blob: 5bb112f77ec99dffd6cb9a074aaf9cbd1b47547c [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/adapters.h"
#include "src/base/bits.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
#define TRACE_UNIMPL() \
PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
#define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
// Adds Mips-specific methods for generating InstructionOperands.
class MipsOperandGenerator final : public OperandGenerator {
public:
explicit MipsOperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, InstructionCode opcode) {
if (CanBeImmediate(node, opcode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
// Use the zero register if the node has the immediate value zero, otherwise
// assign a register.
InstructionOperand UseRegisterOrImmediateZero(Node* node) {
if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) ||
(IsFloatConstant(node) &&
(bit_cast<int64_t>(GetFloatConstantValue(node)) == V8_INT64_C(0)))) {
return UseImmediate(node);
}
return UseRegister(node);
}
bool IsIntegerConstant(Node* node) {
return (node->opcode() == IrOpcode::kInt32Constant);
}
int64_t GetIntegerConstantValue(Node* node) {
DCHECK_EQ(IrOpcode::kInt32Constant, node->opcode());
return OpParameter<int32_t>(node);
}
bool IsFloatConstant(Node* node) {
return (node->opcode() == IrOpcode::kFloat32Constant) ||
(node->opcode() == IrOpcode::kFloat64Constant);
}
double GetFloatConstantValue(Node* node) {
if (node->opcode() == IrOpcode::kFloat32Constant) {
return OpParameter<float>(node);
}
DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode());
return OpParameter<double>(node);
}
bool CanBeImmediate(Node* node, InstructionCode opcode) {
Int32Matcher m(node);
if (!m.HasValue()) return false;
int32_t value = m.Value();
switch (ArchOpcodeField::decode(opcode)) {
case kMipsShl:
case kMipsSar:
case kMipsShr:
return is_uint5(value);
case kMipsAdd:
case kMipsAnd:
case kMipsOr:
case kMipsTst:
case kMipsSub:
case kMipsXor:
return is_uint16(value);
case kMipsLb:
case kMipsLbu:
case kMipsSb:
case kMipsLh:
case kMipsLhu:
case kMipsSh:
case kMipsLw:
case kMipsSw:
case kMipsLwc1:
case kMipsSwc1:
case kMipsLdc1:
case kMipsSdc1:
case kCheckedLoadInt8:
case kCheckedLoadUint8:
case kCheckedLoadInt16:
case kCheckedLoadUint16:
case kCheckedLoadWord32:
case kCheckedStoreWord8:
case kCheckedStoreWord16:
case kCheckedStoreWord32:
case kCheckedLoadFloat32:
case kCheckedLoadFloat64:
case kCheckedStoreFloat32:
case kCheckedStoreFloat64:
// true even for 32b values, offsets > 16b
// are handled in assembler-mips.cc
return is_int32(value);
default:
return is_int16(value);
}
}
private:
bool ImmediateFitsAddrMode1Instruction(int32_t imm) const {
TRACE_UNIMPL();
return false;
}
};
static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
MipsOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
MipsOperandGenerator g(selector);
selector->Emit(
opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)));
}
static void VisitRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
MipsOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
MipsOperandGenerator g(selector);
int32_t imm = OpParameter<int32_t>(node);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseImmediate(imm));
}
static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
MipsOperandGenerator g(selector);
int32_t imm = OpParameter<int32_t>(node);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseImmediate(imm),
g.UseRegister(node->InputAt(1)));
}
static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
MipsOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), opcode));
}
bool TryMatchImmediate(InstructionSelector* selector,
InstructionCode* opcode_return, Node* node,
size_t* input_count_return, InstructionOperand* inputs) {
MipsOperandGenerator g(selector);
if (g.CanBeImmediate(node, *opcode_return)) {
*opcode_return |= AddressingModeField::encode(kMode_MRI);
inputs[0] = g.UseImmediate(node);
*input_count_return = 1;
return true;
}
return false;
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, bool has_reverse_opcode,
InstructionCode reverse_opcode,
FlagsContinuation* cont) {
MipsOperandGenerator g(selector);
Int32BinopMatcher m(node);
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count,
&inputs[1])) {
inputs[0] = g.UseRegister(m.left().node());
input_count++;
} else if (has_reverse_opcode &&
TryMatchImmediate(selector, &reverse_opcode, m.left().node(),
&input_count, &inputs[1])) {
inputs[0] = g.UseRegister(m.right().node());
opcode = reverse_opcode;
input_count++;
} else {
inputs[input_count++] = g.UseRegister(m.left().node());
