|  | // Copyright 2013 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // Flags: --allow-natives-syntax --expose-gc --opt --no-always-opt --deopt-every-n-times=0 | 
|  |  | 
|  | var elements_kind = { | 
|  | packed_smi               :  'packed smi elements', | 
|  | packed                   :  'packed elements', | 
|  | packed_double            :  'packed double elements', | 
|  | dictionary               :  'dictionary elements', | 
|  | external_byte            :  'external byte elements', | 
|  | external_unsigned_byte   :  'external unsigned byte elements', | 
|  | external_short           :  'external short elements', | 
|  | external_unsigned_short  :  'external unsigned short elements', | 
|  | external_int             :  'external int elements', | 
|  | external_unsigned_int    :  'external unsigned int elements', | 
|  | external_float           :  'external float elements', | 
|  | external_double          :  'external double elements', | 
|  | external_pixel           :  'external pixel elements' | 
|  | } | 
|  |  | 
|  | function getKind(obj) { | 
|  | if (%HasSmiElements(obj)) return elements_kind.packed_smi; | 
|  | if (%HasObjectElements(obj)) return elements_kind.packed; | 
|  | if (%HasDoubleElements(obj)) return elements_kind.packed_double; | 
|  | if (%HasDictionaryElements(obj)) return elements_kind.dictionary; | 
|  | } | 
|  |  | 
|  | function isHoley(obj) { | 
|  | if (%HasHoleyElements(obj)) return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | function assertKind(expected, obj, name_opt) { | 
|  | assertEquals(expected, getKind(obj), name_opt); | 
|  | } | 
|  |  | 
|  | function get_literal(x) { | 
|  | var literal = [1, 2, x]; | 
|  | return literal; | 
|  | }; | 
|  |  | 
|  | %PrepareFunctionForOptimization(get_literal); | 
|  | get_literal(3); | 
|  | // It's important to store a from before we crankshaft get_literal, because | 
|  | // mementos won't be created from crankshafted code at all. | 
|  | a = get_literal(3); | 
|  | %OptimizeFunctionOnNextCall(get_literal); | 
|  | get_literal(3); | 
|  | assertOptimized(get_literal); | 
|  | assertTrue(%HasSmiElements(a)); | 
|  | // a has a memento so the transition caused by the store will affect the | 
|  | // boilerplate. | 
|  | a[0] = 3.5; | 
|  |  | 
|  | // We should have transitioned the boilerplate array to double, and | 
|  | // crankshafted code should de-opt on the unexpected elements kind | 
|  | b = get_literal(3); | 
|  | assertTrue(%HasDoubleElements(b)); | 
|  | assertEquals([1, 2, 3], b); | 
|  | assertUnoptimized(get_literal); | 
|  |  | 
|  | // Optimize again | 
|  | %PrepareFunctionForOptimization(get_literal); | 
|  | get_literal(3); | 
|  | %OptimizeFunctionOnNextCall(get_literal); | 
|  | b = get_literal(3); | 
|  | assertTrue(%HasDoubleElements(b)); | 
|  | assertOptimized(get_literal); | 
|  |  | 
|  |  | 
|  | // Test: make sure allocation site information is updated through a | 
|  | // transition from SMI->DOUBLE->PACKED | 
|  | (function() { | 
|  | function bar(a, b, c) { | 
|  | return [a, b, c]; | 
|  | } | 
|  |  | 
|  | a = bar(1, 2, 3); | 
|  | a[0] = 3.5; | 
|  | a[1] = 'hi'; | 
|  | b = bar(1, 2, 3); | 
|  | assertKind(elements_kind.packed, b); | 
|  | })(); | 
|  |  | 
|  |  | 
|  | (function changeOptimizedEmptyArrayKind() { | 
|  | function f() { | 
|  | return new Array(); | 
|  | }; | 
|  | %PrepareFunctionForOptimization(f); | 
|  | var a = f(); | 
|  | assertKind('packed smi elements', a); | 
|  | a = f(); | 
|  | assertKind('packed smi elements', a); | 
|  | a = f(); | 
|  | a.push(0.5); | 
|  | assertKind('packed double elements', a); | 
|  | %OptimizeFunctionOnNextCall(f); | 
|  | a = f(); | 
|  | assertKind('packed double elements', a); | 
|  | })(); | 
|  |  | 
|  | (function changeOptimizedArrayLiteralKind() { | 
|  | function f() { | 
|  | return [1, 2]; | 
|  | }; | 
|  | %PrepareFunctionForOptimization(f); | 
|  | var a = f(); | 
|  | assertKind('packed smi elements', a); | 
|  |  | 
|  | a = f(); | 
|  | a.push(0.5); | 
|  | assertKind('packed double elements', a); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | a.push(undefined); | 
|  | assertKind('packed elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | %OptimizeFunctionOnNextCall(f); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  | })(); | 
|  |  | 
|  | (function changeOptimizedEmptyArrayLiteralKind() { | 
|  | function f() { | 
|  | return []; | 
|  | }; | 
|  | %PrepareFunctionForOptimization(f); | 
|  | var a = f(); | 
|  | assertKind('packed smi elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | a.push(0.5); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | %OptimizeFunctionOnNextCall(f); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  | })(); | 
|  |  | 
|  | (function changeEmptyArrayLiteralKind2() { | 
|  | function f() { | 
|  | var literal = []; | 
|  | %HeapObjectVerify(literal); | 
|  | return literal; | 
|  | }; | 
|  | %PrepareFunctionForOptimization(f); | 
|  | var a = f(); | 
|  | assertKind('packed smi elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | a.push(0.5); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed double elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | a.push(undefined); | 
|  | assertKind('packed elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | a[10] = 1; | 
|  | assertKind('packed elements', a); | 
|  | assertTrue(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed elements', a); | 
|  | assertTrue(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | a[10000] = 1; | 
|  | assertKind('dictionary elements', a); | 
|  | assertFalse(isHoley(a)); | 
|  |  | 
|  | a = f(); | 
|  | assertKind('packed elements', a); | 
|  | assertTrue(isHoley(a)); | 
|  | })(); |