blob: f1f31d6713d127672585d0fbb9855ea98994f5ea [file] [log] [blame]
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/new-spaces.h"
#include "src/heap/array-buffer-sweeper.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/paged-spaces.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/spaces.h"
namespace v8 {
namespace internal {
Page* SemiSpace::InitializePage(MemoryChunk* chunk) {
bool in_to_space = (id() != kFromSpace);
chunk->SetFlag(in_to_space ? MemoryChunk::TO_PAGE : MemoryChunk::FROM_PAGE);
Page* page = static_cast<Page*>(chunk);
page->SetYoungGenerationPageFlags(heap()->incremental_marking()->IsMarking());
page->list_node().Initialize();
#ifdef ENABLE_MINOR_MC
if (FLAG_minor_mc) {
page->AllocateYoungGenerationBitmap();
heap()
->minor_mark_compact_collector()
->non_atomic_marking_state()
->ClearLiveness(page);
}
#endif // ENABLE_MINOR_MC
page->InitializationMemoryFence();
return page;
}
bool SemiSpace::EnsureCurrentCapacity() {
if (is_committed()) {
const int expected_pages =
static_cast<int>(current_capacity_ / Page::kPageSize);
MemoryChunk* current_page = first_page();
int actual_pages = 0;
// First iterate through the pages list until expected pages if so many
// pages exist.
while (current_page != nullptr && actual_pages < expected_pages) {
actual_pages++;
current_page = current_page->list_node().next();
}
// Free all overallocated pages which are behind current_page.
while (current_page) {
MemoryChunk* next_current = current_page->list_node().next();
memory_chunk_list_.Remove(current_page);
// Clear new space flags to avoid this page being treated as a new
// space page that is potentially being swept.
current_page->SetFlags(0, Page::kIsInYoungGenerationMask);
heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
current_page);
current_page = next_current;
}
// Add more pages if we have less than expected_pages.
IncrementalMarking::NonAtomicMarkingState* marking_state =
heap()->incremental_marking()->non_atomic_marking_state();
while (actual_pages < expected_pages) {
actual_pages++;
current_page =
heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
NOT_EXECUTABLE);
if (current_page == nullptr) return false;
DCHECK_NOT_NULL(current_page);
memory_chunk_list_.PushBack(current_page);
marking_state->ClearLiveness(current_page);
current_page->SetFlags(first_page()->GetFlags(),
static_cast<uintptr_t>(Page::kCopyAllFlags));
heap()->CreateFillerObjectAt(current_page->area_start(),
static_cast<int>(current_page->area_size()),
ClearRecordedSlots::kNo);
}
}
return true;
}
// -----------------------------------------------------------------------------
// SemiSpace implementation
void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
current_capacity_ = minimum_capacity_;
maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
committed_ = false;
}
void SemiSpace::TearDown() {
// Properly uncommit memory to keep the allocator counters in sync.
if (is_committed()) {
Uncommit();
}
current_capacity_ = maximum_capacity_ = 0;
}
bool SemiSpace::Commit() {
DCHECK(!is_committed());
const int num_pages = static_cast<int>(current_capacity_ / Page::kPageSize);
for (int pages_added = 0; pages_added < num_pages; pages_added++) {
// Pages in the new spaces can be moved to the old space by the full
// collector. Therefore, they must be initialized with the same FreeList as
// old pages.
Page* new_page =
heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
NOT_EXECUTABLE);
if (new_page == nullptr) {
if (pages_added) RewindPages(pages_added);
return false;
}
memory_chunk_list_.PushBack(new_page);
}
Reset();
AccountCommitted(current_capacity_);
if (age_mark_ == kNullAddress) {
age_mark_ = first_page()->area_start();
}
committed_ = true;
return true;
}
bool SemiSpace::Uncommit() {
DCHECK(is_committed());
while (!memory_chunk_list_.Empty()) {
MemoryChunk* chunk = memory_chunk_list_.front();
memory_chunk_list_.Remove(chunk);
heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(chunk);
}
current_page_ = nullptr;
AccountUncommitted(current_capacity_);
committed_ = false;
heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
return true;
}
size_t SemiSpace::CommittedPhysicalMemory() {
if (!is_committed()) return 0;
size_t size = 0;
for (Page* p : *this) {
size += p->CommittedPhysicalMemory();
}
return size;
}
bool SemiSpace::GrowTo(size_t new_capacity) {
if (!is_committed()) {
if (!Commit()) return false;
}
DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
DCHECK_LE(new_capacity, maximum_capacity_);
DCHECK_GT(new_capacity, current_capacity_);
const size_t delta = new_capacity - current_capacity_;
DCHECK(IsAligned(delta, AllocatePageSize()));
const int delta_pages = static_cast<int>(delta / Page::kPageSize);
DCHECK(last_page());
IncrementalMarking::NonAtomicMarkingState* marking_state =
heap()->incremental_marking()->non_atomic_marking_state();
for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
Page* new_page =
heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
NOT_EXECUTABLE);
if (new_page == nullptr) {
if (pages_added) RewindPages(pages_added);
return false;
}
memory_chunk_list_.PushBack(new_page);
marking_state->ClearLiveness(new_page);
// Duplicate the flags that was set on the old page.
