blob: 77355a2085b8525b55692b334961274045d4673a [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <tmmintrin.h> // SSSE3
#include <string.h>
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_filter.h"
#include "vpx_dsp/x86/convolve.h"
#include "vpx_dsp/x86/convolve_sse2.h"
#include "vpx_dsp/x86/convolve_ssse3.h"
#include "vpx_dsp/x86/mem_sse2.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
const __m128i *const s, const int16_t *const filter) {
__m128i f[4];
shuffle_filter_ssse3(filter, f);
return convolve8_8_ssse3(s, f);
}
// Used by the avx2 implementation.
#if VPX_ARCH_X86_64
// Use the intrinsics below
filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3;
#define vpx_filter_block1d4_h8_ssse3 vpx_filter_block1d4_h8_intrin_ssse3
#define vpx_filter_block1d8_h8_ssse3 vpx_filter_block1d8_h8_intrin_ssse3
#define vpx_filter_block1d8_v8_ssse3 vpx_filter_block1d8_v8_intrin_ssse3
#else // VPX_ARCH_X86
// Use the assembly in vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm.
filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
#endif
#if VPX_ARCH_X86_64
void vpx_filter_block1d4_h8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i firstFilters, secondFilters, shuffle1, shuffle2;
__m128i srcRegFilt1, srcRegFilt2;
__m128i addFilterReg64, filtersReg, srcReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter into the first lane
firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
// duplicate only the third 16 bit in the filter into the first lane
secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
// duplicate only the seconds 16 bits in the filter into the second lane
// firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
// duplicate only the forth 16 bits in the filter into the second lane
// secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
// loading the local filters
shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6);
shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// sum the results together, saturating only on the final step
// the specific order of the additions prevents outranges
srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2);
// extract the higher half of the register
srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8);
// add the rounding offset early to avoid another saturated add
srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pitch;
// save only 4 bytes
*((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
output_ptr += output_pitch;
}
}
void vpx_filter_block1d8_h8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
unsigned int i;
__m128i f[4], filt[4], s[4];
shuffle_filter_ssse3(filter, f);
filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12);
filt[3] =
_mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14);
for (i = 0; i < output_height; i++) {
const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
s[0] = _mm_shuffle_epi8(srcReg, filt[0]);
s[1] = _mm_shuffle_epi8(srcReg, filt[1]);
s[2] = _mm_shuffle_epi8(srcReg, filt[2]);
s[3] = _mm_shuffle_epi8(srcReg, filt[3]);
s[0] = convolve8_8_ssse3(s, f);
// shrink to 8 bit each 16 bits
s[0] = _mm_packus_epi16(s[0], s[0]);
src_ptr += src_pitch;
// save only 8 bytes
_mm_storel_epi64((__m128i *)&output_ptr[0], s[0]);
output_ptr += output_pitch;
}
}
void vpx_filter_block1d8_v8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
unsigned int i;
__m128i f[4], s[8], ss[4];
shuffle_filter_ssse3(filter, f);
// load the first 7 rows of 8 bytes
s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch));
s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch));
s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch));
s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch));
s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch));
s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch));
s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch));
for (i = 0; i < output_height; i++) {
// load the last 8 bytes
s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch));
// merge the result together
ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
// merge the result together
ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
ss[0] = convolve8_8_ssse3(ss, f);
// shrink to 8 bit each 16 bits
ss[0] = _mm_packus_epi16(ss[0], ss[0]);
src_ptr += src_pitch;
// shift down a row
s[0] = s[1];
s[1] = s[2];
s[2] = s[3];
s[3] = s[4];
s[4] = s[5];
s[5] = s[6];
s[6] = s[7];
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]);
output_ptr += out_pitch;
}
}
#endif // VPX_ARCH_X86_64
static void vpx_filter_block1d16_h4_ssse3(const uint8_t *src_ptr,
ptrdiff_t src_stride,
uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *kernel) {
// We will cast the kernel from 16-bit words to 8-bit words, and then extract
// the middle four elements of the kernel into two registers in the form
// ... k[3] k[2] k[3] k[2]
// ... k[5] k[4] k[5] k[4]
// Then we shuffle the source into
// ... s[1] s[0] s[0] s[-1]
// ... s[3] s[2] s[2] s[1]
// Calling multiply and add gives us half of the sum. Calling add gives us
// first half of the output. Repeat again to get the second half of the
// output. Finally we shuffle again to combine the two outputs.
