blob: db531eedd8a15738244af9e92a4cee3476b9ce44 [file] [log] [blame]
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramD3D.cpp: Defines the rx::ProgramD3D class which implements rx::ProgramImpl.
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "common/bitset_utils.h"
#include "common/utilities.h"
#include "compiler/translator/blocklayoutHLSL.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Program.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/features.h"
#include "libANGLE/renderer/ContextImpl.h"
#include "libANGLE/renderer/d3d/DynamicHLSL.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/RendererD3D.h"
#include "libANGLE/renderer/d3d/ShaderD3D.h"
#include "libANGLE/renderer/d3d/ShaderExecutableD3D.h"
#include "libANGLE/renderer/d3d/VertexDataManager.h"
#if defined(ANGLE_STD_ASYNC_WORKERS) && defined(_MSC_VER)
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED) && (_MSC_VER >= 1915)
// Starting with MSVC++ 14.15 std::future::wait() will throw an exception
// with the message "Illegal to wait on a task in a Windows Runtime STA"
// whenever it is invoked from the UI thread. This define signals a
// workaround to avoid this exception by invoking future::wait() on a
// separate thread and then immediately doing a thread join.
#define ANGLE_MSVC_STA_EXCEPTION_WORKAROUND
#endif
#endif
#ifdef ANGLE_MSVC_STA_EXCEPTION_WORKAROUND
#include <thread>
#endif
using namespace angle;
namespace rx
{
namespace
{
gl::InputLayout GetDefaultInputLayoutFromShader(const gl::Shader *vertexShader)
{
gl::InputLayout defaultLayout;
for (const sh::Attribute &shaderAttr : vertexShader->getActiveAttributes())
{
if (shaderAttr.type != GL_NONE)
{
GLenum transposedType = gl::TransposeMatrixType(shaderAttr.type);
for (size_t rowIndex = 0;
static_cast<int>(rowIndex) < gl::VariableRowCount(transposedType); ++rowIndex)
{
GLenum componentType = gl::VariableComponentType(transposedType);
GLuint components = static_cast<GLuint>(gl::VariableColumnCount(transposedType));
bool pureInt = (componentType != GL_FLOAT);
gl::VertexFormatType defaultType =
gl::GetVertexFormatType(componentType, GL_FALSE, components, pureInt);
defaultLayout.push_back(defaultType);
}
}
}
return defaultLayout;
}
std::vector<GLenum> GetDefaultOutputLayoutFromShader(
const std::vector<PixelShaderOutputVariable> &shaderOutputVars)
{
std::vector<GLenum> defaultPixelOutput;
if (!shaderOutputVars.empty())
{
defaultPixelOutput.push_back(GL_COLOR_ATTACHMENT0 +
static_cast<unsigned int>(shaderOutputVars[0].outputIndex));
}
return defaultPixelOutput;
}
bool IsRowMajorLayout(const sh::InterfaceBlockField &var)
{
return var.isRowMajorLayout;
}
bool IsRowMajorLayout(const sh::ShaderVariable &var)
{
return false;
}
template <typename VarT>
void GetUniformBlockInfo(const std::vector<VarT> &fields,
const std::string &prefix,
sh::BlockLayoutEncoder *encoder,
bool inRowMajorLayout,
std::map<std::string, sh::BlockMemberInfo> *blockInfoOut)
{
for (const VarT &field : fields)
{
const std::string &fieldName = (prefix.empty() ? field.name : prefix + "." + field.name);
if (field.isStruct())
{
bool rowMajorLayout = (inRowMajorLayout || IsRowMajorLayout(field));
for (unsigned int arrayElement = 0; arrayElement < field.elementCount(); arrayElement++)
{
encoder->enterAggregateType();
const std::string uniformElementName =
fieldName + (field.isArray() ? ArrayString(arrayElement) : "");
GetUniformBlockInfo(field.fields, uniformElementName, encoder, rowMajorLayout,
blockInfoOut);
encoder->exitAggregateType();
}
}
else
{
bool isRowMajorMatrix = (gl::IsMatrixType(field.type) && inRowMajorLayout);
(*blockInfoOut)[fieldName] =
encoder->encodeType(field.type, field.arraySize, isRowMajorMatrix);
}
}
}
template <typename T>
static inline void SetIfDirty(T *dest, const T &source, bool *dirtyFlag)
{
ASSERT(dest != nullptr);
ASSERT(dirtyFlag != nullptr);
*dirtyFlag = *dirtyFlag || (memcmp(dest, &source, sizeof(T)) != 0);
*dest = source;
}
template <typename T, int cols, int rows>
bool TransposeExpandMatrix(T *target, const GLfloat *value)
{
constexpr int targetWidth = 4;
constexpr int targetHeight = rows;
constexpr int srcWidth = rows;
constexpr int srcHeight = cols;
constexpr int copyWidth = std::min(targetHeight, srcWidth);
constexpr int copyHeight = std::min(targetWidth, srcHeight);
T staging[targetWidth * targetHeight] = {0};
for (int x = 0; x < copyWidth; x++)
{
for (int y = 0; y < copyHeight; y++)
{
staging[x * targetWidth + y] = static_cast<T>(value[y * srcWidth + x]);
}
}
if (memcmp(target, staging, targetWidth * targetHeight * sizeof(T)) == 0)
{
return false;
}
memcpy(target, staging, targetWidth * targetHeight * sizeof(T));
return true;
}
template <typename T, int cols, int rows>
bool ExpandMatrix(T *target, const GLfloat *value)
{
constexpr int targetWidth = 4;
constexpr int targetHeight = rows;
constexpr int srcWidth = cols;
constexpr int srcHeight = rows;
constexpr int copyWidth = std::min(targetWidth, srcWidth);
constexpr int copyHeight = std::min(targetHeight, srcHeight);
T staging[targetWidth * targetHeight] = {0};
for (int y = 0; y < copyHeight; y++)
{
for (int x = 0; x < copyWidth; x++)
{
staging[y * targetWidth + x] = static_cast<T>(value[y * srcWidth + x]);
}
}
if (memcmp(target, staging, targetWidth * targetHeight * sizeof(T)) == 0)
{
return false;
}
memcpy(target, staging, targetWidth * targetHeight * sizeof(T));
return true;
}
gl::PrimitiveType GetGeometryShaderTypeFromDrawMode(GLenum drawMode)
{
switch (drawMode)
{
// Uses the point sprite geometry shader.
case GL_POINTS:
return gl::PRIMITIVE_POINTS;
// All line drawing uses the same geometry shader.
case GL_LINES:
case GL_LINE_STRIP:
case GL_LINE_LOOP:
return gl::PRIMITIVE_LINES;
// The triangle fan primitive is emulated with strips in D3D11.
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
return gl::PRIMITIVE_TRIANGLES;
// Special case for triangle strips.
case GL_TRIANGLE_STRIP:
return gl::PRIMITIVE_TRIANGLE_STRIP;
default:
UNREACHABLE();
return gl::PRIMITIVE_TYPE_MAX;
}
}
bool FindFlatInterpolationVarying(const std::vector<sh::Varying> &varyings)
{
// Note: this assumes nested structs can only be packed with one interpolation.
for (const auto &varying : varyings)
{
if (varying.interpolation == sh::INTERPOLATION_FLAT)
{
return true;
}
}
return false;
}
} // anonymous namespace
// D3DUniform Implementation
D3DUniform::D3DUniform(GLenum typeIn,
const std::string &nameIn,
unsigned int arraySizeIn,
bool defaultBlock)
: type(typeIn),
name(nameIn),
arraySize(arraySizeIn),
data(nullptr),
dirty(true),
vsRegisterIndex(GL_INVALID_INDEX),
psRegisterIndex(GL_INVALID_INDEX),
csRegisterIndex(GL_INVALID_INDEX),
registerCount(0),
registerElement(0)
{
// We use data storage for default block uniforms to cache values that are sent to D3D during
// rendering
// Uniform blocks/buffers are treated separately by the Renderer (ES3 path only)
if (defaultBlock)
{
size_t bytes = gl::VariableInternalSize(type) * elementCount();
data = new uint8_t[bytes];
memset(data, 0, bytes);
// Use the row count as register count, will work for non-square matrices.