new_page->SetFlags(last_page()->GetFlags(), Page::kCopyOnFlipFlagsMask);
}
AccountCommitted(delta);
current_capacity_ = new_capacity;
return true;
}
void SemiSpace::RewindPages(int num_pages) {
DCHECK_GT(num_pages, 0);
DCHECK(last_page());
while (num_pages > 0) {
MemoryChunk* last = last_page();
memory_chunk_list_.Remove(last);
heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(last);
num_pages--;
}
}
bool SemiSpace::ShrinkTo(size_t new_capacity) {
DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
DCHECK_GE(new_capacity, minimum_capacity_);
DCHECK_LT(new_capacity, current_capacity_);
if (is_committed()) {
const size_t delta = current_capacity_ - new_capacity;
DCHECK(IsAligned(delta, Page::kPageSize));
int delta_pages = static_cast<int>(delta / Page::kPageSize);
RewindPages(delta_pages);
AccountUncommitted(delta);
heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
}
current_capacity_ = new_capacity;
return true;
}
void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
for (Page* page : *this) {
page->set_owner(this);
page->SetFlags(flags, mask);
if (id_ == kToSpace) {
page->ClearFlag(MemoryChunk::FROM_PAGE);
page->SetFlag(MemoryChunk::TO_PAGE);
page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
heap()->incremental_marking()->non_atomic_marking_state()->SetLiveBytes(
page, 0);
} else {
page->SetFlag(MemoryChunk::FROM_PAGE);
page->ClearFlag(MemoryChunk::TO_PAGE);
}
DCHECK(page->InYoungGeneration());
}
}
void SemiSpace::Reset() {
DCHECK(first_page());
DCHECK(last_page());
current_page_ = first_page();
pages_used_ = 0;
}
void SemiSpace::RemovePage(Page* page) {
if (current_page_ == page) {
if (page->prev_page()) {
current_page_ = page->prev_page();
}
}
memory_chunk_list_.Remove(page);
for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
DecrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
}
}
void SemiSpace::PrependPage(Page* page) {
page->SetFlags(current_page()->GetFlags(),
static_cast<uintptr_t>(Page::kCopyAllFlags));
page->set_owner(this);
memory_chunk_list_.PushFront(page);
pages_used_++;
for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
IncrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
}
}
void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
// We won't be swapping semispaces without data in them.
DCHECK(from->first_page());
DCHECK(to->first_page());
intptr_t saved_to_space_flags = to->current_page()->GetFlags();
// We swap all properties but id_.
std::swap(from->current_capacity_, to->current_capacity_);
std::swap(from->maximum_capacity_, to->maximum_capacity_);
std::swap(from->minimum_capacity_, to->minimum_capacity_);
std::swap(from->age_mark_, to->age_mark_);
std::swap(from->committed_, to->committed_);
std::swap(from->memory_chunk_list_, to->memory_chunk_list_);
std::swap(from->current_page_, to->current_page_);
std::swap(from->external_backing_store_bytes_,
to->external_backing_store_bytes_);
to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
from->FixPagesFlags(0, 0);
}
void SemiSpace::set_age_mark(Address mark) {
DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
age_mark_ = mark;
// Mark all pages up to the one containing mark.
for (Page* p : PageRange(space_start(), mark)) {
p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
}
}
std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator(Heap* heap) {
// Use the NewSpace::NewObjectIterator to iterate the ToSpace.
