blob: 1c1a55fde6a680dc4887620e7b43a3501d11b43a [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/common/onyxc_int.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "vp8/encoder/quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_scale/vpx_scale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "temporal_filter.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vp8/common/threading.h"
#include "vpx_ports/vpx_timer.h"
#include <math.h>
#include <limits.h>
#define ALT_REF_MC_ENABLED 1 /* toggle MC in AltRef filtering */
#define ALT_REF_SUBPEL_ENABLED 1 /* toggle subpel in MC AltRef filtering */
#if VP8_TEMPORAL_ALT_REF
static void vp8_temporal_filter_predictors_mb_c(
MACROBLOCKD *x, unsigned char *y_mb_ptr, unsigned char *u_mb_ptr,
unsigned char *v_mb_ptr, int stride, int mv_row, int mv_col,
unsigned char *pred) {
int offset;
unsigned char *yptr, *uptr, *vptr;
/* Y */
yptr = y_mb_ptr + (mv_row >> 3) * stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7) {
x->subpixel_predict16x16(yptr, stride, mv_col & 7, mv_row & 7, &pred[0],
16);
} else {
vp8_copy_mem16x16(yptr, stride, &pred[0], 16);
}
/* U & V */
mv_row >>= 1;
mv_col >>= 1;
stride = (stride + 1) >> 1;
offset = (mv_row >> 3) * stride + (mv_col >> 3);
uptr = u_mb_ptr + offset;
vptr = v_mb_ptr + offset;
if ((mv_row | mv_col) & 7) {
x->subpixel_predict8x8(uptr, stride, mv_col & 7, mv_row & 7, &pred[256], 8);
x->subpixel_predict8x8(vptr, stride, mv_col & 7, mv_row & 7, &pred[320], 8);
} else {
vp8_copy_mem8x8(uptr, stride, &pred[256], 8);
vp8_copy_mem8x8(vptr, stride, &pred[320], 8);
}
}
void vp8_temporal_filter_apply_c(unsigned char *frame1, unsigned int stride,
unsigned char *frame2, unsigned int block_size,
int strength, int filter_weight,
unsigned int *accumulator,
unsigned short *count) {
unsigned int i, j, k;
int modifier;
int byte = 0;
const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_size; ++i) {
for (j = 0; j < block_size; j++, k++) {
int src_byte = frame1[byte];
int pixel_value = *frame2++;
modifier = src_byte - pixel_value;
/* This is an integer approximation of:
* float coeff = (3.0 * modifer * modifier) / pow(2, strength);
* modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff);
*/
modifier *= modifier;
modifier *= 3;
modifier += rounding;
modifier >>= strength;
if (modifier > 16) modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_size;
}
}
#if ALT_REF_MC_ENABLED
static int vp8_temporal_filter_find_matching_mb_c(VP8_COMP *cpi,
YV12_BUFFER_CONFIG *arf_frame,
YV12_BUFFER_CONFIG *frame_ptr,
int mb_offset,
int error_thresh) {
MACROBLOCK *x = &cpi->mb;
int step_param;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
int_mv best_ref_mv1;
int_mv best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
/* Save input state */
unsigned char **base_src = b->base_src;
int src = b->src;
int src_stride = b->src_stride;
unsigned char *base_pre = x->e_mbd.pre.y_buffer;
int pre = d->offset;
int pre_stride = x->e_mbd.pre.y_stride;
(void)error_thresh;
best_ref_mv1.as_int = 0;
best_ref_mv1_full.as_mv.col = best_ref_mv1.as_mv.col >> 3;
best_ref_mv1_full.as_mv.row = best_ref_mv1.as_mv.row >> 3;
/* Setup frame pointers */
b->base_src = &arf_frame->y_buffer;
b->src_stride = arf_frame->y_stride;
b->src = mb_offset;
x->e_mbd.pre.y_buffer = frame_ptr->y_buffer;
x->e_mbd.pre.y_stride = frame_ptr->y_stride;
d->offset = mb_offset;
/* Further step/diamond searches as necessary */
if (cpi->Speed < 8) {
step_param = cpi->sf.first_step + (cpi->Speed > 5);
} else {
step_param = cpi->sf.first_step + 2;
}
/* TODO Check that the 16x16 vf & sdf are selected here */
/* Ignore mv costing by sending NULL cost arrays */
bestsme =
vp8_hex_search(x, b, d, &best_ref_mv1_full, &d->bmi.mv, step_param, sadpb,
&cpi->fn_ptr[BLOCK_16X16], NULL, &best_ref_mv1);
(void)bestsme; // Ignore unused return value.