registerCount = gl::VariableRowCount(type) * elementCount();
}
}
D3DUniform::~D3DUniform()
{
SafeDeleteArray(data);
}
bool D3DUniform::isSampler() const
{
return gl::IsSamplerType(type);
}
bool D3DUniform::isReferencedByVertexShader() const
{
return vsRegisterIndex != GL_INVALID_INDEX;
}
bool D3DUniform::isReferencedByFragmentShader() const
{
return psRegisterIndex != GL_INVALID_INDEX;
}
bool D3DUniform::isReferencedByComputeShader() const
{
return csRegisterIndex != GL_INVALID_INDEX;
}
// D3DVarying Implementation
D3DVarying::D3DVarying() : semanticIndex(0), componentCount(0), outputSlot(0)
{
}
D3DVarying::D3DVarying(const std::string &semanticNameIn,
unsigned int semanticIndexIn,
unsigned int componentCountIn,
unsigned int outputSlotIn)
: semanticName(semanticNameIn),
semanticIndex(semanticIndexIn),
componentCount(componentCountIn),
outputSlot(outputSlotIn)
{
}
// ProgramD3DMetadata Implementation
ProgramD3DMetadata::ProgramD3DMetadata(RendererD3D *renderer,
const ShaderD3D *vertexShader,
const ShaderD3D *fragmentShader)
: mRendererMajorShaderModel(renderer->getMajorShaderModel()),
mShaderModelSuffix(renderer->getShaderModelSuffix()),
mUsesInstancedPointSpriteEmulation(
renderer->getWorkarounds().useInstancedPointSpriteEmulation),
mUsesViewScale(renderer->presentPathFastEnabled()),
mVertexShader(vertexShader),
mFragmentShader(fragmentShader)
{
}
int ProgramD3DMetadata::getRendererMajorShaderModel() const
{
return mRendererMajorShaderModel;
}
bool ProgramD3DMetadata::usesBroadcast(const gl::ContextState &data) const
{
return (mFragmentShader->usesFragColor() && data.getClientMajorVersion() < 3);
}
bool ProgramD3DMetadata::usesFragDepth() const
{
return mFragmentShader->usesFragDepth();
}
bool ProgramD3DMetadata::usesPointCoord() const
{
return mFragmentShader->usesPointCoord();
}
bool ProgramD3DMetadata::usesFragCoord() const
{
return mFragmentShader->usesFragCoord();
}
bool ProgramD3DMetadata::usesPointSize() const
{
return mVertexShader->usesPointSize();
}
bool ProgramD3DMetadata::usesInsertedPointCoordValue() const
{
return (!usesPointSize() || !mUsesInstancedPointSpriteEmulation) && usesPointCoord() &&
mRendererMajorShaderModel >= 4;
}
bool ProgramD3DMetadata::usesViewScale() const
{
return mUsesViewScale;
}
bool ProgramD3DMetadata::addsPointCoordToVertexShader() const
{
// PointSprite emulation requiress that gl_PointCoord is present in the vertex shader
// VS_OUTPUT structure to ensure compatibility with the generated PS_INPUT of the pixel shader.
// Even with a geometry shader, the app can render triangles or lines and reference
// gl_PointCoord in the fragment shader, requiring us to provide a dummy value. For
// simplicity, we always add this to the vertex shader when the fragment shader
// references gl_PointCoord, even if we could skip it in the geometry shader.
return (mUsesInstancedPointSpriteEmulation && usesPointCoord()) ||
usesInsertedPointCoordValue();
}
bool ProgramD3DMetadata::usesTransformFeedbackGLPosition() const
{
// gl_Position only needs to be outputted from the vertex shader if transform feedback is
// active. This isn't supported on D3D11 Feature Level 9_3, so we don't output gl_Position from
// the vertex shader in this case. This saves us 1 output vector.
return !(mRendererMajorShaderModel >= 4 && mShaderModelSuffix != "");
}
bool ProgramD3DMetadata::usesSystemValuePointSize() const
{
return !mUsesInstancedPointSpriteEmulation && usesPointSize();
}
bool ProgramD3DMetadata::usesMultipleFragmentOuts() const
{
return mFragmentShader->usesMultipleRenderTargets();
}
GLint ProgramD3DMetadata::getMajorShaderVersion() const
{
return mVertexShader->getData().getShaderVersion();
}
const ShaderD3D *ProgramD3DMetadata::getFragmentShader() const
{
return mFragmentShader;
}
// ProgramD3D Implementation
ProgramD3D::VertexExecutable::VertexExecutable(const gl::InputLayout &inputLayout,
const Signature &signature,
ShaderExecutableD3D *shaderExecutable)
: mInputs(inputLayout), mSignature(signature), mShaderExecutable(shaderExecutable)
{
}
ProgramD3D::VertexExecutable::~VertexExecutable()
{
SafeDelete(mShaderExecutable);
}
// static
ProgramD3D::VertexExecutable::HLSLAttribType ProgramD3D::VertexExecutable::GetAttribType(
GLenum type)
{
switch (type)
{
case GL_INT:
return HLSLAttribType::SIGNED_INT;
case GL_UNSIGNED_INT:
return HLSLAttribType::UNSIGNED_INT;
case GL_SIGNED_NORMALIZED:
case GL_UNSIGNED_NORMALIZED:
case GL_FLOAT:
return HLSLAttribType::FLOAT;
default:
UNREACHABLE();
return HLSLAttribType::FLOAT;
}
}
// static
void ProgramD3D::VertexExecutable::getSignature(RendererD3D *renderer,
const gl::InputLayout &inputLayout,
Signature *signatureOut)
{
signatureOut->assign(inputLayout.size(), HLSLAttribType::FLOAT);
for (size_t index = 0; index < inputLayout.size(); ++index)
{
gl::VertexFormatType vertexFormatType = inputLayout[index];
if (vertexFormatType == gl::VERTEX_FORMAT_INVALID)
continue;
VertexConversionType conversionType = renderer->getVertexConversionType(vertexFormatType);
if ((conversionType & VERTEX_CONVERT_GPU) == 0)
continue;
GLenum componentType = renderer->getVertexComponentType(vertexFormatType);
(*signatureOut)[index] = GetAttribType(componentType);
}
}
bool ProgramD3D::VertexExecutable::matchesSignature(const Signature &signature) const
{
size_t limit = std::max(mSignature.size(), signature.size());
for (size_t index = 0; index < limit; ++index)
{
// treat undefined indexes as FLOAT
auto a = index < signature.size() ? signature[index] : HLSLAttribType::FLOAT;
auto b = index < mSignature.size() ? mSignature[index] : HLSLAttribType::FLOAT;
if (a != b)
return false;
}
return true;
}
ProgramD3D::PixelExecutable::PixelExecutable(const std::vector<GLenum> &outputSignature,
ShaderExecutableD3D *shaderExecutable)
: mOutputSignature(outputSignature), mShaderExecutable(shaderExecutable)
{
}
ProgramD3D::PixelExecutable::~PixelExecutable()
{
SafeDelete(mShaderExecutable);
}
ProgramD3D::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(GL_TEXTURE_2D)
{
}
unsigned int ProgramD3D::mCurrentSerial = 1;
ProgramD3D::ProgramD3D(const gl::ProgramState &state, RendererD3D *renderer)
: ProgramImpl(state),
mRenderer(renderer),
mDynamicHLSL(nullptr),
mGeometryExecutables(gl::PRIMITIVE_TYPE_MAX),
mComputeExecutable(nullptr),
mUsesPointSize(false),
mUsesFlatInterpolation(false),
mVertexUniformStorage(nullptr),
mFragmentUniformStorage(nullptr),
mComputeUniformStorage(nullptr),
mUsedVertexSamplerRange(0),
mUsedPixelSamplerRange(0),
mUsedComputeSamplerRange(0),
mDirtySamplerMapping(true),
mSerial(issueSerial())
{
mDynamicHLSL = new DynamicHLSL(renderer);
}
ProgramD3D::~ProgramD3D()
{
reset();
SafeDelete(mDynamicHLSL);
}
bool ProgramD3D::usesPointSpriteEmulation() const
{
return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4;
}
bool ProgramD3D::usesGeometryShader(GLenum drawMode) const
{
if (drawMode != GL_POINTS)
{
return mUsesFlatInterpolation;
}
return usesPointSpriteEmulation() && !usesInstancedPointSpriteEmulation();
}
bool ProgramD3D::usesInstancedPointSpriteEmulation() const
{
return mRenderer->getWorkarounds().useInstancedPointSpriteEmulation;
}
GLint ProgramD3D::getSamplerMapping(gl::SamplerType type,
unsigned int samplerIndex,
const gl::Caps &caps) const
{
GLint logicalTextureUnit = -1;
switch (type)
{
case gl::SAMPLER_PIXEL:
ASSERT(samplerIndex < caps.maxTextureImageUnits);
if (samplerIndex < mSamplersPS.size() && mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case gl::SAMPLER_VERTEX:
ASSERT(samplerIndex < caps.maxVertexTextureImageUnits);
if (samplerIndex < mSamplersVS.size() && mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
case gl::SAMPLER_COMPUTE:
ASSERT(samplerIndex < caps.maxComputeTextureImageUnits);
if (samplerIndex < mSamplersCS.size() && mSamplersCS[samplerIndex].active)
{
logicalTextureUnit = mSamplersCS[samplerIndex].logicalTextureUnit;
}
break;
default:
UNREACHABLE();
}
if (logicalTextureUnit >= 0 &&
logicalTextureUnit < static_cast<GLint>(caps.maxCombinedTextureImageUnits))
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLenum ProgramD3D::getSamplerTextureType(gl::SamplerType type, unsigned int samplerIndex) const
{
switch (type)
{
case gl::SAMPLER_PIXEL:
ASSERT(samplerIndex < mSamplersPS.size());
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case gl::SAMPLER_VERTEX:
ASSERT(samplerIndex < mSamplersVS.size());
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
case gl::SAMPLER_COMPUTE:
ASSERT(samplerIndex < mSamplersCS.size());
ASSERT(mSamplersCS[samplerIndex].active);
return mSamplersCS[samplerIndex].textureType;
default:
UNREACHABLE();
}
return GL_TEXTURE_2D;
}
GLuint ProgramD3D::getUsedSamplerRange(gl::SamplerType type) const
{
switch (type)
{
case gl::SAMPLER_PIXEL:
return mUsedPixelSamplerRange;
case gl::SAMPLER_VERTEX:
return mUsedVertexSamplerRange;
case gl::SAMPLER_COMPUTE:
return mUsedComputeSamplerRange;
default:
UNREACHABLE();
return 0u;
}
}
void ProgramD3D::updateSamplerMapping()
{
if (!mDirtySamplerMapping)
{
return;
}
mDirtySamplerMapping = false;
// Retrieve sampler uniform values
for (const D3DUniform *d3dUniform : mD3DUniforms)
{
if (!d3dUniform->dirty)
continue;
if (!d3dUniform->isSampler())
continue;
int count = d3dUniform->elementCount();
const GLint(*v)[4] = reinterpret_cast<const GLint(*)[4]>(d3dUniform->data);
if (d3dUniform->isReferencedByFragmentShader())
{
unsigned int firstIndex = d3dUniform->psRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersPS.size())
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
if (d3dUniform->isReferencedByVertexShader())
{
unsigned int firstIndex = d3dUniform->vsRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersVS.size())
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
if (d3dUniform->isReferencedByComputeShader())
{
unsigned int firstIndex = d3dUniform->csRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersCS.size())
{
ASSERT(mSamplersCS[samplerIndex].active);
mSamplersCS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
}
}
LinkResult ProgramD3D::load(const ContextImpl *contextImpl,
gl::InfoLog &infoLog,
gl::BinaryInputStream *stream)
{
// TODO(jmadill): Use Renderer from contextImpl.