UNREACHABLE();
}
#ifdef DEBUG
void SemiSpace::Print() {}
#endif
#ifdef VERIFY_HEAP
void SemiSpace::Verify() {
bool is_from_space = (id_ == kFromSpace);
size_t external_backing_store_bytes[kNumTypes];
for (int i = 0; i < kNumTypes; i++) {
external_backing_store_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
}
for (Page* page : *this) {
CHECK_EQ(page->owner(), this);
CHECK(page->InNewSpace());
CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::FROM_PAGE
: MemoryChunk::TO_PAGE));
CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::TO_PAGE
: MemoryChunk::FROM_PAGE));
CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
if (!is_from_space) {
// The pointers-from-here-are-interesting flag isn't updated dynamically
// on from-space pages, so it might be out of sync with the marking state.
if (page->heap()->incremental_marking()->IsMarking()) {
CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
} else {
CHECK(
!page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
}
}
for (int i = 0; i < kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
external_backing_store_bytes[t] += page->ExternalBackingStoreBytes(t);
}
CHECK_IMPLIES(page->list_node().prev(),
page->list_node().prev()->list_node().next() == page);
}
for (int i = 0; i < kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
CHECK_EQ(external_backing_store_bytes[t], ExternalBackingStoreBytes(t));
}
}
#endif
#ifdef DEBUG
void SemiSpace::AssertValidRange(Address start, Address end) {
// Addresses belong to same semi-space
Page* page = Page::FromAllocationAreaAddress(start);
Page* end_page = Page::FromAllocationAreaAddress(end);
SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
DCHECK_EQ(space, end_page->owner());
// Start address is before end address, either on same page,
// or end address is on a later page in the linked list of
// semi-space pages.
if (page == end_page) {
DCHECK_LE(start, end);
} else {
while (page != end_page) {
page = page->next_page();
}
DCHECK(page);
}
}
#endif
// -----------------------------------------------------------------------------
// SemiSpaceObjectIterator implementation.
SemiSpaceObjectIterator::SemiSpaceObjectIterator(NewSpace* space) {
Initialize(space->first_allocatable_address(), space->top());
}
void SemiSpaceObjectIterator::Initialize(Address start, Address end) {
SemiSpace::AssertValidRange(start, end);
current_ = start;
limit_ = end;
}
size_t NewSpace::CommittedPhysicalMemory() {
if (!base::OS::HasLazyCommits()) return CommittedMemory();
BasicMemoryChunk::UpdateHighWaterMark(allocation_info_.top());
size_t size = to_space_.CommittedPhysicalMemory();
if (from_space_.is_committed()) {
size += from_space_.CommittedPhysicalMemory();
}
return size;
}
// -----------------------------------------------------------------------------
// NewSpace implementation
NewSpace::NewSpace(Heap* heap, v8::PageAllocator* page_allocator,
size_t initial_semispace_capacity,
size_t max_semispace_capacity)
: SpaceWithLinearArea(heap, NEW_SPACE, new NoFreeList()),
to_space_(heap, kToSpace),
from_space_(heap, kFromSpace) {
DCHECK(initial_semispace_capacity <= max_semispace_capacity);
to_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
from_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
if (!to_space_.Commit()) {
V8::FatalProcessOutOfMemory(heap->isolate(), "New space setup");
}
DCHECK(!from_space_.is_committed()); // No need to use memory yet.
ResetLinearAllocationArea();
}
void NewSpace::TearDown() {
allocation_info_.Reset(kNullAddress, kNullAddress);
to_space_.TearDown();
from_space_.TearDown();
}
void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
void NewSpace::Grow() {
DCHECK_IMPLIES(FLAG_local_heaps, heap()->safepoint()->IsActive());
// Double the semispace size but only up to maximum capacity.
DCHECK(TotalCapacity() < MaximumCapacity());
size_t new_capacity =
Min(MaximumCapacity(),
static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
if (to_space_.GrowTo(new_capacity)) {
// Only grow from space if we managed to grow to-space.
if (!from_space_.GrowTo(new_capacity)) {
// If we managed to grow to-space but couldn't grow from-space,
// attempt to shrink to-space.
if (!to_space_.ShrinkTo(from_space_.current_capacity())) {
// We are in an inconsistent state because we could not
// commit/uncommit memory from new space.
FATAL("inconsistent state");
}
}
}
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
void NewSpace::Shrink() {
size_t new_capacity = Max(InitialTotalCapacity(), 2 * Size());
size_t rounded_new_capacity = ::RoundUp(new_capacity, Page::kPageSize);
if (rounded_new_capacity < TotalCapacity() &&
to_space_.ShrinkTo(rounded_new_capacity)) {
// Only shrink from-space if we managed to shrink to-space.
from_space_.Reset();
if (!from_space_.ShrinkTo(rounded_new_capacity)) {
// If we managed to shrink to-space but couldn't shrink from
// space, attempt to grow to-space again.
if (!to_space_.GrowTo(from_space_.current_capacity())) {
// We are in an inconsistent state because we could not
// commit/uncommit memory from new space.