__m128i kernel_reg; // Kernel
__m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
int h;
__m128i src_reg, src_reg_shift_0, src_reg_shift_2;
__m128i dst_first, dst_second;
__m128i tmp_0, tmp_1;
__m128i idx_shift_0 =
_mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
__m128i idx_shift_2 =
_mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
// Start one pixel before as we need tap/2 - 1 = 1 sample from the past
src_ptr -= 1;
// Load Kernel
kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm_srai_epi16(kernel_reg, 1);
kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
for (h = height; h > 0; --h) {
// Load the source
src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
// Partial result for first half
tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
dst_first = _mm_adds_epi16(tmp_0, tmp_1);
// Do again to get the second half of dst
// Load the source
src_reg = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
// Partial result for first half
tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
dst_second = _mm_adds_epi16(tmp_0, tmp_1);
// Round each result
dst_first = mm_round_epi16_sse2(&dst_first, &reg_32, 6);
dst_second = mm_round_epi16_sse2(&dst_second, &reg_32, 6);
// Finally combine to get the final dst
dst_first = _mm_packus_epi16(dst_first, dst_second);
_mm_store_si128((__m128i *)dst_ptr, dst_first);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
static void vpx_filter_block1d16_v4_ssse3(const uint8_t *src_ptr,
ptrdiff_t src_stride,
uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *kernel) {
// We will load two rows of pixels as 8-bit words, rearrange them into the
// form
// ... s[0,1] s[-1,1] s[0,0] s[-1,0]
// ... s[0,9] s[-1,9] s[0,8] s[-1,8]
// so that we can call multiply and add with the kernel to get 16-bit words of
// the form
// ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2]
// Finally, we can add multiple rows together to get the desired output.
// Register for source s[-1:3, :]
__m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
// Interleaved rows of the source. lo is first half, hi second
__m128i src_reg_m10_lo, src_reg_m10_hi, src_reg_01_lo, src_reg_01_hi;
__m128i src_reg_12_lo, src_reg_12_hi, src_reg_23_lo, src_reg_23_hi;
__m128i kernel_reg; // Kernel
__m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
// Result after multiply and add
__m128i res_reg_m10_lo, res_reg_01_lo, res_reg_12_lo, res_reg_23_lo;
__m128i res_reg_m10_hi, res_reg_01_hi, res_reg_12_hi, res_reg_23_hi;
__m128i res_reg_m1012, res_reg_0123;
__m128i res_reg_m1012_lo, res_reg_0123_lo, res_reg_m1012_hi, res_reg_0123_hi;
const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
// We will compute the result two rows at a time
const ptrdiff_t src_stride_unrolled = src_stride << 1;
const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
int h;
// Load Kernel
kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm_srai_epi16(kernel_reg, 1);
kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
// First shuffle the data
src_reg_m1 = _mm_loadu_si128((const __m128i *)src_ptr);
src_reg_0 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride));