reset();
DeviceIdentifier binaryDeviceIdentifier = {0};
stream->readBytes(reinterpret_cast<unsigned char *>(&binaryDeviceIdentifier),
sizeof(DeviceIdentifier));
DeviceIdentifier identifier = mRenderer->getAdapterIdentifier();
if (memcmp(&identifier, &binaryDeviceIdentifier, sizeof(DeviceIdentifier)) != 0)
{
infoLog << "Invalid program binary, device configuration has changed.";
return false;
}
int compileFlags = stream->readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog << "Mismatched compilation flags.";
return false;
}
for (int &index : mAttribLocationToD3DSemantic)
{
stream->readInt(&index);
}
const unsigned int psSamplerCount = stream->readInt<unsigned int>();
for (unsigned int i = 0; i < psSamplerCount; ++i)
{
Sampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readInt(&sampler.textureType);
mSamplersPS.push_back(sampler);
}
const unsigned int vsSamplerCount = stream->readInt<unsigned int>();
for (unsigned int i = 0; i < vsSamplerCount; ++i)
{
Sampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readInt(&sampler.textureType);
mSamplersVS.push_back(sampler);
}
const unsigned int csSamplerCount = stream->readInt<unsigned int>();
for (unsigned int i = 0; i < csSamplerCount; ++i)
{
Sampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readInt(&sampler.textureType);
mSamplersCS.push_back(sampler);
}
stream->readInt(&mUsedVertexSamplerRange);
stream->readInt(&mUsedPixelSamplerRange);
stream->readInt(&mUsedComputeSamplerRange);
const unsigned int uniformCount = stream->readInt<unsigned int>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
const auto &linkedUniforms = mState.getUniforms();
ASSERT(mD3DUniforms.empty());
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++)
{
const gl::LinkedUniform &linkedUniform = linkedUniforms[uniformIndex];
D3DUniform *d3dUniform =
new D3DUniform(linkedUniform.type, linkedUniform.name, linkedUniform.arraySize,
linkedUniform.isInDefaultBlock());
stream->readInt(&d3dUniform->psRegisterIndex);
stream->readInt(&d3dUniform->vsRegisterIndex);
stream->readInt(&d3dUniform->csRegisterIndex);
stream->readInt(&d3dUniform->registerCount);
stream->readInt(&d3dUniform->registerElement);
mD3DUniforms.push_back(d3dUniform);
}
const unsigned int blockCount = stream->readInt<unsigned int>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mD3DUniformBlocks.empty());
for (unsigned int blockIndex = 0; blockIndex < blockCount; ++blockIndex)
{
D3DUniformBlock uniformBlock;
stream->readInt(&uniformBlock.psRegisterIndex);
stream->readInt(&uniformBlock.vsRegisterIndex);
stream->readInt(&uniformBlock.csRegisterIndex);
mD3DUniformBlocks.push_back(uniformBlock);
}
const unsigned int streamOutVaryingCount = stream->readInt<unsigned int>();
mStreamOutVaryings.resize(streamOutVaryingCount);
for (unsigned int varyingIndex = 0; varyingIndex < streamOutVaryingCount; ++varyingIndex)
{
D3DVarying *varying = &mStreamOutVaryings[varyingIndex];
stream->readString(&varying->semanticName);
stream->readInt(&varying->semanticIndex);
stream->readInt(&varying->componentCount);
stream->readInt(&varying->outputSlot);
}
stream->readString(&mVertexHLSL);
stream->readBytes(reinterpret_cast<unsigned char *>(&mVertexWorkarounds),
sizeof(angle::CompilerWorkaroundsD3D));
stream->readString(&mPixelHLSL);
stream->readBytes(reinterpret_cast<unsigned char *>(&mPixelWorkarounds),
sizeof(angle::CompilerWorkaroundsD3D));
stream->readBool(&mUsesFragDepth);
stream->readBool(&mUsesPointSize);
stream->readBool(&mUsesFlatInterpolation);
const size_t pixelShaderKeySize = stream->readInt<unsigned int>();
mPixelShaderKey.resize(pixelShaderKeySize);
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKeySize;
pixelShaderKeyIndex++)
{
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].type);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].name);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].source);
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputIndex);
}
stream->readString(&mGeometryShaderPreamble);
const unsigned char *binary = reinterpret_cast<const unsigned char *>(stream->data());
bool separateAttribs = (mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS);
const unsigned int vertexShaderCount = stream->readInt<unsigned int>();
for (unsigned int vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount;
vertexShaderIndex++)
{
size_t inputLayoutSize = stream->readInt<size_t>();
gl::InputLayout inputLayout(inputLayoutSize, gl::VERTEX_FORMAT_INVALID);
for (size_t inputIndex = 0; inputIndex < inputLayoutSize; inputIndex++)
{
inputLayout[inputIndex] = stream->readInt<gl::VertexFormatType>();
}
unsigned int vertexShaderSize = stream->readInt<unsigned int>();
const unsigned char *vertexShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = nullptr;
ANGLE_TRY(mRenderer->loadExecutable(vertexShaderFunction, vertexShaderSize, SHADER_VERTEX,
mStreamOutVaryings, separateAttribs,
&shaderExecutable));
if (!shaderExecutable)
{
infoLog << "Could not create vertex shader.";
return false;
}
// generated converted input layout
VertexExecutable::Signature signature;
VertexExecutable::getSignature(mRenderer, inputLayout, &signature);
// add new binary
mVertexExecutables.push_back(std::unique_ptr<VertexExecutable>(
new VertexExecutable(inputLayout, signature, shaderExecutable)));
stream->skip(vertexShaderSize);
}
const size_t pixelShaderCount = stream->readInt<unsigned int>();
for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++)
{
const size_t outputCount = stream->readInt<unsigned int>();
std::vector<GLenum> outputs(outputCount);
for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++)
{
stream->readInt(&outputs[outputIndex]);
}
const size_t pixelShaderSize = stream->readInt<unsigned int>();
const unsigned char *pixelShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = nullptr;
ANGLE_TRY(mRenderer->loadExecutable(pixelShaderFunction, pixelShaderSize, SHADER_PIXEL,
mStreamOutVaryings, separateAttribs,
&shaderExecutable));
if (!shaderExecutable)
{
infoLog << "Could not create pixel shader.";
return false;
}
// add new binary
mPixelExecutables.push_back(
std::unique_ptr<PixelExecutable>(new PixelExecutable(outputs, shaderExecutable)));
stream->skip(pixelShaderSize);
}
for (unsigned int geometryExeIndex = 0; geometryExeIndex < gl::PRIMITIVE_TYPE_MAX;
++geometryExeIndex)
{
unsigned int geometryShaderSize = stream->readInt<unsigned int>();
if (geometryShaderSize == 0)
{
continue;
}
const unsigned char *geometryShaderFunction = binary + stream->offset();
ShaderExecutableD3D *geometryExecutable = nullptr;
ANGLE_TRY(mRenderer->loadExecutable(geometryShaderFunction, geometryShaderSize,
SHADER_GEOMETRY, mStreamOutVaryings, separateAttribs,
&geometryExecutable));
if (!geometryExecutable)
{
infoLog << "Could not create geometry shader.";
return false;
}
mGeometryExecutables[geometryExeIndex].reset(geometryExecutable);
stream->skip(geometryShaderSize);
}
unsigned int computeShaderSize = stream->readInt<unsigned int>();
if (computeShaderSize > 0)
{
const unsigned char *computeShaderFunction = binary + stream->offset();
ShaderExecutableD3D *computeExecutable = nullptr;
ANGLE_TRY(mRenderer->loadExecutable(computeShaderFunction, computeShaderSize,
SHADER_COMPUTE, std::vector<D3DVarying>(), false,
&computeExecutable));
if (!computeExecutable)
{
infoLog << "Could not create compute shader.";
return false;
}
mComputeExecutable.reset(computeExecutable);
}
initializeUniformStorage();
return true;
}
gl::Error ProgramD3D::save(gl::BinaryOutputStream *stream)
{
// Output the DeviceIdentifier before we output any shader code
// When we load the binary again later, we can validate the device identifier before trying to
// compile any HLSL
DeviceIdentifier binaryIdentifier = mRenderer->getAdapterIdentifier();
stream->writeBytes(reinterpret_cast<unsigned char *>(&binaryIdentifier),
sizeof(DeviceIdentifier));
stream->writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
for (int d3dSemantic : mAttribLocationToD3DSemantic)
{
stream->writeInt(d3dSemantic);
}
stream->writeInt(mSamplersPS.size());
for (unsigned int i = 0; i < mSamplersPS.size(); ++i)
{
stream->writeInt(mSamplersPS[i].active);
stream->writeInt(mSamplersPS[i].logicalTextureUnit);
stream->writeInt(mSamplersPS[i].textureType);
}
stream->writeInt(mSamplersVS.size());
for (unsigned int i = 0; i < mSamplersVS.size(); ++i)
{
stream->writeInt(mSamplersVS[i].active);
stream->writeInt(mSamplersVS[i].logicalTextureUnit);
stream->writeInt(mSamplersVS[i].textureType);
}
stream->writeInt(mSamplersCS.size());
for (unsigned int i = 0; i < mSamplersCS.size(); ++i)
{
stream->writeInt(mSamplersCS[i].active);
stream->writeInt(mSamplersCS[i].logicalTextureUnit);
stream->writeInt(mSamplersCS[i].textureType);
}
stream->writeInt(mUsedVertexSamplerRange);
stream->writeInt(mUsedPixelSamplerRange);
stream->writeInt(mUsedComputeSamplerRange);
stream->writeInt(mD3DUniforms.size());
for (const D3DUniform *uniform : mD3DUniforms)
{
// Type, name and arraySize are redundant, so aren't stored in the binary.
