blob: 2abf0982773956be5be9bc340abd1ead3229e76f [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
#define V8_ARM_MACRO_ASSEMBLER_ARM_H_
#include "src/arm/assembler-arm.h"
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r0;
constexpr Register kReturnRegister1 = r1;
constexpr Register kReturnRegister2 = r2;
constexpr Register kJSFunctionRegister = r1;
constexpr Register kContextRegister = r7;
constexpr Register kAllocateSizeRegister = r1;
constexpr Register kInterpreterAccumulatorRegister = r0;
constexpr Register kInterpreterBytecodeOffsetRegister = r5;
constexpr Register kInterpreterBytecodeArrayRegister = r6;
constexpr Register kInterpreterDispatchTableRegister = r8;
constexpr Register kJavaScriptCallArgCountRegister = r0;
constexpr Register kJavaScriptCallNewTargetRegister = r3;
constexpr Register kRuntimeCallFunctionRegister = r1;
constexpr Register kRuntimeCallArgCountRegister = r0;
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Give alias names to registers
constexpr Register cp = r7; // JavaScript context pointer.
constexpr Register kRootRegister = r10; // Roots array pointer.
// Flags used for AllocateHeapNumber
enum TaggingMode {
// Tag the result.
TAG_RESULT,
// Don't tag
DONT_TAG_RESULT
};
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1,
Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg,
Register reg7 = no_reg,
Register reg8 = no_reg);
#endif
enum TargetAddressStorageMode {
CAN_INLINE_TARGET_ADDRESS,
NEVER_INLINE_TARGET_ADDRESS
};
class TurboAssembler : public Assembler {
public:
TurboAssembler(Isolate* isolate, void* buffer, int buffer_size,
CodeObjectRequired create_code_object);
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() const { return has_frame_; }
Isolate* isolate() const { return isolate_; }
Handle<HeapObject> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Activation support.
void EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg = false);
// Returns the pc offset at which the frame ends.
int LeaveFrame(StackFrame::Type type);
// Push a fixed frame, consisting of lr, fp
void PushCommonFrame(Register marker_reg = no_reg);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
// Push a standard frame, consisting of lr, fp, context and JS function
void PushStandardFrame(Register function_reg);
void InitializeRootRegister();
void Push(Register src) { push(src); }
void Push(Handle<HeapObject> handle);
void Push(Smi* smi);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Condition cond = al) {
if (src1.code() > src2.code()) {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
str(src2, MemOperand(sp, 4, NegPreIndex), cond);
}
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Condition cond = al) {
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
str(src3, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, cond);
}
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Condition cond = al) {
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
if (src3.code() > src4.code()) {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
str(src4, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
Push(src3, src4, cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, src4, cond);
}
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5, Condition cond = al) {
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
if (src3.code() > src4.code()) {
if (src4.code() > src5.code()) {
stm(db_w, sp,
src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
cond);
str(src5, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
Push(src4, src5, cond);
}
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
Push(src3, src4, src5, cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, src4, src5, cond);
}
}
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Condition cond = al) {
DCHECK(src1 != src2);
if (src1.code() > src2.code()) {
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
} else {
ldr(src2, MemOperand(sp, 4, PostIndex), cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
DCHECK(!AreAliased(src1, src2, src3));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
} else {
ldr(src3, MemOperand(sp, 4, PostIndex), cond);
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
}
} else {
Pop(src2, src3, cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Pop four registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4,
Condition cond = al) {
DCHECK(!AreAliased(src1, src2, src3, src4));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
if (src3.code() > src4.code()) {
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
cond);
} else {
ldr(src4, MemOperand(sp, 4, PostIndex), cond);
ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
}
} else {
Pop(src3, src4, cond);
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
}
} else {
Pop(src2, src3, src4, cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized. If double arguments are used, this function assumes that
// all double arguments are stored before core registers; otherwise the
// correct alignment of the double values is not guaranteed.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments,
int num_double_registers = 0);
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// Both |callee_args_count| and |caller_args_count_reg| do not include
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
// is trashed.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1);
// There are two ways of passing double arguments on ARM, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DwVfpRegister src);
void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
void MovToFloatResult(DwVfpRegister src);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
void MovFromFloatParameter(DwVfpRegister dst);
void MovFromFloatResult(DwVfpRegister dst);
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, BailoutReason reason);
// Like Assert(), but always enabled.
void Check(Condition cond, BailoutReason reason);
// Print a message to stdout and abort execution.