inputs[input_count++] = g.UseOperand(m.right().node(), opcode);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
} else if (cont->IsTrap()) {
inputs[input_count++] = g.TempImmediate(cont->trap_id());
}
if (cont->IsDeoptimize()) {
// If we can deoptimize as a result of the binop, we need to make sure that
// the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->kind(), cont->reason(), cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, bool has_reverse_opcode,
InstructionCode reverse_opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont);
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
VisitBinop(selector, node, opcode, false, kArchNop, cont);
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
VisitBinop(selector, node, opcode, false, kArchNop);
}
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int alignment = rep.alignment();
int slot = frame_->AllocateSpillSlot(rep.size(), alignment);
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)),
sequence()->AddImmediate(Constant(alignment)), 0, nullptr);
}
void InstructionSelector::VisitDebugAbort(Node* node) {
MipsOperandGenerator g(this);
Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), a0));
}
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kMipsLwc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMipsLdc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsUnsigned() ? kMipsLhu : kMipsLh;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord32:
opcode = kMipsLw;
break;
case MachineRepresentation::kSimd128:
opcode = kMipsMsaLd;
break;
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired load opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
}
}
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitStore(Node* node) {
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
// TODO(mips): I guess this could be done in a better way.
if (write_barrier_kind != kNoWriteBarrier) {
DCHECK(CanBeTaggedPointer(rep));
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
switch (write_barrier_kind) {
case kNoWriteBarrier:
UNREACHABLE();
break;
case kMapWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsMap;
break;
case kPointerWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsPointer;
break;
case kFullWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsAny;
break;
}
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= MiscField::encode(static_cast<int>(record_write_mode));
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kMipsSwc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMipsSdc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kMipsSb;
break;
case MachineRepresentation::kWord16:
opcode = kMipsSh;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord32:
opcode = kMipsSw;
break;
case MachineRepresentation::kSimd128:
opcode = kMipsMsaSt;
break;
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index),
g.UseRegisterOrImmediateZero(value));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired store opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
}
}
}
void InstructionSelector::VisitProtectedStore(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitWord32And(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
m.right().HasValue()) {
uint32_t mask = m.right().Value();
uint32_t mask_width = base::bits::CountPopulation32(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
// The mask must be contiguous, and occupy the least-significant bits.
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
// Select Ext for And(Shr(x, imm), mask) where the mask is in the least
// significant bits.
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Any shift value can match; int32 shifts use `value % 32`.
uint32_t lsb = mleft.right().Value() & 0x1f;
// Ext cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can
// still use Ext with a smaller mask and the remaining bits will be
// zeros.
if (lsb + mask_width > 32) mask_width = 32 - lsb;
if (lsb == 0 && mask_width == 32) {
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node()));
} else {
Emit(kMipsExt, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.TempImmediate(mask_width));
}
return;
}
// Other cases fall through to the normal And operation.
}
}
if (m.right().HasValue()) {
uint32_t mask = m.right().Value();
uint32_t shift = base::bits::CountPopulation32(~mask);
uint32_t msb = base::bits::CountLeadingZeros32(~mask);
if (shift != 0 && shift != 32 && msb + shift == 32) {
// Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
// and remove constant loading of invereted mask.