src_reg_m10_lo = _mm_unpacklo_epi8(src_reg_m1, src_reg_0);
src_reg_m10_hi = _mm_unpackhi_epi8(src_reg_m1, src_reg_0);
// More shuffling
src_reg_1 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 2));
src_reg_01_lo = _mm_unpacklo_epi8(src_reg_0, src_reg_1);
src_reg_01_hi = _mm_unpackhi_epi8(src_reg_0, src_reg_1);
for (h = height; h > 1; h -= 2) {
src_reg_2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 3));
src_reg_12_lo = _mm_unpacklo_epi8(src_reg_1, src_reg_2);
src_reg_12_hi = _mm_unpackhi_epi8(src_reg_1, src_reg_2);
src_reg_3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 4));
src_reg_23_lo = _mm_unpacklo_epi8(src_reg_2, src_reg_3);
src_reg_23_hi = _mm_unpackhi_epi8(src_reg_2, src_reg_3);
// Partial output from first half
res_reg_m10_lo = _mm_maddubs_epi16(src_reg_m10_lo, kernel_reg_23);
res_reg_01_lo = _mm_maddubs_epi16(src_reg_01_lo, kernel_reg_23);
res_reg_12_lo = _mm_maddubs_epi16(src_reg_12_lo, kernel_reg_45);
res_reg_23_lo = _mm_maddubs_epi16(src_reg_23_lo, kernel_reg_45);
// Add to get first half of the results
res_reg_m1012_lo = _mm_adds_epi16(res_reg_m10_lo, res_reg_12_lo);
res_reg_0123_lo = _mm_adds_epi16(res_reg_01_lo, res_reg_23_lo);
// Partial output for second half
res_reg_m10_hi = _mm_maddubs_epi16(src_reg_m10_hi, kernel_reg_23);
res_reg_01_hi = _mm_maddubs_epi16(src_reg_01_hi, kernel_reg_23);
res_reg_12_hi = _mm_maddubs_epi16(src_reg_12_hi, kernel_reg_45);
res_reg_23_hi = _mm_maddubs_epi16(src_reg_23_hi, kernel_reg_45);
// Second half of the results
res_reg_m1012_hi = _mm_adds_epi16(res_reg_m10_hi, res_reg_12_hi);
res_reg_0123_hi = _mm_adds_epi16(res_reg_01_hi, res_reg_23_hi);
// Round the words
res_reg_m1012_lo = mm_round_epi16_sse2(&res_reg_m1012_lo, &reg_32, 6);
res_reg_0123_lo = mm_round_epi16_sse2(&res_reg_0123_lo, &reg_32, 6);
res_reg_m1012_hi = mm_round_epi16_sse2(&res_reg_m1012_hi, &reg_32, 6);
res_reg_0123_hi = mm_round_epi16_sse2(&res_reg_0123_hi, &reg_32, 6);
// Combine to get the result
res_reg_m1012 = _mm_packus_epi16(res_reg_m1012_lo, res_reg_m1012_hi);
res_reg_0123 = _mm_packus_epi16(res_reg_0123_lo, res_reg_0123_hi);
_mm_store_si128((__m128i *)dst_ptr, res_reg_m1012);
_mm_store_si128((__m128i *)(dst_ptr + dst_stride), res_reg_0123);
// Update the source by two rows
src_ptr += src_stride_unrolled;
dst_ptr += dst_stride_unrolled;
src_reg_m10_lo = src_reg_12_lo;
src_reg_m10_hi = src_reg_12_hi;
src_reg_01_lo = src_reg_23_lo;
src_reg_01_hi = src_reg_23_hi;
src_reg_1 = src_reg_3;
}
}
static void vpx_filter_block1d8_h4_ssse3(const uint8_t *src_ptr,
ptrdiff_t src_stride, uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *kernel) {
// We will cast the kernel from 16-bit words to 8-bit words, and then extract
// the middle four elements of the kernel into two registers in the form
// ... k[3] k[2] k[3] k[2]
// ... k[5] k[4] k[5] k[4]
// Then we shuffle the source into
// ... s[1] s[0] s[0] s[-1]
// ... s[3] s[2] s[2] s[1]
// Calling multiply and add gives us half of the sum. Calling add gives us
// first half of the output. Repeat again to get the second half of the
// output. Finally we shuffle again to combine the two outputs.
