blob: 78cf9111d939f7dd9d310b1b17f748767b778c14 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VPX_VPX_DSP_X86_HIGHBD_INV_TXFM_SSE2_H_
#define VPX_VPX_DSP_X86_HIGHBD_INV_TXFM_SSE2_H_
#include <emmintrin.h> // SSE2
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/inv_txfm.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
// Note: There is no 64-bit bit-level shifting SIMD instruction. All
// coefficients are left shifted by 2, so that dct_const_round_shift() can be
// done by right shifting 2 bytes.
static INLINE void extend_64bit(const __m128i in,
__m128i *const out /*out[2]*/) {
out[0] = _mm_unpacklo_epi32(in, in); // 0, 0, 1, 1
out[1] = _mm_unpackhi_epi32(in, in); // 2, 2, 3, 3
}
static INLINE __m128i wraplow_16bit_shift4(const __m128i in0, const __m128i in1,
const __m128i rounding) {
__m128i temp[2];
temp[0] = _mm_add_epi32(in0, rounding);
temp[1] = _mm_add_epi32(in1, rounding);
temp[0] = _mm_srai_epi32(temp[0], 4);
temp[1] = _mm_srai_epi32(temp[1], 4);
return _mm_packs_epi32(temp[0], temp[1]);
}
static INLINE __m128i wraplow_16bit_shift5(const __m128i in0, const __m128i in1,
const __m128i rounding) {
__m128i temp[2];
temp[0] = _mm_add_epi32(in0, rounding);
temp[1] = _mm_add_epi32(in1, rounding);
temp[0] = _mm_srai_epi32(temp[0], 5);
temp[1] = _mm_srai_epi32(temp[1], 5);
return _mm_packs_epi32(temp[0], temp[1]);
}
static INLINE __m128i dct_const_round_shift_64bit(const __m128i in) {
const __m128i t =
_mm_add_epi64(in, pair_set_epi32(DCT_CONST_ROUNDING << 2, 0));
return _mm_srli_si128(t, 2);
}
static INLINE __m128i pack_4(const __m128i in0, const __m128i in1) {
const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 2
const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 1, 3
return _mm_unpacklo_epi32(t0, t1); // 0, 1, 2, 3
}
static INLINE void abs_extend_64bit_sse2(const __m128i in,
__m128i *const out /*out[2]*/,
__m128i *const sign /*sign[2]*/) {
sign[0] = _mm_srai_epi32(in, 31);
out[0] = _mm_xor_si128(in, sign[0]);
out[0] = _mm_sub_epi32(out[0], sign[0]);
sign[1] = _mm_unpackhi_epi32(sign[0], sign[0]); // 64-bit sign of 2, 3
sign[0] = _mm_unpacklo_epi32(sign[0], sign[0]); // 64-bit sign of 0, 1
out[1] = _mm_unpackhi_epi32(out[0], out[0]); // 2, 3
out[0] = _mm_unpacklo_epi32(out[0], out[0]); // 0, 1
}
// Note: cospi must be non negative.
static INLINE __m128i multiply_apply_sign_sse2(const __m128i in,
const __m128i sign,
const __m128i cospi) {
__m128i out = _mm_mul_epu32(in, cospi);
out = _mm_xor_si128(out, sign);
return _mm_sub_epi64(out, sign);
}
// Note: c must be non negative.
static INLINE __m128i multiplication_round_shift_sse2(
const __m128i *const in /*in[2]*/, const __m128i *const sign /*sign[2]*/,
const int c) {
const __m128i pair_c = pair_set_epi32(c << 2, 0);
__m128i t0, t1;
assert(c >= 0);
t0 = multiply_apply_sign_sse2(in[0], sign[0], pair_c);
t1 = multiply_apply_sign_sse2(in[1], sign[1], pair_c);
t0 = dct_const_round_shift_64bit(t0);
t1 = dct_const_round_shift_64bit(t1);
return pack_4(t0, t1);
}
// Note: c must be non negative.
static INLINE __m128i multiplication_neg_round_shift_sse2(
const __m128i *const in /*in[2]*/, const __m128i *const sign /*sign[2]*/,
const int c) {
const __m128i pair_c = pair_set_epi32(c << 2, 0);
__m128i t0, t1;
assert(c >= 0);
t0 = multiply_apply_sign_sse2(in[0], sign[0], pair_c);
t1 = multiply_apply_sign_sse2(in[1], sign[1], pair_c);
t0 = _mm_sub_epi64(_mm_setzero_si128(), t0);
t1 = _mm_sub_epi64(_mm_setzero_si128(), t1);
t0 = dct_const_round_shift_64bit(t0);
t1 = dct_const_round_shift_64bit(t1);
return pack_4(t0, t1);
}
// Note: c0 and c1 must be non negative.