Emit(kMipsIns, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.TempImmediate(0), g.TempImmediate(shift));
return;
}
}
VisitBinop(this, node, kMipsAnd, true, kMipsAnd);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kMipsOr, true, kMipsOr);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32Or() && CanCover(node, m.left().node()) &&
m.right().Is(-1)) {
Int32BinopMatcher mleft(m.left().node());
if (!mleft.right().HasValue()) {
MipsOperandGenerator g(this);
Emit(kMipsNor, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
}
if (m.right().Is(-1)) {
// Use Nor for bit negation and eliminate constant loading for xori.
MipsOperandGenerator g(this);
Emit(kMipsNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(0));
return;
}
VisitBinop(this, node, kMipsXor, true, kMipsXor);
}
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
m.right().IsInRange(1, 31)) {
MipsOperandGenerator g(this);
Int32BinopMatcher mleft(m.left().node());
// Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is
// contiguous, and the shift immediate non-zero.
if (mleft.right().HasValue()) {
uint32_t mask = mleft.right().Value();
uint32_t mask_width = base::bits::CountPopulation32(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
uint32_t shift = m.right().Value();
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
DCHECK_NE(0u, shift);
if ((shift + mask_width) >= 32) {
// If the mask is contiguous and reaches or extends beyond the top
// bit, only the shift is needed.
Emit(kMipsShl, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediate(m.right().node()));
return;
}
}
}
}
VisitRRO(this, kMipsShl, node);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().HasValue()) {
uint32_t lsb = m.right().Value() & 0x1f;
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && mleft.right().Value() != 0) {
// Select Ext for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits.
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation32(mask);
unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_msb + mask_width + lsb) == 32) {
MipsOperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
Emit(kMipsExt, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.TempImmediate(mask_width));
return;
}
}
}
VisitRRO(this, kMipsShr, node);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) {
Int32BinopMatcher mleft(m.left().node());
if (m.right().HasValue() && mleft.right().HasValue()) {
MipsOperandGenerator g(this);
uint32_t sar = m.right().Value();
uint32_t shl = mleft.right().Value();
if ((sar == shl) && (sar == 16)) {
Emit(kMipsSeh, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
} else if ((sar == shl) && (sar == 24)) {
Emit(kMipsSeb, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
}
}
}
VisitRRO(this, kMipsSar, node);
}
static void VisitInt32PairBinop(InstructionSelector* selector,
InstructionCode pair_opcode,
InstructionCode single_opcode, Node* node) {
MipsOperandGenerator g(selector);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the output
// register.
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
g.UseUniqueRegister(node->InputAt(2)),
g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
selector->Emit(pair_opcode, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
selector->Emit(single_opcode, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)));
}
}
void InstructionSelector::VisitInt32PairAdd(Node* node) {
VisitInt32PairBinop(this, kMipsAddPair, kMipsAdd, node);
}
void InstructionSelector::VisitInt32PairSub(Node* node) {
VisitInt32PairBinop(this, kMipsSubPair, kMipsSub, node);
}
void InstructionSelector::VisitInt32PairMul(Node* node) {
VisitInt32PairBinop(this, kMipsMulPair, kMipsMul, node);
}
// Shared routine for multiple shift operations.
static void VisitWord32PairShift(InstructionSelector* selector,
InstructionCode opcode, Node* node) {
MipsOperandGenerator g(selector);
Int32Matcher m(node->InputAt(2));
InstructionOperand shift_operand;
if (m.HasValue()) {
shift_operand = g.UseImmediate(m.node());
} else {
shift_operand = g.UseUniqueRegister(m.node());
}
// We use UseUniqueRegister here to avoid register sharing with the output
// register.