__m128i kernel_reg; // Kernel
__m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
int h;
__m128i src_reg, src_reg_shift_0, src_reg_shift_2;
__m128i dst_first;
__m128i tmp_0, tmp_1;
__m128i idx_shift_0 =
_mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
__m128i idx_shift_2 =
_mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
// Start one pixel before as we need tap/2 - 1 = 1 sample from the past
src_ptr -= 1;
// Load Kernel
kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm_srai_epi16(kernel_reg, 1);
kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
for (h = height; h > 0; --h) {
// Load the source
src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
// Get the result
tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
dst_first = _mm_adds_epi16(tmp_0, tmp_1);
// Round round result
dst_first = mm_round_epi16_sse2(&dst_first, &reg_32, 6);
// Pack to 8-bits
dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128());
_mm_storel_epi64((__m128i *)dst_ptr, dst_first);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
static void vpx_filter_block1d8_v4_ssse3(const uint8_t *src_ptr,
ptrdiff_t src_stride, uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *kernel) {
// We will load two rows of pixels as 8-bit words, rearrange them into the
// form
// ... s[0,1] s[-1,1] s[0,0] s[-1,0]
// so that we can call multiply and add with the kernel to get 16-bit words of
// the form
// ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2]
// Finally, we can add multiple rows together to get the desired output.
// Register for source s[-1:3, :]
__m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
// Interleaved rows of the source. lo is first half, hi second
__m128i src_reg_m10, src_reg_01;
__m128i src_reg_12, src_reg_23;
__m128i kernel_reg; // Kernel
__m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
// Result after multiply and add
__m128i res_reg_m10, res_reg_01, res_reg_12, res_reg_23;
__m128i res_reg_m1012, res_reg_0123;
const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
// We will compute the result two rows at a time
const ptrdiff_t src_stride_unrolled = src_stride << 1;
const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
int h;
// Load Kernel
kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm_srai_epi16(kernel_reg, 1);
kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
// First shuffle the data
src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr);
src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride));
src_reg_m10 = _mm_unpacklo_epi8(src_reg_m1, src_reg_0);
// More shuffling
src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2));
src_reg_01 = _mm_unpacklo_epi8(src_reg_0, src_reg_1);
for (h = height; h > 1; h -= 2) {
src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3));
src_reg_12 = _mm_unpacklo_epi8(src_reg_1, src_reg_2);
src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4));
src_reg_23 = _mm_unpacklo_epi8(src_reg_2, src_reg_3);
// Partial output
res_reg_m10 = _mm_maddubs_epi16(src_reg_m10, kernel_reg_23);
res_reg_01 = _mm_maddubs_epi16(src_reg_01, kernel_reg_23);
res_reg_12 = _mm_maddubs_epi16(src_reg_12, kernel_reg_45);
res_reg_23 = _mm_maddubs_epi16(src_reg_23, kernel_reg_45);
// Add to get entire output
res_reg_m1012 = _mm_adds_epi16(res_reg_m10, res_reg_12);
res_reg_0123 = _mm_adds_epi16(res_reg_01, res_reg_23);
// Round the words
res_reg_m1012 = mm_round_epi16_sse2(&res_reg_m1012, &reg_32, 6);
res_reg_0123 = mm_round_epi16_sse2(&res_reg_0123, &reg_32, 6);
// Pack from 16-bit to 8-bit
res_reg_m1012 = _mm_packus_epi16(res_reg_m1012, _mm_setzero_si128());
res_reg_0123 = _mm_packus_epi16(res_reg_0123, _mm_setzero_si128());
_mm_storel_epi64((__m128i *)dst_ptr, res_reg_m1012);
_mm_storel_epi64((__m128i *)(dst_ptr + dst_stride), res_reg_0123);
// Update the source by two rows
src_ptr += src_stride_unrolled;
dst_ptr += dst_stride_unrolled;
src_reg_m10 = src_reg_12;
src_reg_01 = src_reg_23;
src_reg_1 = src_reg_3;
}
}
static void vpx_filter_block1d4_h4_ssse3(const uint8_t *src_ptr,
ptrdiff_t src_stride, uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *kernel) {
// We will cast the kernel from 16-bit words to 8-bit words, and then extract
// the middle four elements of the kernel into a single register in the form
// k[5:2] k[5:2] k[5:2] k[5:2]
// Then we shuffle the source into
// s[5:2] s[4:1] s[3:0] s[2:-1]
// Calling multiply and add gives us half of the sum next to each other.