stream->writeIntOrNegOne(uniform->psRegisterIndex);
stream->writeIntOrNegOne(uniform->vsRegisterIndex);
stream->writeIntOrNegOne(uniform->csRegisterIndex);
stream->writeInt(uniform->registerCount);
stream->writeInt(uniform->registerElement);
}
// Ensure we init the uniform block structure data if we should.
// http://anglebug.com/1637
ensureUniformBlocksInitialized();
stream->writeInt(mD3DUniformBlocks.size());
for (const D3DUniformBlock &uniformBlock : mD3DUniformBlocks)
{
stream->writeIntOrNegOne(uniformBlock.psRegisterIndex);
stream->writeIntOrNegOne(uniformBlock.vsRegisterIndex);
stream->writeIntOrNegOne(uniformBlock.csRegisterIndex);
}
stream->writeInt(mStreamOutVaryings.size());
for (const auto &varying : mStreamOutVaryings)
{
stream->writeString(varying.semanticName);
stream->writeInt(varying.semanticIndex);
stream->writeInt(varying.componentCount);
stream->writeInt(varying.outputSlot);
}
stream->writeString(mVertexHLSL);
stream->writeBytes(reinterpret_cast<unsigned char *>(&mVertexWorkarounds),
sizeof(angle::CompilerWorkaroundsD3D));
stream->writeString(mPixelHLSL);
stream->writeBytes(reinterpret_cast<unsigned char *>(&mPixelWorkarounds),
sizeof(angle::CompilerWorkaroundsD3D));
stream->writeInt(mUsesFragDepth);
stream->writeInt(mUsesPointSize);
stream->writeInt(mUsesFlatInterpolation);
const std::vector<PixelShaderOutputVariable> &pixelShaderKey = mPixelShaderKey;
stream->writeInt(pixelShaderKey.size());
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKey.size();
pixelShaderKeyIndex++)
{
const PixelShaderOutputVariable &variable = pixelShaderKey[pixelShaderKeyIndex];
stream->writeInt(variable.type);
stream->writeString(variable.name);
stream->writeString(variable.source);
stream->writeInt(variable.outputIndex);
}
stream->writeString(mGeometryShaderPreamble);
stream->writeInt(mVertexExecutables.size());
for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size();
vertexExecutableIndex++)
{
VertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex].get();
const auto &inputLayout = vertexExecutable->inputs();
stream->writeInt(inputLayout.size());
for (size_t inputIndex = 0; inputIndex < inputLayout.size(); inputIndex++)
{
stream->writeInt(static_cast<unsigned int>(inputLayout[inputIndex]));
}
size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength();
stream->writeInt(vertexShaderSize);
const uint8_t *vertexBlob = vertexExecutable->shaderExecutable()->getFunction();
stream->writeBytes(vertexBlob, vertexShaderSize);
}
stream->writeInt(mPixelExecutables.size());
for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size();
pixelExecutableIndex++)
{
PixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex].get();
const std::vector<GLenum> outputs = pixelExecutable->outputSignature();
stream->writeInt(outputs.size());
for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++)
{
stream->writeInt(outputs[outputIndex]);
}
size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength();
stream->writeInt(pixelShaderSize);
const uint8_t *pixelBlob = pixelExecutable->shaderExecutable()->getFunction();
stream->writeBytes(pixelBlob, pixelShaderSize);
}
for (auto const &geometryExecutable : mGeometryExecutables)
{
if (!geometryExecutable)
{
stream->writeInt(0);
continue;
}
size_t geometryShaderSize = geometryExecutable->getLength();
stream->writeInt(geometryShaderSize);
stream->writeBytes(geometryExecutable->getFunction(), geometryShaderSize);
}
if (mComputeExecutable)
{
size_t computeShaderSize = mComputeExecutable->getLength();
stream->writeInt(computeShaderSize);
stream->writeBytes(mComputeExecutable->getFunction(), computeShaderSize);
}
else
{
stream->writeInt(0);
}
return gl::NoError();
}
void ProgramD3D::setBinaryRetrievableHint(bool /* retrievable */)
{
}
void ProgramD3D::setSeparable(bool /* separable */)
{
}
gl::Error ProgramD3D::getPixelExecutableForFramebuffer(const gl::Framebuffer *fbo,
ShaderExecutableD3D **outExecutable)
{
mPixelShaderOutputFormatCache.clear();
const FramebufferD3D *fboD3D = GetImplAs<FramebufferD3D>(fbo);
const gl::AttachmentList &colorbuffers = fboD3D->getColorAttachmentsForRender();
for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment)
{
const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment];
if (colorbuffer)
{
mPixelShaderOutputFormatCache.push_back(colorbuffer->getBinding() == GL_BACK
? GL_COLOR_ATTACHMENT0
: colorbuffer->getBinding());
}
else
{
mPixelShaderOutputFormatCache.push_back(GL_NONE);
}
}
return getPixelExecutableForOutputLayout(mPixelShaderOutputFormatCache, outExecutable, nullptr);
}
gl::Error ProgramD3D::getPixelExecutableForOutputLayout(const std::vector<GLenum> &outputSignature,
ShaderExecutableD3D **outExectuable,
gl::InfoLog *infoLog)
{
for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++)
{
if (mPixelExecutables[executableIndex]->matchesSignature(outputSignature))
{
*outExectuable = mPixelExecutables[executableIndex]->shaderExecutable();
return gl::NoError();
}
}
std::string finalPixelHLSL = mDynamicHLSL->generatePixelShaderForOutputSignature(
mPixelHLSL, mPixelShaderKey, mUsesFragDepth, outputSignature);
// Generate new pixel executable
ShaderExecutableD3D *pixelExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(mRenderer->compileToExecutable(
*currentInfoLog, finalPixelHLSL, SHADER_PIXEL, mStreamOutVaryings,
(mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS), mPixelWorkarounds,
&pixelExecutable));
if (pixelExecutable)
{
mPixelExecutables.push_back(std::unique_ptr<PixelExecutable>(
new PixelExecutable(outputSignature, pixelExecutable)));
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic pixel executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExectuable = pixelExecutable;
return gl::NoError();
}
gl::Error ProgramD3D::getVertexExecutableForInputLayout(const gl::InputLayout &inputLayout,
ShaderExecutableD3D **outExectuable,
gl::InfoLog *infoLog)
{
VertexExecutable::getSignature(mRenderer, inputLayout, &mCachedVertexSignature);
for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++)
{
if (mVertexExecutables[executableIndex]->matchesSignature(mCachedVertexSignature))
{
*outExectuable = mVertexExecutables[executableIndex]->shaderExecutable();
return gl::NoError();
}
}
// Generate new dynamic layout with attribute conversions
std::string finalVertexHLSL = mDynamicHLSL->generateVertexShaderForInputLayout(
mVertexHLSL, inputLayout, mState.getAttributes());
// Generate new vertex executable
ShaderExecutableD3D *vertexExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(mRenderer->compileToExecutable(
*currentInfoLog, finalVertexHLSL, SHADER_VERTEX, mStreamOutVaryings,
(mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS), mVertexWorkarounds,
&vertexExecutable));
if (vertexExecutable)
{
mVertexExecutables.push_back(std::unique_ptr<VertexExecutable>(
new VertexExecutable(inputLayout, mCachedVertexSignature, vertexExecutable)));
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic vertex executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExectuable = vertexExecutable;
return gl::NoError();
}
gl::Error ProgramD3D::getGeometryExecutableForPrimitiveType(const gl::ContextState &data,
GLenum drawMode,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
if (outExecutable)
{
*outExecutable = nullptr;
}
// Return a null shader if the current rendering doesn't use a geometry shader
if (!usesGeometryShader(drawMode))
{
return gl::NoError();
}
gl::PrimitiveType geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode);
if (mGeometryExecutables[geometryShaderType])
{
if (outExecutable)
{