#if ALT_REF_SUBPEL_ENABLED
/* Try sub-pixel MC? */
{
int distortion;
unsigned int sse;
/* Ignore mv costing by sending NULL cost array */
bestsme = cpi->find_fractional_mv_step(
x, b, d, &d->bmi.mv, &best_ref_mv1, x->errorperbit,
&cpi->fn_ptr[BLOCK_16X16], NULL, &distortion, &sse);
}
#endif
/* Save input state */
b->base_src = base_src;
b->src = src;
b->src_stride = src_stride;
x->e_mbd.pre.y_buffer = base_pre;
d->offset = pre;
x->e_mbd.pre.y_stride = pre_stride;
return bestsme;
}
#endif
static void vp8_temporal_filter_iterate_c(VP8_COMP *cpi, int frame_count,
int alt_ref_index, int strength) {
int byte;
int frame;
int mb_col, mb_row;
unsigned int filter_weight;
int mb_cols = cpi->common.mb_cols;
int mb_rows = cpi->common.mb_rows;
int mb_y_offset = 0;
int mb_uv_offset = 0;
DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 + 8 * 8 + 8 * 8]);
DECLARE_ALIGNED(16, unsigned short, count[16 * 16 + 8 * 8 + 8 * 8]);
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
unsigned char *dst1, *dst2;
DECLARE_ALIGNED(16, unsigned char, predictor[16 * 16 + 8 * 8 + 8 * 8]);
/* Save input state */
unsigned char *y_buffer = mbd->pre.y_buffer;
unsigned char *u_buffer = mbd->pre.u_buffer;
unsigned char *v_buffer = mbd->pre.v_buffer;
for (mb_row = 0; mb_row < mb_rows; ++mb_row) {
#if ALT_REF_MC_ENABLED
/* Source frames are extended to 16 pixels. This is different than
* L/A/G reference frames that have a border of 32 (VP8BORDERINPIXELS)
* A 6 tap filter is used for motion search. This requires 2 pixels
* before and 3 pixels after. So the largest Y mv on a border would
* then be 16 - 3. The UV blocks are half the size of the Y and
* therefore only extended by 8. The largest mv that a UV block
* can support is 8 - 3. A UV mv is half of a Y mv.
* (16 - 3) >> 1 == 6 which is greater than 8 - 3.
* To keep the mv in play for both Y and UV planes the max that it
* can be on a border is therefore 16 - 5.
*/
cpi->mb.mv_row_min = -((mb_row * 16) + (16 - 5));
cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16) + (16 - 5);
#endif
for (mb_col = 0; mb_col < mb_cols; ++mb_col) {
int i, j, k;
int stride;
memset(accumulator, 0, 384 * sizeof(unsigned int));
memset(count, 0, 384 * sizeof(unsigned short));
#if ALT_REF_MC_ENABLED
cpi->mb.mv_col_min = -((mb_col * 16) + (16 - 5));
cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16) + (16 - 5);
#endif
for (frame = 0; frame < frame_count; ++frame) {
if (cpi->frames[frame] == NULL) continue;
mbd->block[0].bmi.mv.as_mv.row = 0;
mbd->block[0].bmi.mv.as_mv.col = 0;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
int err = 0;
#if ALT_REF_MC_ENABLED
#define THRESH_LOW 10000
#define THRESH_HIGH 20000
/* Find best match in this frame by MC */
err = vp8_temporal_filter_find_matching_mb_c(
cpi, cpi->frames[alt_ref_index], cpi->frames[frame], mb_y_offset,
THRESH_LOW);
#endif
/* Assign higher weight to matching MB if it's error
* score is lower. If not applying MC default behavior
* is to weight all MBs equal.
