blob: a78db1a8811f6fadc860dcfb2a7b56933c4690e2 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ALLOCATION_H_
#define V8_ALLOCATION_H_
#include "include/v8-platform.h"
#include "src/base/compiler-specific.h"
#include "src/base/platform/platform.h"
#include "src/globals.h"
#include "src/v8.h"
namespace v8 {
namespace internal {
// This file defines memory allocation functions. If a first attempt at an
// allocation fails, these functions call back into the embedder, then attempt
// the allocation a second time. The embedder callback must not reenter V8.
// Called when allocation routines fail to allocate, even with a possible retry.
// This function should not return, but should terminate the current processing.
V8_EXPORT_PRIVATE void FatalProcessOutOfMemory(const char* message);
// Superclass for classes managed with new & delete.
class V8_EXPORT_PRIVATE Malloced {
public:
void* operator new(size_t size) { return New(size); }
void operator delete(void* p) { Delete(p); }
static void* New(size_t size);
static void Delete(void* p);
};
template <typename T>
T* NewArray(size_t size) {
T* result = new (std::nothrow) T[size];
if (result == nullptr) {
V8::GetCurrentPlatform()->OnCriticalMemoryPressure();
result = new (std::nothrow) T[size];
if (result == nullptr) FatalProcessOutOfMemory("NewArray");
}
return result;
}
template <typename T,
typename = typename std::enable_if<IS_TRIVIALLY_COPYABLE(T)>::type>
T* NewArray(size_t size, T default_val) {
T* result = reinterpret_cast<T*>(NewArray<uint8_t>(sizeof(T) * size));
for (size_t i = 0; i < size; ++i) result[i] = default_val;
return result;
}
template <typename T>
void DeleteArray(T* array) {
delete[] array;
}
// The normal strdup functions use malloc. These versions of StrDup
// and StrNDup uses new and calls the FatalProcessOutOfMemory handler
// if allocation fails.
V8_EXPORT_PRIVATE char* StrDup(const char* str);
char* StrNDup(const char* str, int n);
// Allocation policy for allocating in the C free store using malloc
// and free. Used as the default policy for lists.
class FreeStoreAllocationPolicy {
public:
INLINE(void* New(size_t size)) { return Malloced::New(size); }
INLINE(static void Delete(void* p)) { Malloced::Delete(p); }
};
void* AlignedAlloc(size_t size, size_t alignment);
void AlignedFree(void *ptr);
// Represents and controls an area of reserved memory.
class V8_EXPORT_PRIVATE VirtualMemory {
public:
// Empty VirtualMemory object, controlling no reserved memory.
VirtualMemory();
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size, void* hint);
// Reserves virtual memory containing an area of the given size that
// is aligned per alignment. This may not be at the position returned
// by address().
VirtualMemory(size_t size, size_t alignment, void* hint);
// Construct a virtual memory by assigning it some already mapped address
// and size.
VirtualMemory(void* address, size_t size) : address_(address), size_(size) {}
// Releases the reserved memory, if any, controlled by this VirtualMemory
// object.
~VirtualMemory();
// Returns whether the memory has been reserved.
bool IsReserved() const { return address_ != nullptr; }
// Initialize or resets an embedded VirtualMemory object.
void Reset();
// Returns the start address of the reserved memory.
// If the memory was reserved with an alignment, this address is not
// necessarily aligned. The user might need to round it up to a multiple of
// the alignment to get the start of the aligned block.
void* address() const {
DCHECK(IsReserved());
return address_;
}
void* end() const {
DCHECK(IsReserved());
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(address_) +
size_);
}
// Returns the size of the reserved memory. The returned value is only
// meaningful when IsReserved() returns true.
// If the memory was reserved with an alignment, this size may be larger
// than the requested size.
size_t size() const { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address, size_t size, bool is_executable);
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size);
// Creates a single guard page at the given address.
bool Guard(void* address);
// Releases the memory after |free_start|. Returns the bytes released.
size_t ReleasePartial(void* free_start);
void Release();
// Assign control of the reserved region to a different VirtualMemory object.
// The old object is no longer functional (IsReserved() returns false).
void TakeControl(VirtualMemory* from);
bool InVM(void* address, size_t size) {
return (reinterpret_cast<uintptr_t>(address_) <=
reinterpret_cast<uintptr_t>(address)) &&
((reinterpret_cast<uintptr_t>(address_) + size_) >=
(reinterpret_cast<uintptr_t>(address) + size));
}
private:
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
bool AllocVirtualMemory(size_t size, void* hint, VirtualMemory* result);
bool AlignedAllocVirtualMemory(size_t size, size_t alignment, void* hint,
VirtualMemory* result);
// Generate a random address to be used for hinting mmap().
V8_EXPORT_PRIVATE void* GetRandomMmapAddr();
} // namespace internal
} // namespace v8
#endif // V8_ALLOCATION_H_