*outExecutable = mGeometryExecutables[geometryShaderType].get();
}
return gl::NoError();
}
std::string geometryHLSL = mDynamicHLSL->generateGeometryShaderHLSL(
geometryShaderType, data, mState, mRenderer->presentPathFastEnabled(),
mGeometryShaderPreamble);
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ShaderExecutableD3D *geometryExecutable = nullptr;
gl::Error error = mRenderer->compileToExecutable(
*currentInfoLog, geometryHLSL, SHADER_GEOMETRY, mStreamOutVaryings,
(mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS),
angle::CompilerWorkaroundsD3D(), &geometryExecutable);
if (!infoLog && error.isError())
{
ERR() << "Error compiling dynamic geometry executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
if (geometryExecutable != nullptr)
{
mGeometryExecutables[geometryShaderType].reset(geometryExecutable);
}
if (outExecutable)
{
*outExecutable = mGeometryExecutables[geometryShaderType].get();
}
return error;
}
class ProgramD3D::GetExecutableTask : public Closure
{
public:
GetExecutableTask(ProgramD3D *program)
: mProgram(program), mError(GL_NO_ERROR), mInfoLog(), mResult(nullptr)
{
}
virtual gl::Error run() = 0;
void operator()() override { mError = run(); }
const gl::Error &getError() const { return mError; }
const gl::InfoLog &getInfoLog() const { return mInfoLog; }
ShaderExecutableD3D *getResult() { return mResult; }
protected:
ProgramD3D *mProgram;
gl::Error mError;
gl::InfoLog mInfoLog;
ShaderExecutableD3D *mResult;
};
class ProgramD3D::GetVertexExecutableTask : public ProgramD3D::GetExecutableTask
{
public:
GetVertexExecutableTask(ProgramD3D *program) : GetExecutableTask(program) {}
gl::Error run() override
{
const auto &defaultInputLayout =
GetDefaultInputLayoutFromShader(mProgram->mState.getAttachedVertexShader());
ANGLE_TRY(
mProgram->getVertexExecutableForInputLayout(defaultInputLayout, &mResult, &mInfoLog));
return gl::NoError();
}
};
class ProgramD3D::GetPixelExecutableTask : public ProgramD3D::GetExecutableTask
{
public:
GetPixelExecutableTask(ProgramD3D *program) : GetExecutableTask(program) {}
gl::Error run() override
{
const auto &defaultPixelOutput =
GetDefaultOutputLayoutFromShader(mProgram->getPixelShaderKey());
ANGLE_TRY(
mProgram->getPixelExecutableForOutputLayout(defaultPixelOutput, &mResult, &mInfoLog));
return gl::NoError();
}
};
class ProgramD3D::GetGeometryExecutableTask : public ProgramD3D::GetExecutableTask
{
public:
GetGeometryExecutableTask(ProgramD3D *program, const gl::ContextState &contextState)
: GetExecutableTask(program), mContextState(contextState)
{
}
gl::Error run() override
{
// Auto-generate the geometry shader here, if we expect to be using point rendering in
// D3D11.
if (mProgram->usesGeometryShader(GL_POINTS))
{
ANGLE_TRY(mProgram->getGeometryExecutableForPrimitiveType(mContextState, GL_POINTS,
&mResult, &mInfoLog));
}
return gl::NoError();
}
private:
const gl::ContextState &mContextState;
};
gl::Error ProgramD3D::getComputeExecutable(ShaderExecutableD3D **outExecutable)
{
if (outExecutable)
{
*outExecutable = mComputeExecutable.get();
}
return gl::NoError();
}
LinkResult ProgramD3D::compileProgramExecutables(const gl::ContextState &contextState,
gl::InfoLog &infoLog)
{
// Ensure the compiler is initialized to avoid race conditions.
ANGLE_TRY(mRenderer->ensureHLSLCompilerInitialized());
WorkerThreadPool *workerPool = mRenderer->getWorkerThreadPool();
GetVertexExecutableTask vertexTask(this);
GetPixelExecutableTask pixelTask(this);
GetGeometryExecutableTask geometryTask(this, contextState);
std::array<WaitableEvent, 3> waitEvents = {{workerPool->postWorkerTask(&vertexTask),
workerPool->postWorkerTask(&pixelTask),
workerPool->postWorkerTask(&geometryTask)}};
#ifdef ANGLE_MSVC_STA_EXCEPTION_WORKAROUND
std::thread([&]() { WaitableEvent::WaitMany(&waitEvents); }).join();
#else
WaitableEvent::WaitMany(&waitEvents);
#endif
infoLog << vertexTask.getInfoLog().str();
infoLog << pixelTask.getInfoLog().str();
infoLog << geometryTask.getInfoLog().str();
ANGLE_TRY(vertexTask.getError());
ANGLE_TRY(pixelTask.getError());
ANGLE_TRY(geometryTask.getError());
ShaderExecutableD3D *defaultVertexExecutable = vertexTask.getResult();
ShaderExecutableD3D *defaultPixelExecutable = pixelTask.getResult();
ShaderExecutableD3D *pointGS = geometryTask.getResult();
const ShaderD3D *vertexShaderD3D = GetImplAs<ShaderD3D>(mState.getAttachedVertexShader());
if (usesGeometryShader(GL_POINTS) && pointGS)
{
// Geometry shaders are currently only used internally, so there is no corresponding shader
// object at the interface level. For now the geometry shader debug info is prepended to
// the vertex shader.
vertexShaderD3D->appendDebugInfo("// GEOMETRY SHADER BEGIN\n\n");
vertexShaderD3D->appendDebugInfo(pointGS->getDebugInfo());
vertexShaderD3D->appendDebugInfo("\nGEOMETRY SHADER END\n\n\n");
}
if (defaultVertexExecutable)
{
vertexShaderD3D->appendDebugInfo(defaultVertexExecutable->getDebugInfo());
}
if (defaultPixelExecutable)
{
const ShaderD3D *fragmentShaderD3D =
GetImplAs<ShaderD3D>(mState.getAttachedFragmentShader());
fragmentShaderD3D->appendDebugInfo(defaultPixelExecutable->getDebugInfo());
}
return (defaultVertexExecutable && defaultPixelExecutable &&
(!usesGeometryShader(GL_POINTS) || pointGS));
}
LinkResult ProgramD3D::compileComputeExecutable(gl::InfoLog &infoLog)
{
// Ensure the compiler is initialized to avoid race conditions.
ANGLE_TRY(mRenderer->ensureHLSLCompilerInitialized());
std::string computeShader = mDynamicHLSL->generateComputeShaderLinkHLSL(mState);
ShaderExecutableD3D *computeExecutable = nullptr;
ANGLE_TRY(mRenderer->compileToExecutable(infoLog, computeShader, SHADER_COMPUTE,
std::vector<D3DVarying>(), false,
angle::CompilerWorkaroundsD3D(), &computeExecutable));
if (computeExecutable == nullptr)
{
ERR() << "Error compiling dynamic compute executable:" << std::endl
<< infoLog.str() << std::endl;
}
else
{
const ShaderD3D *computeShaderD3D = GetImplAs<ShaderD3D>(mState.getAttachedComputeShader());
computeShaderD3D->appendDebugInfo(computeExecutable->getDebugInfo());
mComputeExecutable.reset(computeExecutable);
}
return mComputeExecutable.get() != nullptr;
}
LinkResult ProgramD3D::link(ContextImpl *contextImpl,
const gl::VaryingPacking &packing,
gl::InfoLog &infoLog)
{
const auto &data = contextImpl->getContextState();
reset();
const gl::Shader *computeShader = mState.getAttachedComputeShader();
if (computeShader)
{
mSamplersCS.resize(data.getCaps().maxComputeTextureImageUnits);
defineUniformsAndAssignRegisters();
LinkResult result = compileComputeExecutable(infoLog);
if (result.isError())
{
infoLog << result.getError().getMessage();
return result;
}
else if (!result.getResult())
{
infoLog << "Failed to create D3D compute shader.";
return result;
}
initUniformBlockInfo(computeShader);
}
else
{
const gl::Shader *vertexShader = mState.getAttachedVertexShader();
const gl::Shader *fragmentShader = mState.getAttachedFragmentShader();
const ShaderD3D *vertexShaderD3D = GetImplAs<ShaderD3D>(vertexShader);
const ShaderD3D *fragmentShaderD3D = GetImplAs<ShaderD3D>(fragmentShader);
mSamplersVS.resize(data.getCaps().maxVertexTextureImageUnits);
mSamplersPS.resize(data.getCaps().maxTextureImageUnits);
vertexShaderD3D->generateWorkarounds(&mVertexWorkarounds);
fragmentShaderD3D->generateWorkarounds(&mPixelWorkarounds);
if (mRenderer->getNativeLimitations().noFrontFacingSupport)
{
if (fragmentShaderD3D->usesFrontFacing())
{
infoLog << "The current renderer doesn't support gl_FrontFacing";
return false;
}
}
// TODO(jmadill): Implement more sophisticated component packing in D3D9.