*/
filter_weight = err < THRESH_LOW ? 2 : err < THRESH_HIGH ? 1 : 0;
}
if (filter_weight != 0) {
/* Construct the predictors */
vp8_temporal_filter_predictors_mb_c(
mbd, cpi->frames[frame]->y_buffer + mb_y_offset,
cpi->frames[frame]->u_buffer + mb_uv_offset,
cpi->frames[frame]->v_buffer + mb_uv_offset,
cpi->frames[frame]->y_stride, mbd->block[0].bmi.mv.as_mv.row,
mbd->block[0].bmi.mv.as_mv.col, predictor);
/* Apply the filter (YUV) */
vp8_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, strength, filter_weight,
accumulator, count);
vp8_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
predictor + 256, 8, strength, filter_weight,
accumulator + 256, count + 256);
vp8_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
predictor + 320, 8, strength, filter_weight,
accumulator + 320, count + 320);
}
}
/* Normalize filter output to produce AltRef frame */
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; ++i) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (unsigned char)pval;
/* move to next pixel */
byte++;
}
byte += stride - 16;
}
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < 8; ++i) {
for (j = 0; j < 8; j++, k++) {
int m = k + 64;
/* U */
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (unsigned char)pval;
/* V */
pval = accumulator[m] + (count[m] >> 1);
pval *= cpi->fixed_divide[count[m]];
pval >>= 19;
dst2[byte] = (unsigned char)pval;
/* move to next pixel */
byte++;
}
byte += stride - 8;
}
mb_y_offset += 16;
mb_uv_offset += 8;
}
mb_y_offset += 16 * (f->y_stride - mb_cols);
mb_uv_offset += 8 * (f->uv_stride - mb_cols);
}
/* Restore input state */
mbd->pre.y_buffer = y_buffer;
mbd->pre.u_buffer = u_buffer;
mbd->pre.v_buffer = v_buffer;
}
void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance) {
int frame = 0;
int num_frames_backward = 0;
int num_frames_forward = 0;
int frames_to_blur_backward = 0;
int frames_to_blur_forward = 0;
int frames_to_blur = 0;
int start_frame = 0;
int strength = cpi->oxcf.arnr_strength;
int blur_type = cpi->oxcf.arnr_type;
int max_frames = cpi->active_arnr_frames;
num_frames_backward = distance;
num_frames_forward =
vp8_lookahead_depth(cpi->lookahead) - (num_frames_backward + 1);
switch (blur_type) {
case 1:
/* Backward Blur */
frames_to_blur_backward = num_frames_backward;
if (frames_to_blur_backward >= max_frames) {
frames_to_blur_backward = max_frames - 1;
}
frames_to_blur = frames_to_blur_backward + 1;
break;
case 2:
/* Forward Blur */
frames_to_blur_forward = num_frames_forward;
if (frames_to_blur_forward >= max_frames) {
frames_to_blur_forward = max_frames - 1;
}
frames_to_blur = frames_to_blur_forward + 1;
break;
case 3:
default:
/* Center Blur */
frames_to_blur_forward = num_frames_forward;
frames_to_blur_backward = num_frames_backward;
if (frames_to_blur_forward > frames_to_blur_backward) {
frames_to_blur_forward = frames_to_blur_backward;
}
if (frames_to_blur_backward > frames_to_blur_forward) {
frames_to_blur_backward = frames_to_blur_forward;
}
/* When max_frames is even we have 1 more frame backward than forward */
if (frames_to_blur_forward > (max_frames - 1) / 2) {
frames_to_blur_forward = ((max_frames - 1) / 2);
}
if (frames_to_blur_backward > (max_frames / 2)) {
frames_to_blur_backward = (max_frames / 2);
}
frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1;
break;
}
start_frame = distance + frames_to_blur_forward;
/* Setup frame pointers, NULL indicates frame not included in filter */
memset(cpi->frames, 0, max_frames * sizeof(YV12_BUFFER_CONFIG *));
for (frame = 0; frame < frames_to_blur; ++frame) {
int which_buffer = start_frame - frame;
struct lookahead_entry *buf =
vp8_lookahead_peek(cpi->lookahead, which_buffer, PEEK_FORWARD);
cpi->frames[frames_to_blur - 1 - frame] = &buf->img;
}
vp8_temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward,
strength);
}
#endif