void Abort(BailoutReason msg);
inline bool AllowThisStubCall(CodeStub* stub);
void LslPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void LslPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void LsrPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void LsrPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void AsrPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void AsrPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
// Returns the size of a call in instructions. Note, the value returned is
// only valid as long as no entries are added to the constant pool between
// checking the call size and emitting the actual call.
static int CallSize(Register target, Condition cond = al);
int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
Condition cond = al);
int CallStubSize();
void CallStubDelayed(CodeStub* stub);
void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Call(Register target, Condition cond = al);
void Call(Address target, RelocInfo::Mode rmode, Condition cond = al,
TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS,
bool check_constant_pool = true);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
Condition cond = al,
TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS,
bool check_constant_pool = true);
void Call(Label* target);
// This should only be used when assembling a deoptimizer call because of
// the CheckConstPool invocation, which is only needed for deoptimization.
void CallForDeoptimization(Address target, RelocInfo::Mode rmode) {
Call(target, rmode);
CheckConstPool(false, false);
}
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = al);
void Drop(Register count, Condition cond = al);
void Ret(Condition cond = al);
void Ret(int drop, Condition cond = al);
// Compare single values and move the result to the normal condition flags.
void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
const Condition cond = al);
void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
const Condition cond = al);
// Compare double values and move the result to the normal condition flags.
void VFPCompareAndSetFlags(const DwVfpRegister src1, const DwVfpRegister src2,
const Condition cond = al);
void VFPCompareAndSetFlags(const DwVfpRegister src1, const double src2,
const Condition cond = al);
// If the value is a NaN, canonicalize the value else, do nothing.
void VFPCanonicalizeNaN(const DwVfpRegister dst, const DwVfpRegister src,
const Condition cond = al);
void VFPCanonicalizeNaN(const DwVfpRegister value,
const Condition cond = al) {
VFPCanonicalizeNaN(value, value, cond);
}
void VmovHigh(Register dst, DwVfpRegister src);
void VmovHigh(DwVfpRegister dst, Register src);
void VmovLow(Register dst, DwVfpRegister src);
void VmovLow(DwVfpRegister dst, Register src);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
// Check whether d16-d31 are available on the CPU. The result is given by the
// Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
void CheckFor32DRegs(Register scratch);
void SaveRegisters(RegList registers);
void RestoreRegisters(RegList registers);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode);
// Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
// values to location, saving [d0..(d15|d31)].
void SaveFPRegs(Register location, Register scratch);
// Does a runtime check for 16/32 FP registers. Either way, pops 32 double
// values to location, restoring [d0..(d15|d31)].
void RestoreFPRegs(Register location, Register scratch);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
void Jump(Register target, Condition cond = al);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
// Perform a floating-point min or max operation with the
// (IEEE-754-compatible) semantics of ARM64's fmin/fmax. Some cases, typically
// NaNs or +/-0.0, are expected to be rare and are handled in out-of-line
// code. The specific behaviour depends on supported instructions.
//
// These functions assume (and assert) that left!=right. It is permitted
// for the result to alias either input register.
void FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
Label* out_of_line);
void FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
Label* out_of_line);
void FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
Label* out_of_line);
void FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
Label* out_of_line);
// Generate out-of-line cases for the macros above.
void FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
SwVfpRegister right);
void FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
SwVfpRegister right);
void FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
DwVfpRegister right);
void FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
DwVfpRegister right);
void ExtractLane(Register dst, QwNeonRegister src, NeonDataType dt, int lane);
void ExtractLane(Register dst, DwVfpRegister src, NeonDataType dt, int lane);
void ExtractLane(SwVfpRegister dst, QwNeonRegister src, int lane);
void ReplaceLane(QwNeonRegister dst, QwNeonRegister src, Register src_lane,
NeonDataType dt, int lane);
void ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
SwVfpRegister src_lane, int lane);
// Register move. May do nothing if the registers are identical.
void Move(Register dst, Smi* smi);
void Move(Register dst, Handle<HeapObject> value);
void Move(Register dst, Register src, Condition cond = al);
void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
Condition cond = al) {
if (!src.IsRegister() || src.rm() != dst || sbit != LeaveCC) {
mov(dst, src, sbit, cond);
}
}
void Move(SwVfpRegister dst, SwVfpRegister src, Condition cond = al);
void Move(DwVfpRegister dst, DwVfpRegister src, Condition cond = al);
void Move(QwNeonRegister dst, QwNeonRegister src);
// Simulate s-register moves for imaginary s32 - s63 registers.