// We can fail here because we use one semantic per GLSL varying. D3D11 can pack varyings
// intelligently, but D3D9 assumes one semantic per register.
if (mRenderer->getRendererClass() == RENDERER_D3D9 &&
packing.getMaxSemanticIndex() > data.getCaps().maxVaryingVectors)
{
infoLog << "Cannot pack these varyings on D3D9.";
return false;
}
ProgramD3DMetadata metadata(mRenderer, vertexShaderD3D, fragmentShaderD3D);
BuiltinVaryingsD3D builtins(metadata, packing);
mDynamicHLSL->generateShaderLinkHLSL(data, mState, metadata, packing, builtins, &mPixelHLSL,
&mVertexHLSL);
mUsesPointSize = vertexShaderD3D->usesPointSize();
mDynamicHLSL->getPixelShaderOutputKey(data, mState, metadata, &mPixelShaderKey);
mUsesFragDepth = metadata.usesFragDepth();
// Cache if we use flat shading
mUsesFlatInterpolation = (FindFlatInterpolationVarying(fragmentShader->getVaryings()) ||
FindFlatInterpolationVarying(vertexShader->getVaryings()));
if (mRenderer->getMajorShaderModel() >= 4)
{
mGeometryShaderPreamble =
mDynamicHLSL->generateGeometryShaderPreamble(packing, builtins);
}
initAttribLocationsToD3DSemantic();
defineUniformsAndAssignRegisters();
gatherTransformFeedbackVaryings(packing, builtins[SHADER_VERTEX]);
LinkResult result = compileProgramExecutables(data, infoLog);
if (result.isError())
{
infoLog << result.getError().getMessage();
return result;
}
else if (!result.getResult())
{
infoLog << "Failed to create D3D shaders.";
return result;
}
initUniformBlockInfo(vertexShader);
initUniformBlockInfo(fragmentShader);
}
return true;
}
GLboolean ProgramD3D::validate(const gl::Caps & /*caps*/, gl::InfoLog * /*infoLog*/)
{
// TODO(jmadill): Do something useful here?
return GL_TRUE;
}
void ProgramD3D::initUniformBlockInfo(const gl::Shader *shader)
{
for (const sh::InterfaceBlock &interfaceBlock : shader->getInterfaceBlocks())
{
if (!interfaceBlock.staticUse && interfaceBlock.layout == sh::BLOCKLAYOUT_PACKED)
continue;
if (mBlockDataSizes.count(interfaceBlock.name) > 0)
continue;
size_t dataSize = getUniformBlockInfo(interfaceBlock);
mBlockDataSizes[interfaceBlock.name] = dataSize;
}
}
void ProgramD3D::ensureUniformBlocksInitialized()
{
// Lazy init.
if (mState.getUniformBlocks().empty() || !mD3DUniformBlocks.empty())
{
return;
}
// Assign registers and update sizes.
const ShaderD3D *vertexShaderD3D = SafeGetImplAs<ShaderD3D>(mState.getAttachedVertexShader());
const ShaderD3D *fragmentShaderD3D =
SafeGetImplAs<ShaderD3D>(mState.getAttachedFragmentShader());
const ShaderD3D *computeShaderD3D = SafeGetImplAs<ShaderD3D>(mState.getAttachedComputeShader());
for (const gl::UniformBlock &uniformBlock : mState.getUniformBlocks())
{
unsigned int uniformBlockElement = uniformBlock.isArray ? uniformBlock.arrayElement : 0;
D3DUniformBlock d3dUniformBlock;
if (uniformBlock.vertexStaticUse)
{
ASSERT(vertexShaderD3D != nullptr);
unsigned int baseRegister =
vertexShaderD3D->getInterfaceBlockRegister(uniformBlock.name);
d3dUniformBlock.vsRegisterIndex = baseRegister + uniformBlockElement;
}
if (uniformBlock.fragmentStaticUse)
{
ASSERT(fragmentShaderD3D != nullptr);
unsigned int baseRegister =
fragmentShaderD3D->getInterfaceBlockRegister(uniformBlock.name);
d3dUniformBlock.psRegisterIndex = baseRegister + uniformBlockElement;
}
if (uniformBlock.computeStaticUse)
{
ASSERT(computeShaderD3D != nullptr);
unsigned int baseRegister =
computeShaderD3D->getInterfaceBlockRegister(uniformBlock.name);
d3dUniformBlock.csRegisterIndex = baseRegister + uniformBlockElement;
}
mD3DUniformBlocks.push_back(d3dUniformBlock);
}
}
void ProgramD3D::initializeUniformStorage()
{
// Compute total default block size
unsigned int vertexRegisters = 0;
unsigned int fragmentRegisters = 0;
unsigned int computeRegisters = 0;
for (const D3DUniform *d3dUniform : mD3DUniforms)
{
if (!d3dUniform->isSampler())
{
if (d3dUniform->isReferencedByVertexShader())
{
vertexRegisters = std::max(vertexRegisters,
d3dUniform->vsRegisterIndex + d3dUniform->registerCount);
}
if (d3dUniform->isReferencedByFragmentShader())
{
fragmentRegisters = std::max(
fragmentRegisters, d3dUniform->psRegisterIndex + d3dUniform->registerCount);
}
if (d3dUniform->isReferencedByComputeShader())
{
computeRegisters = std::max(
computeRegisters, d3dUniform->csRegisterIndex + d3dUniform->registerCount);
}
}
}
mVertexUniformStorage =
std::unique_ptr<UniformStorageD3D>(mRenderer->createUniformStorage(vertexRegisters * 16u));
mFragmentUniformStorage = std::unique_ptr<UniformStorageD3D>(
mRenderer->createUniformStorage(fragmentRegisters * 16u));
mComputeUniformStorage =
std::unique_ptr<UniformStorageD3D>(mRenderer->createUniformStorage(computeRegisters * 16u));
}
gl::Error ProgramD3D::applyUniforms(GLenum drawMode)
{
ASSERT(!mDirtySamplerMapping);
ANGLE_TRY(mRenderer->applyUniforms(*this, drawMode, mD3DUniforms));
for (D3DUniform *d3dUniform : mD3DUniforms)
{
d3dUniform->dirty = false;
}
return gl::NoError();
}
gl::Error ProgramD3D::applyComputeUniforms()
{
ASSERT(!mDirtySamplerMapping);
ANGLE_TRY(mRenderer->applyComputeUniforms(*this, mD3DUniforms));
for (D3DUniform *d3dUniform : mD3DUniforms)
{
d3dUniform->dirty = false;
}
return gl::NoError();
}
gl::Error ProgramD3D::applyUniformBuffers(const gl::ContextState &data)
{
if (mState.getUniformBlocks().empty())
{
return gl::NoError();
}
ensureUniformBlocksInitialized();
mVertexUBOCache.clear();
mFragmentUBOCache.clear();
const unsigned int reservedBuffersInVS = mRenderer->getReservedVertexUniformBuffers();
const unsigned int reservedBuffersInFS = mRenderer->getReservedFragmentUniformBuffers();
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mD3DUniformBlocks.size();
uniformBlockIndex++)
{
const D3DUniformBlock &uniformBlock = mD3DUniformBlocks[uniformBlockIndex];
GLuint blockBinding = mState.getUniformBlockBinding(uniformBlockIndex);
// Unnecessary to apply an unreferenced standard or shared UBO
if (!uniformBlock.vertexStaticUse() && !uniformBlock.fragmentStaticUse())
{
continue;
}
if (uniformBlock.vertexStaticUse())
{
unsigned int registerIndex = uniformBlock.vsRegisterIndex - reservedBuffersInVS;
ASSERT(registerIndex < data.getCaps().maxVertexUniformBlocks);
if (mVertexUBOCache.size() <= registerIndex)
{
mVertexUBOCache.resize(registerIndex + 1, -1);
}
ASSERT(mVertexUBOCache[registerIndex] == -1);
mVertexUBOCache[registerIndex] = blockBinding;
}
if (uniformBlock.fragmentStaticUse())
{
unsigned int registerIndex = uniformBlock.psRegisterIndex - reservedBuffersInFS;
ASSERT(registerIndex < data.getCaps().maxFragmentUniformBlocks);
if (mFragmentUBOCache.size() <= registerIndex)
{
mFragmentUBOCache.resize(registerIndex + 1, -1);
}
ASSERT(mFragmentUBOCache[registerIndex] == -1);
mFragmentUBOCache[registerIndex] = blockBinding;
}
}
return mRenderer->setUniformBuffers(data, mVertexUBOCache, mFragmentUBOCache);
}
void ProgramD3D::dirtyAllUniforms()
{
for (D3DUniform *d3dUniform : mD3DUniforms)
{
d3dUniform->dirty = true;
}
}
void ProgramD3D::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT);
}
void ProgramD3D::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC2);
}
void ProgramD3D::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC3);
}
void ProgramD3D::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC4);
}
void ProgramD3D::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value, GL_FLOAT_MAT2);
}
void ProgramD3D::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value, GL_FLOAT_MAT3);
}
void ProgramD3D::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value, GL_FLOAT_MAT4);
}
void ProgramD3D::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value, GL_FLOAT_MAT2x3);
}
void ProgramD3D::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value, GL_FLOAT_MAT3x2);
}
void ProgramD3D::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value, GL_FLOAT_MAT2x4);
}
void ProgramD3D::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value, GL_FLOAT_MAT4x2);
}
void ProgramD3D::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value, GL_FLOAT_MAT3x4);
}
void ProgramD3D::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value, GL_FLOAT_MAT4x3);
}
void ProgramD3D::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT);
}
void ProgramD3D::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC2);
}
void ProgramD3D::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC3);
}
void ProgramD3D::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC4);
}
void ProgramD3D::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT);
}
void ProgramD3D::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramD3D::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramD3D::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC4);
}
void ProgramD3D::setUniformBlockBinding(GLuint /*uniformBlockIndex*/,
GLuint /*uniformBlockBinding*/)
{
}
void ProgramD3D::defineUniformsAndAssignRegisters()
{
D3DUniformMap uniformMap;
const gl::Shader *computeShader = mState.getAttachedComputeShader();
if (computeShader)
{
for (const sh::Uniform &computeUniform : computeShader->getUniforms())
{
if (computeUniform.staticUse)
{
defineUniformBase(computeShader, computeUniform, &uniformMap);
}
}
}
else
{
const gl::Shader *vertexShader = mState.getAttachedVertexShader();
for (const sh::Uniform &vertexUniform : vertexShader->getUniforms())
{
if (vertexUniform.staticUse)
{
defineUniformBase(vertexShader, vertexUniform, &uniformMap);
}
}
const gl::Shader *fragmentShader = mState.getAttachedFragmentShader();
for (const sh::Uniform &fragmentUniform : fragmentShader->getUniforms())
{
if (fragmentUniform.staticUse)
{
defineUniformBase(fragmentShader, fragmentUniform, &uniformMap);
}
}
}
// Initialize the D3DUniform list to mirror the indexing of the GL layer.