static INLINE void highbd_butterfly_sse2(const __m128i in0, const __m128i in1,
const int c0, const int c1,
__m128i *const out0,
__m128i *const out1) {
const __m128i pair_c0 = pair_set_epi32(c0 << 2, 0);
const __m128i pair_c1 = pair_set_epi32(c1 << 2, 0);
__m128i temp1[4], temp2[4], sign1[2], sign2[2];
assert(c0 >= 0);
assert(c1 >= 0);
abs_extend_64bit_sse2(in0, temp1, sign1);
abs_extend_64bit_sse2(in1, temp2, sign2);
temp1[2] = multiply_apply_sign_sse2(temp1[0], sign1[0], pair_c1);
temp1[3] = multiply_apply_sign_sse2(temp1[1], sign1[1], pair_c1);
temp1[0] = multiply_apply_sign_sse2(temp1[0], sign1[0], pair_c0);
temp1[1] = multiply_apply_sign_sse2(temp1[1], sign1[1], pair_c0);
temp2[2] = multiply_apply_sign_sse2(temp2[0], sign2[0], pair_c0);
temp2[3] = multiply_apply_sign_sse2(temp2[1], sign2[1], pair_c0);
temp2[0] = multiply_apply_sign_sse2(temp2[0], sign2[0], pair_c1);
temp2[1] = multiply_apply_sign_sse2(temp2[1], sign2[1], pair_c1);
temp1[0] = _mm_sub_epi64(temp1[0], temp2[0]);
temp1[1] = _mm_sub_epi64(temp1[1], temp2[1]);
temp2[0] = _mm_add_epi64(temp1[2], temp2[2]);
temp2[1] = _mm_add_epi64(temp1[3], temp2[3]);
temp1[0] = dct_const_round_shift_64bit(temp1[0]);
temp1[1] = dct_const_round_shift_64bit(temp1[1]);
temp2[0] = dct_const_round_shift_64bit(temp2[0]);
temp2[1] = dct_const_round_shift_64bit(temp2[1]);
*out0 = pack_4(temp1[0], temp1[1]);
*out1 = pack_4(temp2[0], temp2[1]);
}
// Note: c0 and c1 must be non negative.
static INLINE void highbd_partial_butterfly_sse2(const __m128i in, const int c0,
const int c1,
__m128i *const out0,
__m128i *const out1) {
__m128i temp[2], sign[2];
assert(c0 >= 0);
assert(c1 >= 0);
abs_extend_64bit_sse2(in, temp, sign);
*out0 = multiplication_round_shift_sse2(temp, sign, c0);
*out1 = multiplication_round_shift_sse2(temp, sign, c1);
}
// Note: c0 and c1 must be non negative.
static INLINE void highbd_partial_butterfly_neg_sse2(const __m128i in,
const int c0, const int c1,
__m128i *const out0,
__m128i *const out1) {
__m128i temp[2], sign[2];
assert(c0 >= 0);
assert(c1 >= 0);
abs_extend_64bit_sse2(in, temp, sign);
*out0 = multiplication_neg_round_shift_sse2(temp, sign, c1);
*out1 = multiplication_round_shift_sse2(temp, sign, c0);
}
static INLINE void highbd_butterfly_cospi16_sse2(const __m128i in0,
const __m128i in1,
__m128i *const out0,
__m128i *const out1) {
__m128i temp1[2], temp2, sign[2];
temp2 = _mm_add_epi32(in0, in1);
abs_extend_64bit_sse2(temp2, temp1, sign);
*out0 = multiplication_round_shift_sse2(temp1, sign, cospi_16_64);
temp2 = _mm_sub_epi32(in0, in1);
abs_extend_64bit_sse2(temp2, temp1, sign);
*out1 = multiplication_round_shift_sse2(temp1, sign, cospi_16_64);
}
// Only do addition and subtraction butterfly, size = 16, 32
static INLINE void highbd_add_sub_butterfly(const __m128i *in, __m128i *out,
int size) {
int i = 0;
const int num = size >> 1;
const int bound = size - 1;
while (i < num) {
out[i] = _mm_add_epi32(in[i], in[bound - i]);
out[bound - i] = _mm_sub_epi32(in[i], in[bound - i]);
i++;
}
}
static INLINE void highbd_idct8_stage4(const __m128i *const in,
__m128i *const out) {
out[0] = _mm_add_epi32(in[0], in[7]);
out[1] = _mm_add_epi32(in[1], in[6]);