void VmovExtended(Register dst, int src_code);
void VmovExtended(int dst_code, Register src);
// Move between s-registers and imaginary s-registers.
void VmovExtended(int dst_code, int src_code);
void VmovExtended(int dst_code, const MemOperand& src);
void VmovExtended(const MemOperand& dst, int src_code);
// Register swap.
void Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1);
void Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
void SmiUntag(Register reg, SBit s = LeaveCC) {
mov(reg, Operand::SmiUntag(reg), s);
}
void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
mov(dst, Operand::SmiUntag(src), s);
}
// Load an object from the root table.
void LoadRoot(Register destination, Heap::RootListIndex index,
Condition cond = al);
// Jump if the register contains a smi.
void JumpIfSmi(Register value, Label* smi_label);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
//
// Only public for the test code in test-code-stubs-arm.cc.
void TryInlineTruncateDoubleToI(Register result, DwVfpRegister input,
Label* done);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToIDelayed(Zone* zone, Register result,
DwVfpRegister double_input);
// EABI variant for double arguments in use.
bool use_eabi_hardfloat() {
#ifdef __arm__
return base::OS::ArmUsingHardFloat();
#elif USE_EABI_HARDFLOAT
return true;
#else
return false;
#endif
}
private:
bool has_frame_ = false;
Isolate* const isolate_;
// This handle will be patched with the code object on installation.
Handle<HeapObject> code_object_;
// Compare single values and then load the fpscr flags to a register.
void VFPCompareAndLoadFlags(const SwVfpRegister src1,
const SwVfpRegister src2,
const Register fpscr_flags,
const Condition cond = al);
void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
const Register fpscr_flags,
const Condition cond = al);
// Compare double values and then load the fpscr flags to a register.
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Register fpscr_flags,
const Condition cond = al);
void VFPCompareAndLoadFlags(const DwVfpRegister src1, const double src2,
const Register fpscr_flags,
const Condition cond = al);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
// Implementation helpers for FloatMin and FloatMax.
template <typename T>
void FloatMaxHelper(T result, T left, T right, Label* out_of_line);
template <typename T>
void FloatMinHelper(T result, T left, T right, Label* out_of_line);
template <typename T>
void FloatMaxOutOfLineHelper(T result, T left, T right);
template <typename T>
void FloatMinOutOfLineHelper(T result, T left, T right);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments);
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler : public TurboAssembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object);
// Used for patching in calls to the deoptimizer.
void CallDeoptimizer(Address target);
static int CallDeoptimizerSize();
// Emit code that loads |parameter_index|'th parameter from the stack to
// the register according to the CallInterfaceDescriptor definition.
// |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
// below the caller's sp.
template <class Descriptor>
void LoadParameterFromStack(
Register reg, typename Descriptor::ParameterIndices parameter_index,
int sp_to_ra_offset_in_words = 0) {
DCHECK(Descriptor::kPassLastArgsOnStack);
UNIMPLEMENTED();
}
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1, Register reg2, Register scratch = no_reg,
Condition cond = al);
void Mls(Register dst, Register src1, Register src2, Register srcA,
Condition cond = al);
void And(Register dst, Register src1, const Operand& src2,
Condition cond = al);
void Ubfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
void Sbfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
void Load(Register dst, const MemOperand& src, Representation r);
void Store(Register src, const MemOperand& dst, Representation r);
// ---------------------------------------------------------------------------
// GC Support
enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
// Check if object is in new space. Jumps if the object is not in new space.
// The register scratch can be object itself, but scratch will be clobbered.
void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
InNewSpace(object, scratch, eq, branch);
}
// Check if object is in new space. Jumps if the object is in new space.
// The register scratch can be object itself, but it will be clobbered.
void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
InNewSpace(object, scratch, ne, branch);
}
// Check if an object has a given incremental marking color.
void HasColor(Register object, Register scratch0, Register scratch1,
Label* has_color, int first_bit, int second_bit);
void JumpIfBlack(Register object, Register scratch0, Register scratch1,
Label* on_black);
// Checks the color of an object. If the object is white we jump to the
// incremental marker.
void JumpIfWhite(Register value, Register scratch1, Register scratch2,
Register scratch3, Label* value_is_white);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// MemOperand(reg, off).
inline void RecordWriteContextSlot(
Register context, int offset, Register value, Register scratch,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
lr_status, save_fp, remembered_set_action, smi_check,
pointers_to_here_check_for_value);
}
void RecordWriteForMap(Register object, Register map, Register dst,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object, Register address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
// Enter exit frame.