for (const gl::LinkedUniform &glUniform : mState.getUniforms())
{
if (!glUniform.isInDefaultBlock())
continue;
auto mapEntry = uniformMap.find(glUniform.name);
ASSERT(mapEntry != uniformMap.end());
mD3DUniforms.push_back(mapEntry->second);
}
assignAllSamplerRegisters();
initializeUniformStorage();
}
void ProgramD3D::defineUniformBase(const gl::Shader *shader,
const sh::Uniform &uniform,
D3DUniformMap *uniformMap)
{
// Samplers get their registers assigned in assignAllSamplerRegisters.
if (uniform.isBuiltIn() || gl::IsSamplerType(uniform.type))
{
defineUniform(shader->getType(), uniform, uniform.name, nullptr, uniformMap);
return;
}
const ShaderD3D *shaderD3D = GetImplAs<ShaderD3D>(shader);
unsigned int startRegister = shaderD3D->getUniformRegister(uniform.name);
ShShaderOutput outputType = shaderD3D->getCompilerOutputType();
sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType), true);
encoder.skipRegisters(startRegister);
defineUniform(shader->getType(), uniform, uniform.name, &encoder, uniformMap);
}
D3DUniform *ProgramD3D::getD3DUniformByName(const std::string &name)
{
for (D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->name == name)
{
return d3dUniform;
}
}
return nullptr;
}
void ProgramD3D::defineUniform(GLenum shaderType,
const sh::ShaderVariable &uniform,
const std::string &fullName,
sh::HLSLBlockEncoder *encoder,
D3DUniformMap *uniformMap)
{
if (uniform.isStruct())
{
for (unsigned int elementIndex = 0; elementIndex < uniform.elementCount(); elementIndex++)
{
const std::string &elementString = (uniform.isArray() ? ArrayString(elementIndex) : "");
if (encoder)
encoder->enterAggregateType();
for (size_t fieldIndex = 0; fieldIndex < uniform.fields.size(); fieldIndex++)
{
const sh::ShaderVariable &field = uniform.fields[fieldIndex];
const std::string &fieldFullName = (fullName + elementString + "." + field.name);
// Samplers get their registers assigned in assignAllSamplerRegisters.
// Also they couldn't use the same encoder as the rest of the struct, since they are
// extracted out of the struct by the shader translator.
if (gl::IsSamplerType(field.type))
{
defineUniform(shaderType, field, fieldFullName, nullptr, uniformMap);
}
else
{
defineUniform(shaderType, field, fieldFullName, encoder, uniformMap);
}
}
if (encoder)
encoder->exitAggregateType();
}
return;
}
// Not a struct. Arrays are treated as aggregate types.
if (uniform.isArray() && encoder)
{
encoder->enterAggregateType();
}
// Advance the uniform offset, to track registers allocation for structs
sh::BlockMemberInfo blockInfo =
encoder ? encoder->encodeType(uniform.type, uniform.arraySize, false)
: sh::BlockMemberInfo::getDefaultBlockInfo();
auto uniformMapEntry = uniformMap->find(fullName);
D3DUniform *d3dUniform = nullptr;
if (uniformMapEntry != uniformMap->end())
{
d3dUniform = uniformMapEntry->second;
}
else
{
d3dUniform = new D3DUniform(uniform.type, fullName, uniform.arraySize, true);
(*uniformMap)[fullName] = d3dUniform;
}
if (encoder)
{
d3dUniform->registerElement =
static_cast<unsigned int>(sh::HLSLBlockEncoder::getBlockRegisterElement(blockInfo));
unsigned int reg =
static_cast<unsigned int>(sh::HLSLBlockEncoder::getBlockRegister(blockInfo));
if (shaderType == GL_FRAGMENT_SHADER)
{
d3dUniform->psRegisterIndex = reg;
}
else if (shaderType == GL_VERTEX_SHADER)
{
d3dUniform->vsRegisterIndex = reg;
}
else
{
ASSERT(shaderType == GL_COMPUTE_SHADER);
d3dUniform->csRegisterIndex = reg;
}
// Arrays are treated as aggregate types
if (uniform.isArray())
{
encoder->exitAggregateType();
}
}
}
template <typename T>
void ProgramD3D::setUniform(GLint location, GLsizei countIn, const T *v, GLenum targetUniformType)
{
const int components = gl::VariableComponentCount(targetUniformType);
const GLenum targetBoolType = gl::VariableBoolVectorType(targetUniformType);
D3DUniform *targetUniform = getD3DUniformFromLocation(location);
unsigned int elementCount = targetUniform->elementCount();
unsigned int arrayElement = mState.getUniformLocations()[location].element;
unsigned int count = std::min(elementCount - arrayElement, static_cast<unsigned int>(countIn));
if (targetUniform->type == targetUniformType)
{
T *target = reinterpret_cast<T *>(targetUniform->data) + arrayElement * 4;
for (unsigned int i = 0; i < count; i++)
{
T *dest = target + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
SetIfDirty(dest + c, source[c], &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(dest + c, T(0), &targetUniform->dirty);
}
}
}
else if (targetUniform->type == targetBoolType)
{
GLint *boolParams = reinterpret_cast<GLint *>(targetUniform->data) + arrayElement * 4;
for (unsigned int i = 0; i < count; i++)
{
GLint *dest = boolParams + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
SetIfDirty(dest + c, (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE,
&targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(dest + c, GL_FALSE, &targetUniform->dirty);
}
}
}
else if (targetUniform->isSampler())
{
ASSERT(targetUniformType == GL_INT);
GLint *target = reinterpret_cast<GLint *>(targetUniform->data) + arrayElement * 4;
bool wasDirty = targetUniform->dirty;
for (unsigned int i = 0; i < count; i++)
{
GLint *dest = target + (i * 4);
const GLint *source = reinterpret_cast<const GLint *>(v) + (i * components);
SetIfDirty(dest + 0, source[0], &targetUniform->dirty);
SetIfDirty(dest + 1, 0, &targetUniform->dirty);
SetIfDirty(dest + 2, 0, &targetUniform->dirty);
SetIfDirty(dest + 3, 0, &targetUniform->dirty);
}
if (!wasDirty && targetUniform->dirty)
{
mDirtySamplerMapping = true;
}
}
else
UNREACHABLE();
}
template <int cols, int rows>
void ProgramD3D::setUniformMatrixfv(GLint location,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value,
GLenum targetUniformType)
{
D3DUniform *targetUniform = getD3DUniformFromLocation(location);
unsigned int elementCount = targetUniform->elementCount();
unsigned int arrayElement = mState.getUniformLocations()[location].element;
unsigned int count = std::min(elementCount - arrayElement, static_cast<unsigned int>(countIn));
const unsigned int targetMatrixStride = (4 * rows);
GLfloat *target =
(GLfloat *)(targetUniform->data + arrayElement * sizeof(GLfloat) * targetMatrixStride);
for (unsigned int i = 0; i < count; i++)
{
// Internally store matrices as transposed versions to accomodate HLSL matrix indexing
if (transpose == GL_FALSE)
{
targetUniform->dirty =
TransposeExpandMatrix<GLfloat, cols, rows>(target, value) || targetUniform->dirty;
}
else
{
targetUniform->dirty =
ExpandMatrix<GLfloat, cols, rows>(target, value) || targetUniform->dirty;
}
target += targetMatrixStride;
value += cols * rows;
}
}
size_t ProgramD3D::getUniformBlockInfo(const sh::InterfaceBlock &interfaceBlock)
{
ASSERT(interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED);
// define member uniforms
sh::Std140BlockEncoder std140Encoder;
sh::HLSLBlockEncoder hlslEncoder(sh::HLSLBlockEncoder::ENCODE_PACKED, false);
sh::BlockLayoutEncoder *encoder = nullptr;
if (interfaceBlock.layout == sh::BLOCKLAYOUT_STANDARD)
{
encoder = &std140Encoder;
}
else
{
encoder = &hlslEncoder;
}
GetUniformBlockInfo(interfaceBlock.fields, interfaceBlock.fieldPrefix(), encoder,
interfaceBlock.isRowMajorLayout, &mBlockInfo);
return encoder->getBlockSize();
}
void ProgramD3D::assignAllSamplerRegisters()
{
for (D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->isSampler())
{
assignSamplerRegisters(d3dUniform);
}