out[2] = _mm_add_epi32(in[2], in[5]);
out[3] = _mm_add_epi32(in[3], in[4]);
out[4] = _mm_sub_epi32(in[3], in[4]);
out[5] = _mm_sub_epi32(in[2], in[5]);
out[6] = _mm_sub_epi32(in[1], in[6]);
out[7] = _mm_sub_epi32(in[0], in[7]);
}
static INLINE void highbd_idct8x8_final_round(__m128i *const io) {
io[0] = wraplow_16bit_shift5(io[0], io[8], _mm_set1_epi32(16));
io[1] = wraplow_16bit_shift5(io[1], io[9], _mm_set1_epi32(16));
io[2] = wraplow_16bit_shift5(io[2], io[10], _mm_set1_epi32(16));
io[3] = wraplow_16bit_shift5(io[3], io[11], _mm_set1_epi32(16));
io[4] = wraplow_16bit_shift5(io[4], io[12], _mm_set1_epi32(16));
io[5] = wraplow_16bit_shift5(io[5], io[13], _mm_set1_epi32(16));
io[6] = wraplow_16bit_shift5(io[6], io[14], _mm_set1_epi32(16));
io[7] = wraplow_16bit_shift5(io[7], io[15], _mm_set1_epi32(16));
}
static INLINE void highbd_idct16_4col_stage7(const __m128i *const in,
__m128i *const out) {
out[0] = _mm_add_epi32(in[0], in[15]);
out[1] = _mm_add_epi32(in[1], in[14]);
out[2] = _mm_add_epi32(in[2], in[13]);
out[3] = _mm_add_epi32(in[3], in[12]);
out[4] = _mm_add_epi32(in[4], in[11]);
out[5] = _mm_add_epi32(in[5], in[10]);
out[6] = _mm_add_epi32(in[6], in[9]);
out[7] = _mm_add_epi32(in[7], in[8]);
out[8] = _mm_sub_epi32(in[7], in[8]);
out[9] = _mm_sub_epi32(in[6], in[9]);
out[10] = _mm_sub_epi32(in[5], in[10]);
out[11] = _mm_sub_epi32(in[4], in[11]);
out[12] = _mm_sub_epi32(in[3], in[12]);
out[13] = _mm_sub_epi32(in[2], in[13]);
out[14] = _mm_sub_epi32(in[1], in[14]);
out[15] = _mm_sub_epi32(in[0], in[15]);
}
static INLINE __m128i add_clamp(const __m128i in0, const __m128i in1,
const int bd) {
const __m128i zero = _mm_set1_epi16(0);
// Faster than _mm_set1_epi16((1 << bd) - 1).
const __m128i one = _mm_set1_epi16(1);
const __m128i max = _mm_sub_epi16(_mm_slli_epi16(one, bd), one);
__m128i d;
d = _mm_adds_epi16(in0, in1);
d = _mm_max_epi16(d, zero);
d = _mm_min_epi16(d, max);
return d;
}
static INLINE void highbd_idct_1_add_kernel(const tran_low_t *input,
uint16_t *dest, int stride, int bd,
const int size) {
int a1, i, j;
tran_low_t out;
__m128i dc, d;
out = HIGHBD_WRAPLOW(
dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd);
out =
HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd);
a1 = ROUND_POWER_OF_TWO(out, (size == 8) ? 5 : 6);
dc = _mm_set1_epi16(a1);
for (i = 0; i < size; ++i) {
for (j = 0; j < size; j += 8) {
d = _mm_load_si128((const __m128i *)(&dest[j]));
d = add_clamp(d, dc, bd);
_mm_store_si128((__m128i *)(&dest[j]), d);
}
dest += stride;
}
}
static INLINE void recon_and_store_4(const __m128i in, uint16_t *const dest,
const int bd) {
__m128i d;
d = _mm_loadl_epi64((const __m128i *)dest);
d = add_clamp(d, in, bd);
_mm_storel_epi64((__m128i *)dest, d);
}
static INLINE void recon_and_store_4x2(const __m128i in, uint16_t *const dest,
const int stride, const int bd) {
__m128i d;
d = _mm_loadl_epi64((const __m128i *)(dest + 0 * stride));
d = _mm_castps_si128(
_mm_loadh_pi(_mm_castsi128_ps(d), (const __m64 *)(dest + 1 * stride)));
d = add_clamp(d, in, bd);
_mm_storel_epi64((__m128i *)(dest + 0 * stride), d);
_mm_storeh_pi((__m64 *)(dest + 1 * stride), _mm_castsi128_ps(d));
}
static INLINE void recon_and_store_4x4(const __m128i *const in, uint16_t *dest,