FATAL("inconsistent state");
}
}
}
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
bool NewSpace::Rebalance() {
// Order here is important to make use of the page pool.
return to_space_.EnsureCurrentCapacity() &&
from_space_.EnsureCurrentCapacity();
}
void NewSpace::UpdateLinearAllocationArea() {
AdvanceAllocationObservers();
Address new_top = to_space_.page_low();
BasicMemoryChunk::UpdateHighWaterMark(allocation_info_.top());
allocation_info_.Reset(new_top, to_space_.page_high());
// The order of the following two stores is important.
// See the corresponding loads in ConcurrentMarking::Run.
original_limit_.store(limit(), std::memory_order_relaxed);
original_top_.store(top(), std::memory_order_release);
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
UpdateInlineAllocationLimit(0);
}
void NewSpace::ResetLinearAllocationArea() {
to_space_.Reset();
UpdateLinearAllocationArea();
// Clear all mark-bits in the to-space.
IncrementalMarking::NonAtomicMarkingState* marking_state =
heap()->incremental_marking()->non_atomic_marking_state();
for (Page* p : to_space_) {
marking_state->ClearLiveness(p);
// Concurrent marking may have local live bytes for this page.
heap()->concurrent_marking()->ClearMemoryChunkData(p);
}
}
void NewSpace::UpdateInlineAllocationLimit(size_t min_size) {
Address new_limit = ComputeLimit(top(), to_space_.page_high(), min_size);
DCHECK_LE(top(), new_limit);
DCHECK_LE(new_limit, to_space_.page_high());
allocation_info_.set_limit(new_limit);
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
#if DEBUG
VerifyTop();
#endif
}
bool NewSpace::AddFreshPage() {
Address top = allocation_info_.top();
DCHECK(!OldSpace::IsAtPageStart(top));
if (!to_space_.AdvancePage()) {
// No more pages left to advance.
return false;
}
// Clear remainder of current page.
Address limit = Page::FromAllocationAreaAddress(top)->area_end();
int remaining_in_page = static_cast<int>(limit - top);
heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
UpdateLinearAllocationArea();
return true;
}
bool NewSpace::AddFreshPageSynchronized() {
base::MutexGuard guard(&mutex_);
return AddFreshPage();
}
bool NewSpace::EnsureAllocation(int size_in_bytes,
AllocationAlignment alignment) {
AdvanceAllocationObservers();
Address old_top = allocation_info_.top();
Address high = to_space_.page_high();
int filler_size = Heap::GetFillToAlign(old_top, alignment);
int aligned_size_in_bytes = size_in_bytes + filler_size;
if (old_top + aligned_size_in_bytes <= high) {
UpdateInlineAllocationLimit(aligned_size_in_bytes);
return true;
}
// Not enough room in the page, try to allocate a new one.
if (!AddFreshPage()) {
return false;
}
old_top = allocation_info_.top();
high = to_space_.page_high();
filler_size = Heap::GetFillToAlign(old_top, alignment);
aligned_size_in_bytes = size_in_bytes + filler_size;
DCHECK(old_top + aligned_size_in_bytes <= high);
UpdateInlineAllocationLimit(aligned_size_in_bytes);
return true;
}
void NewSpace::MaybeFreeUnusedLab(LinearAllocationArea info) {
if (info.limit() != kNullAddress && info.limit() == top()) {
DCHECK_NE(info.top(), kNullAddress);
allocation_info_.set_top(info.top());
allocation_info_.MoveStartToTop();
original_top_.store(info.top(), std::memory_order_release);
}
#if DEBUG
VerifyTop();
#endif
}
std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator(Heap* heap) {
return std::unique_ptr<ObjectIterator>(new SemiSpaceObjectIterator(this));
}
AllocationResult NewSpace::AllocateRawSlow(int size_in_bytes,
AllocationAlignment alignment,
AllocationOrigin origin) {
#ifdef V8_HOST_ARCH_32_BIT
return alignment != kWordAligned
? AllocateRawAligned(size_in_bytes, alignment, origin)
: AllocateRawUnaligned(size_in_bytes, origin);
#else
#ifdef V8_COMPRESS_POINTERS
// TODO(ishell, v8:8875): Consider using aligned allocations once the
// allocation alignment inconsistency is fixed. For now we keep using
// unaligned access since both x64 and arm64 architectures (where pointer
// compression is supported) allow unaligned access to doubles and full words.
