blob: b0c404d1d14d9bfeebee9041241dab7587cef1bb [file] [log] [blame]
// Copyright 2001 - 2003 Google Inc. All Rights Reserved
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
const uint8 kuint8max = (( uint8) 0xFF);
const uint32 kuint32max = ((uint32) 0xFFFFFFFF);
// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example. If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
// One caveat is that arraysize() doesn't accept any array of an
// anonymous type or a type defined inside a function. In these rare
// cases, you have to use the unsafe ARRAYSIZE() macro below. This is
// due to a limitation in C++'s template system. The limitation might
// eventually be removed, but it hasn't happened yet.
// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];
// That gcc wants both of these prototypes seems mysterious. VC, for
// its part, can't decide which to use (another mystery). Matching of
// template overloads: the final frontier.
#ifndef _MSC_VER
template <typename T, size_t N>
char (&ArraySizeHelper(const T (&array)[N]))[N];
#define arraysize(array) (sizeof(ArraySizeHelper(array)))
// ARRAYSIZE performs essentially the same calculation as arraysize,
// but can be used on anonymous types or types defined inside
// functions. It's less safe than arraysize as it accepts some
// (although not all) pointers. Therefore, you should use arraysize
// whenever possible.
// The expression ARRAYSIZE(a) is a compile-time constant of type
// size_t.
// ARRAYSIZE catches a few type errors. If you see a compiler error
// "warning: division by zero in ..."
// when using ARRAYSIZE, you are (wrongfully) giving it a pointer.
// You should only use ARRAYSIZE on statically allocated arrays.
// The following comments are on the implementation details, and can
// be ignored by the users.
// ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
// the array) and sizeof(*(arr)) (the # of bytes in one array
// element). If the former is divisible by the latter, perhaps arr is
// indeed an array, in which case the division result is the # of
// elements in the array. Otherwise, arr cannot possibly be an array,
// and we generate a compiler error to prevent the code from
// compiling.
// Since the size of bool is implementation-defined, we need to cast
// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
// result has type size_t.
// This macro is not perfect as it wrongfully accepts certain
// pointers, namely where the pointer size is divisible by the pointee
// size. Since all our code has to go through a 32-bit compiler,
// where a pointer is 4 bytes, this means all pointers to a type whose
// size is 3 or greater than 4 will be (righteously) rejected.
// Starting with Visual C++ 2005, WinNT.h includes ARRAYSIZE.
((sizeof(a) / sizeof(*(a))) / \
static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
// A macro to disallow the evil copy constructor and operator= functions
// This should be used in the private: declarations for a class
TypeName(const TypeName&); \
void operator=(const TypeName&)