const int stride, const int bd) {
recon_and_store_4x2(in[0], dest, stride, bd);
dest += 2 * stride;
recon_and_store_4x2(in[1], dest, stride, bd);
}
static INLINE void recon_and_store_8(const __m128i in, uint16_t **const dest,
const int stride, const int bd) {
__m128i d;
d = _mm_load_si128((const __m128i *)(*dest));
d = add_clamp(d, in, bd);
_mm_store_si128((__m128i *)(*dest), d);
*dest += stride;
}
static INLINE void recon_and_store_8x8(const __m128i *const in, uint16_t *dest,
const int stride, const int bd) {
recon_and_store_8(in[0], &dest, stride, bd);
recon_and_store_8(in[1], &dest, stride, bd);
recon_and_store_8(in[2], &dest, stride, bd);
recon_and_store_8(in[3], &dest, stride, bd);
recon_and_store_8(in[4], &dest, stride, bd);
recon_and_store_8(in[5], &dest, stride, bd);
recon_and_store_8(in[6], &dest, stride, bd);
recon_and_store_8(in[7], &dest, stride, bd);
}
static INLINE __m128i load_pack_8_32bit(const tran_low_t *const input) {
const __m128i t0 = _mm_load_si128((const __m128i *)(input + 0));
const __m128i t1 = _mm_load_si128((const __m128i *)(input + 4));
return _mm_packs_epi32(t0, t1);
}
static INLINE void highbd_load_pack_transpose_32bit_8x8(const tran_low_t *input,
const int stride,
__m128i *const in) {
in[0] = load_pack_8_32bit(input + 0 * stride);
in[1] = load_pack_8_32bit(input + 1 * stride);
in[2] = load_pack_8_32bit(input + 2 * stride);
in[3] = load_pack_8_32bit(input + 3 * stride);
in[4] = load_pack_8_32bit(input + 4 * stride);
in[5] = load_pack_8_32bit(input + 5 * stride);
in[6] = load_pack_8_32bit(input + 6 * stride);
in[7] = load_pack_8_32bit(input + 7 * stride);
transpose_16bit_8x8(in, in);
}
static INLINE void highbd_load_transpose_32bit_8x4(const tran_low_t *input,
const int stride,
__m128i *in) {
in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride + 0));
in[1] = _mm_load_si128((const __m128i *)(input + 0 * stride + 4));
in[2] = _mm_load_si128((const __m128i *)(input + 1 * stride + 0));
in[3] = _mm_load_si128((const __m128i *)(input + 1 * stride + 4));
in[4] = _mm_load_si128((const __m128i *)(input + 2 * stride + 0));
in[5] = _mm_load_si128((const __m128i *)(input + 2 * stride + 4));
in[6] = _mm_load_si128((const __m128i *)(input + 3 * stride + 0));
in[7] = _mm_load_si128((const __m128i *)(input + 3 * stride + 4));
transpose_32bit_8x4(in, in);
}
static INLINE void highbd_load_transpose_32bit_4x4(const tran_low_t *input,
const int stride,
__m128i *in) {
in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
transpose_32bit_4x4(in, in);
}
static INLINE void highbd_write_buffer_8(uint16_t *dest, const __m128i in,
const int bd) {
const __m128i final_rounding = _mm_set1_epi16(1 << 5);
__m128i out;
out = _mm_adds_epi16(in, final_rounding);
out = _mm_srai_epi16(out, 6);
recon_and_store_8(out, &dest, 0, bd);
}
static INLINE void highbd_write_buffer_4(uint16_t *const dest, const __m128i in,
const int bd) {
const __m128i final_rounding = _mm_set1_epi32(1 << 5);
__m128i out;
out = _mm_add_epi32(in, final_rounding);
out = _mm_srai_epi32(out, 6);
out = _mm_packs_epi32(out, out);
recon_and_store_4(out, dest, bd);
}
#endif // VPX_VPX_DSP_X86_HIGHBD_INV_TXFM_SSE2_H_