// stack_space - extra stack space, used for alignment before call to C.
void EnterExitFrame(bool save_doubles, int stack_space = 0,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles, Register argument_count,
bool restore_context,
bool argument_count_is_length = false);
// Load the global object from the current context.
void LoadGlobalObject(Register dst) {
LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
}
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
void LoadNativeContextSlot(int index, Register dst);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Register function, const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// Frame restart support
void MaybeDropFrames();
// Exception handling
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old space. The object_size is
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. If the space is exhausted control continues at the gc_required
// label. The allocated object is returned in result. If the flag
// tag_allocated_object is true the result is tagged as as a heap object.
// All registers are clobbered also when control continues at the gc_required
// label.
void Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Allocate and initialize a JSValue wrapper with the specified {constructor}
// and {value}.
void AllocateJSValue(Register result, Register constructor, Register value,
Register scratch1, Register scratch2,
Label* gc_required);
// ---------------------------------------------------------------------------
// Support functions.
// Machine code version of Map::GetConstructor().
// |temp| holds |result|'s map when done, and |temp2| its instance type.
void GetMapConstructor(Register result, Register map, Register temp,
Register temp2);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
// Type_reg can be no_reg. In that case a scratch register is used.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Compare an object's map with the specified map and its transitioned
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
// set with result of map compare. If multiple map compares are required, the
// compare sequences branches to early_success.
void CompareMap(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success);
// As above, but the map of the object is already loaded into the register
// which is preserved by the code generated.
void CompareMap(Register obj_map,
Handle<Map> map,
Label* early_success);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type);
void GetWeakValue(Register value, Handle<WeakCell> cell);
// Load the value of the weak cell in the value register. Branch to the given
// miss label if the weak cell was cleared.
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
// Compare the object in a register to a value from the root list.
// Acquires a scratch register.
void CompareRoot(Register obj, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Push(scratch);
}
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
CompareRoot(with, index);
b(eq, if_equal);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal) {
CompareRoot(with, index);
b(ne, if_not_equal);
}
// Load the value of a smi object into a double register.
// The register value must be between d0 and d15.
void SmiToDouble(LowDwVfpRegister value, Register smi);
// Try to convert a double to a signed 32-bit integer.
// Z flag set to one and result assigned if the conversion is exact.
void TryDoubleToInt32Exact(Register result,
DwVfpRegister double_input,
LowDwVfpRegister double_scratch);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub,
Condition cond = al);
// Call a code stub.
void TailCallStub(CodeStub* stub, Condition cond = al);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// ---------------------------------------------------------------------------
// Smi utilities
void SmiTag(Register reg, SBit s = LeaveCC);
void SmiTag(Register dst, Register src, SBit s = LeaveCC);
// Untag the source value into destination and jump if source is a smi.
// Souce and destination can be the same register.
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
// Test if the register contains a smi (Z == 0 (eq) if true).
void SmiTst(Register value);
// Jump if either of the registers contain a non-smi.
void JumpIfNotSmi(Register value, Label* not_smi_label);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
// Abort execution if argument is not a FixedArray, enabled via --debug-code.
void AssertFixedArray(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// ---------------------------------------------------------------------------
// String utilities
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not. Assumes that neither object is a smi.
void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* failure);
// Checks if both instance types are sequential one-byte strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* failure);
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
void LoadInstanceDescriptors(Register map, Register descriptors);
void LoadAccessor(Register dst, Register holder, int accessor_index,
AccessorComponent accessor);
template<typename Field>
void DecodeField(Register dst, Register src) {
Ubfx(dst, src, Field::kShift, Field::kSize);
}
template<typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
private:
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches, InvokeFlag flag);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Register scratch,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Helper for finding the mark bits for an address. Afterwards, the
// bitmap register points at the word with the mark bits and the mask
// the position of the first bit. Leaves addr_reg unchanged.
inline void GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
enum FlushICache {
FLUSH,
DONT_FLUSH
};
CodePatcher(Isolate* isolate, byte* address, int instructions,
FlushICache flush_cache = FLUSH);
~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
// Emit an instruction directly.
void Emit(Instr instr);
// Emit an address directly.
void Emit(Address addr);
// Emit the condition part of an instruction leaving the rest of the current
// instruction unchanged.
void EmitCondition(Condition cond);
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
FlushICache flush_cache_; // Whether to flush the I cache after patching.
};
// -----------------------------------------------------------------------------
// Static helper functions.
inline MemOperand ContextMemOperand(Register context, int index = 0) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand NativeContextMemOperand() {
return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_