}
}
void ProgramD3D::assignSamplerRegisters(D3DUniform *d3dUniform)
{
ASSERT(d3dUniform->isSampler());
const gl::Shader *computeShader = mState.getAttachedComputeShader();
if (computeShader)
{
const ShaderD3D *computeShaderD3D = GetImplAs<ShaderD3D>(mState.getAttachedComputeShader());
ASSERT(computeShaderD3D->hasUniform(d3dUniform));
d3dUniform->csRegisterIndex = computeShaderD3D->getUniformRegister(d3dUniform->name);
ASSERT(d3dUniform->csRegisterIndex != GL_INVALID_INDEX);
AssignSamplers(d3dUniform->csRegisterIndex, d3dUniform->type, d3dUniform->arraySize,
mSamplersCS, &mUsedComputeSamplerRange);
}
else
{
const ShaderD3D *vertexShaderD3D = GetImplAs<ShaderD3D>(mState.getAttachedVertexShader());
const ShaderD3D *fragmentShaderD3D =
GetImplAs<ShaderD3D>(mState.getAttachedFragmentShader());
ASSERT(vertexShaderD3D->hasUniform(d3dUniform) ||
fragmentShaderD3D->hasUniform(d3dUniform));
if (vertexShaderD3D->hasUniform(d3dUniform))
{
d3dUniform->vsRegisterIndex = vertexShaderD3D->getUniformRegister(d3dUniform->name);
ASSERT(d3dUniform->vsRegisterIndex != GL_INVALID_INDEX);
AssignSamplers(d3dUniform->vsRegisterIndex, d3dUniform->type, d3dUniform->arraySize,
mSamplersVS, &mUsedVertexSamplerRange);
}
if (fragmentShaderD3D->hasUniform(d3dUniform))
{
d3dUniform->psRegisterIndex = fragmentShaderD3D->getUniformRegister(d3dUniform->name);
ASSERT(d3dUniform->psRegisterIndex != GL_INVALID_INDEX);
AssignSamplers(d3dUniform->psRegisterIndex, d3dUniform->type, d3dUniform->arraySize,
mSamplersPS, &mUsedPixelSamplerRange);
}
}
}
// static
void ProgramD3D::AssignSamplers(unsigned int startSamplerIndex,
GLenum samplerType,
unsigned int samplerCount,
std::vector<Sampler> &outSamplers,
GLuint *outUsedRange)
{
unsigned int samplerIndex = startSamplerIndex;
do
{
ASSERT(samplerIndex < outSamplers.size());
Sampler *sampler = &outSamplers[samplerIndex];
sampler->active = true;
sampler->textureType = gl::SamplerTypeToTextureType(samplerType);
sampler->logicalTextureUnit = 0;
*outUsedRange = std::max(samplerIndex + 1, *outUsedRange);
samplerIndex++;
} while (samplerIndex < startSamplerIndex + samplerCount);
}
void ProgramD3D::reset()
{
mVertexExecutables.clear();
mPixelExecutables.clear();
for (auto &geometryExecutable : mGeometryExecutables)
{
geometryExecutable.reset(nullptr);
}
mComputeExecutable.reset(nullptr);
mVertexHLSL.clear();
mVertexWorkarounds = angle::CompilerWorkaroundsD3D();
mPixelHLSL.clear();
mPixelWorkarounds = angle::CompilerWorkaroundsD3D();
mUsesFragDepth = false;
mPixelShaderKey.clear();
mUsesPointSize = false;
mUsesFlatInterpolation = false;
SafeDeleteContainer(mD3DUniforms);
mD3DUniformBlocks.clear();
mVertexUniformStorage.reset(nullptr);
mFragmentUniformStorage.reset(nullptr);
mComputeUniformStorage.reset(nullptr);
mSamplersPS.clear();
mSamplersVS.clear();
mSamplersCS.clear();
mUsedVertexSamplerRange = 0;
mUsedPixelSamplerRange = 0;
mUsedComputeSamplerRange = 0;
mDirtySamplerMapping = true;
mAttribLocationToD3DSemantic.fill(-1);
mStreamOutVaryings.clear();
mGeometryShaderPreamble.clear();
}
unsigned int ProgramD3D::getSerial() const
{
return mSerial;
}
unsigned int ProgramD3D::issueSerial()
{
return mCurrentSerial++;
}
void ProgramD3D::initAttribLocationsToD3DSemantic()
{
const gl::Shader *vertexShader = mState.getAttachedVertexShader();
ASSERT(vertexShader != nullptr);
// Init semantic index
for (const sh::Attribute &attribute : mState.getAttributes())
{
int d3dSemantic = vertexShader->getSemanticIndex(attribute.name);
int regCount = gl::VariableRegisterCount(attribute.type);
for (int reg = 0; reg < regCount; ++reg)
{
mAttribLocationToD3DSemantic[attribute.location + reg] = d3dSemantic + reg;
}
}
}
void ProgramD3D::updateCachedInputLayout(const gl::State &state)
{
mCachedInputLayout.clear();
const auto &vertexAttributes = state.getVertexArray()->getVertexAttributes();
for (size_t locationIndex : mState.getActiveAttribLocationsMask())
{
int d3dSemantic = mAttribLocationToD3DSemantic[locationIndex];
if (d3dSemantic != -1)
{
if (mCachedInputLayout.size() < static_cast<size_t>(d3dSemantic + 1))
{
mCachedInputLayout.resize(d3dSemantic + 1, gl::VERTEX_FORMAT_INVALID);
}
mCachedInputLayout[d3dSemantic] =
GetVertexFormatType(vertexAttributes[locationIndex],
state.getVertexAttribCurrentValue(locationIndex).Type);
}
}
}
void ProgramD3D::gatherTransformFeedbackVaryings(const gl::VaryingPacking &varyingPacking,
const BuiltinInfo &builtins)
{
const std::string &varyingSemantic =
GetVaryingSemantic(mRenderer->getMajorShaderModel(), usesPointSize());
// Gather the linked varyings that are used for transform feedback, they should all exist.
mStreamOutVaryings.clear();
const auto &tfVaryingNames = mState.getTransformFeedbackVaryingNames();
for (unsigned int outputSlot = 0; outputSlot < static_cast<unsigned int>(tfVaryingNames.size());
++outputSlot)
{
const auto &tfVaryingName = tfVaryingNames[outputSlot];
if (tfVaryingName == "gl_Position")
{
if (builtins.glPosition.enabled)
{
mStreamOutVaryings.push_back(D3DVarying(builtins.glPosition.semantic,
builtins.glPosition.index, 4, outputSlot));
}
}
else if (tfVaryingName == "gl_FragCoord")
{
if (builtins.glFragCoord.enabled)
{
mStreamOutVaryings.push_back(D3DVarying(builtins.glFragCoord.semantic,
builtins.glFragCoord.index, 4, outputSlot));
}
}
else if (tfVaryingName == "gl_PointSize")
{
if (builtins.glPointSize.enabled)
{
mStreamOutVaryings.push_back(D3DVarying("PSIZE", 0, 1, outputSlot));
}
}
else
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = gl::ParseResourceName(tfVaryingName, &subscript);
for (const auto &registerInfo : varyingPacking.getRegisterList())
{
const auto &varying = *registerInfo.packedVarying->varying;
GLenum transposedType = gl::TransposeMatrixType(varying.type);
int componentCount = gl::VariableColumnCount(transposedType);
ASSERT(!varying.isBuiltIn());
// Transform feedback for varying structs is underspecified.
// See Khronos bug 9856.
// TODO(jmadill): Figure out how to be spec-compliant here.
if (registerInfo.packedVarying->isStructField() || varying.isStruct())
continue;
// There can be more than one register assigned to a particular varying, and each
// register needs its own stream out entry.
if (baseName == registerInfo.packedVarying->varying->name &&
(subscript == GL_INVALID_INDEX || subscript == registerInfo.varyingArrayIndex))
{
mStreamOutVaryings.push_back(D3DVarying(
varyingSemantic, registerInfo.semanticIndex, componentCount, outputSlot));
}
}
}
}
}
D3DUniform *ProgramD3D::getD3DUniformFromLocation(GLint location)
{
return mD3DUniforms[mState.getUniformLocations()[location].index];
}
bool ProgramD3D::getUniformBlockSize(const std::string &blockName, size_t *sizeOut) const
{
std::string baseName = blockName;
gl::ParseAndStripArrayIndex(&baseName);
auto sizeIter = mBlockDataSizes.find(baseName);
if (sizeIter == mBlockDataSizes.end())
{
*sizeOut = 0;
return false;
}
*sizeOut = sizeIter->second;
return true;
}
bool ProgramD3D::getUniformBlockMemberInfo(const std::string &memberUniformName,
sh::BlockMemberInfo *memberInfoOut) const
{
auto infoIter = mBlockInfo.find(memberUniformName);
if (infoIter == mBlockInfo.end())
{
*memberInfoOut = sh::BlockMemberInfo::getDefaultBlockInfo();
return false;
}
*memberInfoOut = infoIter->second;
return true;
}
void ProgramD3D::setPathFragmentInputGen(const std::string &inputName,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
UNREACHABLE();
}
} // namespace rx