// Calling horizontal add then gives us the output.
__m128i kernel_reg; // Kernel
const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
int h;
__m128i src_reg, src_reg_shuf;
__m128i dst_first;
__m128i shuf_idx =
_mm_setr_epi8(0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6);
// Start one pixel before as we need tap/2 - 1 = 1 sample from the past
src_ptr -= 1;
// Load Kernel
kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm_srai_epi16(kernel_reg, 1);
kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u));
for (h = height; h > 0; --h) {
// Load the source
src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
src_reg_shuf = _mm_shuffle_epi8(src_reg, shuf_idx);
// Get the result
dst_first = _mm_maddubs_epi16(src_reg_shuf, kernel_reg);
dst_first = _mm_hadds_epi16(dst_first, _mm_setzero_si128());
// Round result
dst_first = mm_round_epi16_sse2(&dst_first, &reg_32, 6);
// Pack to 8-bits
dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128());
*((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(dst_first);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
static void vpx_filter_block1d4_v4_ssse3(const uint8_t *src_ptr,
ptrdiff_t src_stride, uint8_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height,
const int16_t *kernel) {
// We will load two rows of pixels as 8-bit words, rearrange them into the
// form
// ... s[2,0] s[1,0] s[0,0] s[-1,0]
// so that we can call multiply and add with the kernel partial output. Then
// we can call horizontal add to get the output.
// Finally, we can add multiple rows together to get the desired output.
// This is done two rows at a time
// Register for source s[-1:3, :]
__m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
// Interleaved rows of the source.
__m128i src_reg_m10, src_reg_01;
__m128i src_reg_12, src_reg_23;
__m128i src_reg_m1001, src_reg_1223;
__m128i src_reg_m1012_1023_lo, src_reg_m1012_1023_hi;
__m128i kernel_reg; // Kernel
// Result after multiply and add
__m128i reg_0, reg_1;
const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
// We will compute the result two rows at a time
const ptrdiff_t src_stride_unrolled = src_stride << 1;
const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
int h;
// Load Kernel
kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm_srai_epi16(kernel_reg, 1);
kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u));
// First shuffle the data
src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr);
src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride));
src_reg_m10 = _mm_unpacklo_epi32(src_reg_m1, src_reg_0);
// More shuffling
src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2));
src_reg_01 = _mm_unpacklo_epi32(src_reg_0, src_reg_1);
// Put three rows next to each other
src_reg_m1001 = _mm_unpacklo_epi8(src_reg_m10, src_reg_01);
for (h = height; h > 1; h -= 2) {
src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3));
src_reg_12 = _mm_unpacklo_epi32(src_reg_1, src_reg_2);
src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4));
src_reg_23 = _mm_unpacklo_epi32(src_reg_2, src_reg_3);
// Put three rows next to each other
src_reg_1223 = _mm_unpacklo_epi8(src_reg_12, src_reg_23);
// Put all four rows next to each other
src_reg_m1012_1023_lo = _mm_unpacklo_epi16(src_reg_m1001, src_reg_1223);
src_reg_m1012_1023_hi = _mm_unpackhi_epi16(src_reg_m1001, src_reg_1223);
// Get the results
reg_0 = _mm_maddubs_epi16(src_reg_m1012_1023_lo, kernel_reg);
reg_1 = _mm_maddubs_epi16(src_reg_m1012_1023_hi, kernel_reg);
reg_0 = _mm_hadds_epi16(reg_0, _mm_setzero_si128());
reg_1 = _mm_hadds_epi16(reg_1, _mm_setzero_si128());
// Round the words
reg_0 = mm_round_epi16_sse2(&reg_0, &reg_32, 6);
reg_1 = mm_round_epi16_sse2(&reg_1, &reg_32, 6);
// Pack from 16-bit to 8-bit and put them in the right order
reg_0 = _mm_packus_epi16(reg_0, reg_0);
reg_1 = _mm_packus_epi16(reg_1, reg_1);
// Save the result
*((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(reg_0);
*((uint32_t *)(dst_ptr + dst_stride)) = _mm_cvtsi128_si32(reg_1);
// Update the source by two rows
src_ptr += src_stride_unrolled;
dst_ptr += dst_stride_unrolled;
src_reg_m1001 = src_reg_1223;
src_reg_1 = src_reg_3;
}
}
// From vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm
filter8_1dfunction vpx_filter_block1d16_v8_ssse3;
filter8_1dfunction vpx_filter_block1d16_h8_ssse3;
filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
// Use the [vh]8 version because there is no [vh]4 implementation.
