blob: 7ed9d4c5e14a1003faa6a1564b21191041042356 [file] [log] [blame]
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/torque/declarable.h"
#include <fstream>
#include <iostream>
#include "src/torque/ast.h"
#include "src/torque/global-context.h"
#include "src/torque/type-inference.h"
#include "src/torque/type-visitor.h"
namespace v8 {
namespace internal {
namespace torque {
DEFINE_CONTEXTUAL_VARIABLE(CurrentScope)
std::ostream& operator<<(std::ostream& os, const QualifiedName& name) {
for (const std::string& qualifier : name.namespace_qualification) {
os << qualifier << "::";
}
return os << name.name;
}
std::ostream& operator<<(std::ostream& os, const Callable& m) {
os << "callable " << m.ReadableName() << "(";
if (m.signature().implicit_count != 0) {
os << "implicit ";
TypeVector implicit_parameter_types(
m.signature().parameter_types.types.begin(),
m.signature().parameter_types.types.begin() +
m.signature().implicit_count);
os << implicit_parameter_types << ")(";
TypeVector explicit_parameter_types(
m.signature().parameter_types.types.begin() +
m.signature().implicit_count,
m.signature().parameter_types.types.end());
os << explicit_parameter_types;
} else {
os << m.signature().parameter_types;
}
os << "): " << *m.signature().return_type;
return os;
}
std::ostream& operator<<(std::ostream& os, const Builtin& b) {
os << "builtin " << *b.signature().return_type << " " << b.ReadableName()
<< b.signature().parameter_types;
return os;
}
std::ostream& operator<<(std::ostream& os, const RuntimeFunction& b) {
os << "runtime function " << *b.signature().return_type << " "
<< b.ReadableName() << b.signature().parameter_types;
return os;
}
std::ostream& operator<<(std::ostream& os, const GenericCallable& g) {
os << "generic " << g.name() << "<";
PrintCommaSeparatedList(os, g.generic_parameters(),
[](const GenericParameter& identifier) {
return identifier.name->value;
});
os << ">";
return os;
}
SpecializationRequester::SpecializationRequester(SourcePosition position,
Scope* scope, std::string name)
: position(position), name(std::move(name)) {
// Skip scopes that are not related to template specializations, they might be
// stack-allocated and not live for long enough.
while (scope && scope->GetSpecializationRequester().IsNone())
scope = scope->ParentScope();
this->scope = scope;
}
std::vector<Declarable*> Scope::Lookup(const QualifiedName& name) {
if (name.namespace_qualification.size() >= 1 &&
name.namespace_qualification[0] == "") {
return GlobalContext::GetDefaultNamespace()->Lookup(
name.DropFirstNamespaceQualification());
}
std::vector<Declarable*> result;
if (ParentScope()) {
result = ParentScope()->Lookup(name);
}
for (Declarable* declarable : LookupShallow(name)) {
result.push_back(declarable);
}
return result;
}
base::Optional<std::string> TypeConstraint::IsViolated(const Type* type) const {
if (upper_bound && !type->IsSubtypeOf(*upper_bound)) {
if (type->IsTopType()) {
return TopType::cast(type)->reason();
} else {
return {
ToString("expected ", *type, " to be a subtype of ", **upper_bound)};
}
}
return base::nullopt;
}
base::Optional<std::string> FindConstraintViolation(
const std::vector<const Type*>& types,
const std::vector<TypeConstraint>& constraints) {
DCHECK_EQ(constraints.size(), types.size());
for (size_t i = 0; i < types.size(); ++i) {
if (auto violation = constraints[i].IsViolated(types[i])) {
return {"Could not instantiate generic, " + *violation + "."};
}
}
return base::nullopt;
}
std::vector<TypeConstraint> ComputeConstraints(
Scope* scope, const GenericParameters& parameters) {
CurrentScope::Scope scope_scope(scope);
std::vector<TypeConstraint> result;
for (const GenericParameter& parameter : parameters) {
if (parameter.constraint) {
result.push_back(TypeConstraint::SubtypeConstraint(
TypeVisitor::ComputeType(*parameter.constraint)));
} else {
result.push_back(TypeConstraint::Unconstrained());
}
}
return result;
}
TypeArgumentInference GenericCallable::InferSpecializationTypes(
const TypeVector& explicit_specialization_types,
const std::vector<base::Optional<const Type*>>& arguments) {
const std::vector<TypeExpression*>& parameters =
declaration()->parameters.types;
CurrentScope::Scope generic_scope(ParentScope());
TypeArgumentInference inference(generic_parameters(),
explicit_specialization_types, parameters,
arguments);
if (!inference.HasFailed()) {
if (auto violation =
FindConstraintViolation(inference.GetResult(), Constraints())) {
inference.Fail(*violation);
}
}
return inference;
}
base::Optional<Statement*> GenericCallable::CallableBody() {
if (auto* decl = TorqueMacroDeclaration::DynamicCast(declaration())) {
return decl->body;
} else if (auto* decl =
TorqueBuiltinDeclaration::DynamicCast(declaration())) {
return decl->body;
} else {
return base::nullopt;
}
}
bool Namespace::IsDefaultNamespace() const {
return this == GlobalContext::GetDefaultNamespace();
}
bool Namespace::IsTestNamespace() const { return name() == kTestNamespaceName; }
const Type* TypeAlias::Resolve() const {
if (!type_) {
CurrentScope::Scope scope_activator(ParentScope());
CurrentSourcePosition::Scope position_activator(Position());
TypeDeclaration* decl = *delayed_;
if (being_resolved_) {
std::stringstream s;
s << "Cannot create type " << decl->name->value
<< " due to circular dependencies.";
ReportError(s.str());
}
type_ = TypeVisitor::ComputeType(decl);
}
return *type_;
}
} // namespace torque
} // namespace internal
} // namespace v8