::OutputMode::ALLOCATE) {
// Call QUERY_BUF here because the length of buffers on VIDIOC_CATURE queue
// are not recorded nowhere in V4L2VideoDecodeAccelerator.
for (uint32_t index = 0; index < output_buffer_map_.size(); ++index) {
struct v4l2_buffer v4l2_buffer;
memset(&v4l2_buffer, 0, sizeof(v4l2_buffer));
struct v4l2_plane v4l2_planes[VIDEO_MAX_PLANES];
memset(v4l2_planes, 0, sizeof(v4l2_planes));
DCHECK_LT(output_planes_count_, base::size(v4l2_planes));
v4l2_buffer.m.planes = v4l2_planes;
v4l2_buffer.length =
std::min(output_planes_count_, base::size(v4l2_planes));
v4l2_buffer.index = index;
v4l2_buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
v4l2_buffer.memory = V4L2_MEMORY_MMAP;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYBUF, &v4l2_buffer);
for (size_t i = 0; i < output_planes_count_; ++i)
output_queue_memory_usage += v4l2_buffer.m.planes[i].length;
}
}
const size_t total_usage =
input_queue_memory_usage + output_queue_memory_usage;
using ::base::trace_event::MemoryAllocatorDump;
auto dump_name = base::StringPrintf("gpu/v4l2/slice_decoder/0x%" PRIxPTR,
reinterpret_cast<uintptr_t>(this));
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(total_usage));
dump->AddScalar("input_queue_memory_usage", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(input_queue_memory_usage));
dump->AddScalar("input_queue_buffers_count",
MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(input_queue_buffers_count));
dump->AddString("input_queue_buffers_memory_type", "",
input_queue_buffers_memory_type);
dump->AddScalar("output_queue_memory_usage", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(output_queue_memory_usage));
dump->AddScalar("output_queue_buffers_count",
MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(output_queue_buffers_count));
dump->AddString("output_queue_buffers_memory_type", "",
output_queue_buffers_memory_type);
return true;
}
} // namespace media