#define vpx_filter_block1d16_v4_avg_ssse3 vpx_filter_block1d16_v8_avg_ssse3
#define vpx_filter_block1d16_h4_avg_ssse3 vpx_filter_block1d16_h8_avg_ssse3
#define vpx_filter_block1d8_v4_avg_ssse3 vpx_filter_block1d8_v8_avg_ssse3
#define vpx_filter_block1d8_h4_avg_ssse3 vpx_filter_block1d8_h8_avg_ssse3
#define vpx_filter_block1d4_v4_avg_ssse3 vpx_filter_block1d4_v8_avg_ssse3
#define vpx_filter_block1d4_h4_avg_ssse3 vpx_filter_block1d4_h8_avg_ssse3
// From vpx_dsp/x86/vpx_subpixel_bilinear_ssse3.asm
filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3;
// void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
// void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
// void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4,
// int y_step_q4, int w, int h);
// void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4,
// int y_step_q4, int w, int h);
FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3, 0);
FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * (num_taps / 2 - 1), ,
ssse3, 0);
FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3, 1);
FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v,
src - src_stride * (num_taps / 2 - 1), avg_, ssse3, 1);
static void filter_horiz_w8_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride,
uint8_t *const dst,
const int16_t *const x_filter) {
__m128i s[8], ss[4], temp;
load_8bit_8x8(src, src_stride, s);
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
// 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
transpose_16bit_4x8(s, ss);
temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)dst, temp);
}
static void transpose8x8_to_dst(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride) {
__m128i s[8];
load_8bit_8x8(src, src_stride, s);
transpose_8bit_8x8(s, s);
store_8bit_8x8(s, dst, dst_stride);
}
static void scaledconvolve_horiz_w8(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const InterpKernel *const x_filters,
const int x0_q4, const int x_step_q4,
const int w, const int h) {
DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
// This function processes 8x8 areas. The intermediate height is not always
// a multiple of 8, so force it to be a multiple of 8 here.