#endif // V8_COMPRESS_POINTERS
return AllocateRawUnaligned(size_in_bytes, origin);
#endif
}
AllocationResult NewSpace::AllocateRawUnaligned(int size_in_bytes,
AllocationOrigin origin) {
if (!EnsureAllocation(size_in_bytes, kWordAligned)) {
return AllocationResult::Retry();
}
DCHECK_EQ(allocation_info_.start(), allocation_info_.top());
AllocationResult result = AllocateFastUnaligned(size_in_bytes, origin);
DCHECK(!result.IsRetry());
InvokeAllocationObservers(result.ToAddress(), size_in_bytes, size_in_bytes,
size_in_bytes);
return result;
}
AllocationResult NewSpace::AllocateRawAligned(int size_in_bytes,
AllocationAlignment alignment,
AllocationOrigin origin) {
if (!EnsureAllocation(size_in_bytes, alignment)) {
return AllocationResult::Retry();
}
DCHECK_EQ(allocation_info_.start(), allocation_info_.top());
int aligned_size_in_bytes;
AllocationResult result = AllocateFastAligned(
size_in_bytes, &aligned_size_in_bytes, alignment, origin);
DCHECK(!result.IsRetry());
InvokeAllocationObservers(result.ToAddress(), size_in_bytes,
aligned_size_in_bytes, aligned_size_in_bytes);
return result;
}
void NewSpace::VerifyTop() {
// Ensure validity of LAB: start <= top <= limit
DCHECK_LE(allocation_info_.start(), allocation_info_.top());
DCHECK_LE(allocation_info_.top(), allocation_info_.limit());
// Ensure that original_top_ always equals LAB start.
DCHECK_EQ(original_top_, allocation_info_.start());
// Ensure that limit() is <= original_limit_, original_limit_ always needs
// to be end of curent to space page.
DCHECK_LE(allocation_info_.limit(), original_limit_);
DCHECK_EQ(original_limit_, to_space_.page_high());
}
#ifdef VERIFY_HEAP
// We do not use the SemiSpaceObjectIterator because verification doesn't assume
// that it works (it depends on the invariants we are checking).
void NewSpace::Verify(Isolate* isolate) {
// The allocation pointer should be in the space or at the very end.
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
// There should be objects packed in from the low address up to the
// allocation pointer.
Address current = to_space_.first_page()->area_start();
CHECK_EQ(current, to_space_.space_start());
size_t external_space_bytes[kNumTypes];
for (int i = 0; i < kNumTypes; i++) {
external_space_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
}
while (current != top()) {
if (!Page::IsAlignedToPageSize(current)) {
// The allocation pointer should not be in the middle of an object.
CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
current < top());
HeapObject object = HeapObject::FromAddress(current);
// The first word should be a map, and we expect all map pointers to
// be in map space or read-only space.
Map map = object.map();
CHECK(map.IsMap());
CHECK(ReadOnlyHeap::Contains(map) || heap()->map_space()->Contains(map));
// The object should not be code or a map.
CHECK(!object.IsMap());
CHECK(!object.IsAbstractCode());
// The object itself should look OK.
object.ObjectVerify(isolate);
// All the interior pointers should be contained in the heap.
VerifyPointersVisitor visitor(heap());
int size = object.Size();
object.IterateBody(map, size, &visitor);
if (object.IsExternalString()) {
ExternalString external_string = ExternalString::cast(object);
size_t size = external_string.ExternalPayloadSize();
external_space_bytes[ExternalBackingStoreType::kExternalString] += size;
}
current += size;
} else {
// At end of page, switch to next page.
Page* page = Page::FromAllocationAreaAddress(current)->next_page();
current = page->area_start();
}
}
for (int i = 0; i < kNumTypes; i++) {
if (i == ExternalBackingStoreType::kArrayBuffer) continue;
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
CHECK_EQ(external_space_bytes[t], ExternalBackingStoreBytes(t));
}
size_t bytes = heap()->array_buffer_sweeper()->young().BytesSlow();
CHECK_EQ(bytes,
ExternalBackingStoreBytes(ExternalBackingStoreType::kArrayBuffer));
// Check semi-spaces.
CHECK_EQ(from_space_.id(), kFromSpace);
CHECK_EQ(to_space_.id(), kToSpace);
from_space_.Verify();
to_space_.Verify();
}
#endif
} // namespace internal
} // namespace v8