y = h + (8 - (h & 0x7));
do {
int x_q4 = x0_q4;
for (x = 0; x < w; x += 8) {
// process 8 src_x steps
for (z = 0; z < 8; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
if (x_q4 & SUBPEL_MASK) {
filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
} else {
int i;
for (i = 0; i < 8; ++i) {
temp[z * 8 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 8x8 filters values back to dst
transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
}
src += src_stride * 8;
dst += dst_stride * 8;
} while (y -= 8);
}
static void filter_horiz_w4_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride,
uint8_t *const dst,
const int16_t *const filter) {
__m128i s[4], ss[2];
__m128i temp;
load_8bit_8x4(src, src_stride, s);
transpose_16bit_4x4(s, ss);
// 00 01 10 11 20 21 30 31
s[0] = ss[0];
// 02 03 12 13 22 23 32 33
s[1] = _mm_srli_si128(ss[0], 8);
// 04 05 14 15 24 25 34 35
s[2] = ss[1];
// 06 07 16 17 26 27 36 37
s[3] = _mm_srli_si128(ss[1], 8);
temp = shuffle_filter_convolve8_8_ssse3(s, filter);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 4 bytes
*(int *)dst = _mm_cvtsi128_si32(temp);
}
static void transpose4x4_to_dst(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride) {
__m128i s[4];
load_8bit_4x4(src, src_stride, s);
s[0] = transpose_8bit_4x4(s);
s[1] = _mm_srli_si128(s[0], 4);
s[2] = _mm_srli_si128(s[0], 8);
s[3] = _mm_srli_si128(s[0], 12);
store_8bit_4x4(s, dst, dst_stride);
}
static void scaledconvolve_horiz_w4(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const InterpKernel *const x_filters,
const int x0_q4, const int x_step_q4,
const int w, const int h) {
DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; y += 4) {
int x_q4 = x0_q4;
for (x = 0; x < w; x += 4) {
// process 4 src_x steps
for (z = 0; z < 4; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
if (x_q4 & SUBPEL_MASK) {
filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
} else {
int i;
for (i = 0; i < 4; ++i) {
temp[z * 4 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 4x4 filters values back to dst
transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
}
src += src_stride * 4;
dst += dst_stride * 4;
}
}
static __m128i filter_vert_kernel(const __m128i *const s,
const int16_t *const filter) {
__m128i ss[4];
__m128i temp;
// 00 10 01 11 02 12 03 13
ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
// 20 30 21 31 22 32 23 33
ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
// 40 50 41 51 42 52 43 53
ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
// 60 70 61 71 62 72 63 73
ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
// shrink to 8 bit each 16 bits
return _mm_packus_epi16(temp, temp);
}
static void filter_vert_w4_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const int16_t *const filter) {
__m128i s[8];
__m128i temp;
load_8bit_4x8(src, src_stride, s);
temp = filter_vert_kernel(s, filter);
// save only 4 bytes
*(int *)dst = _mm_cvtsi128_si32(temp);
}
static void scaledconvolve_vert_w4(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void filter_vert_w8_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const int16_t *const filter) {
__m128i s[8], temp;
load_8bit_8x8(src, src_stride, s);
temp = filter_vert_kernel(s, filter);
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)dst, temp);
}
static void scaledconvolve_vert_w8(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void filter_vert_w16_ssse3(const uint8_t *src,
const ptrdiff_t src_stride,
uint8_t *const dst,
const int16_t *const filter, const int w) {
int i;
__m128i f[4];
shuffle_filter_ssse3(filter, f);
for (i = 0; i < w; i += 16) {
__m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;
loadu_8bit_16x8(src, src_stride, s);
// merge the result together
s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
temp_lo = convolve8_8_ssse3(s_lo, f);
temp_hi = convolve8_8_ssse3(s_hi, f);
// shrink to 8 bit each 16 bits, the first lane contain the first convolve
// result and the second lane contain the second convolve result
temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
src += 16;
// save 16 bytes convolve result
_mm_store_si128((__m128i *)&dst[i], temp_hi);
}
}
static void scaledconvolve_vert_w16(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
w);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const InterpKernel *filter,
int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
int w, int h) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
// --Require an additional 8 rows for the horiz_w8 transpose tail.
// When calling in frame scaling function, the smallest scaling factor is x1/4
// ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
// big enough.
DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= 64);
assert(h <= 64);
assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
assert(x_step_q4 <= 64);
if (w >= 8) {
scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
intermediate_height);
} else {
scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
intermediate_height);
}
if (w >= 16) {
scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
} else if (w == 8) {
scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
} else {
scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
}
}
// void vpx_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
// void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const InterpKernel *filter, int x0_q4,
// int32_t x_step_q4, int y0_q4, int y_step_q4,
// int w, int h);
FUN_CONV_2D(, ssse3, 0);
FUN_CONV_2D(avg_, ssse3, 1);