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
shift_operand};
Node* projection1 = NodeProperties::FindProjection(node, 1);
InstructionOperand outputs[2];
InstructionOperand temps[1];
int32_t output_count = 0;
int32_t temp_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
if (projection1) {
outputs[output_count++] = g.DefineAsRegister(projection1);
} else {
temps[temp_count++] = g.TempRegister();
}
selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
void InstructionSelector::VisitWord32PairShl(Node* node) {
VisitWord32PairShift(this, kMipsShlPair, node);
}
void InstructionSelector::VisitWord32PairShr(Node* node) {
VisitWord32PairShift(this, kMipsShrPair, node);
}
void InstructionSelector::VisitWord32PairSar(Node* node) {
VisitWord32PairShift(this, kMipsSarPair, node);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitRRO(this, kMipsRor, node);
}
void InstructionSelector::VisitWord32Clz(Node* node) {
VisitRR(this, kMipsClz, node);
}
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsByteSwap32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32Ctz(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsCtz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32Popcnt(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsPopcnt, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitInt32Add(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
// Select Lsa for (left + (left_of_right << imm)).
if (m.right().opcode() == IrOpcode::kWord32Shl &&
CanCover(node, m.left().node()) && CanCover(node, m.right().node())) {
Int32BinopMatcher mright(m.right().node());
if (mright.right().HasValue() && !m.left().HasValue()) {
int32_t shift_value = static_cast<int32_t>(mright.right().Value());
Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(mright.left().node()), g.TempImmediate(shift_value));
return;
}
}
// Select Lsa for ((left_of_left << imm) + right).
if (m.left().opcode() == IrOpcode::kWord32Shl &&
CanCover(node, m.right().node()) && CanCover(node, m.left().node())) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && !m.right().HasValue()) {
int32_t shift_value = static_cast<int32_t>(mleft.right().Value());
Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.right().node()),
g.UseRegister(mleft.left().node()), g.TempImmediate(shift_value));
return;
}
}
VisitBinop(this, node, kMipsAdd, true, kMipsAdd);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
VisitBinop(this, node, kMipsSub);
}
void InstructionSelector::VisitInt32Mul(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().HasValue() && m.right().Value() > 0) {
uint32_t value = static_cast<uint32_t>(m.right().Value());
if (base::bits::IsPowerOfTwo(value)) {
Emit(kMipsShl | AddressingModeField::encode(kMode_None),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value)));
return;
}
if (base::bits::IsPowerOfTwo(value - 1)) {
Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value - 1)));
return;
}
if (base::bits::IsPowerOfTwo(value + 1)) {
InstructionOperand temp = g.TempRegister();
Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value + 1)));
Emit(kMipsSub | AddressingModeField::encode(kMode_None),
g.DefineAsRegister(node), temp, g.UseRegister(m.left().node()));
return;
}
}
VisitRRR(this, kMipsMul, node);
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitRRR(this, kMipsMulHigh, node);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsMulHighU, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitInt32Div(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
Emit(kMipsDiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitUint32Div(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
Emit(kMipsDivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitInt32Mod(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
Emit(kMipsMod, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitUint32Mod(Node* node) {
MipsOperandGenerator g(this);
Int32BinopMatcher m(node);
Emit(kMipsModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRR(this, kMipsCvtDS, node);
}
void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
VisitRR(this, kMipsCvtSW, node);
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
VisitRR(this, kMipsCvtSUw, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRR(this, kMipsCvtDW, node);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRR(this, kMipsCvtDUw, node);
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
VisitRR(this, kMipsTruncWS, node);
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
VisitRR(this, kMipsTruncUwS, node);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
MipsOperandGenerator g(this);
Node* value = node->InputAt(0);
// Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction
// which does rounding and conversion to integer format.
if (CanCover(node, value)) {
switch (value->opcode()) {
case IrOpcode::kFloat64RoundDown:
Emit(kMipsFloorWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
case IrOpcode::kFloat64RoundUp:
Emit(kMipsCeilWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
case IrOpcode::kFloat64RoundTiesEven:
Emit(kMipsRoundWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
case IrOpcode::kFloat64RoundTruncate:
Emit(kMipsTruncWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
default:
break;
}
if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) {
Node* next = value->InputAt(0);
if (CanCover(value, next)) {
// Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP))
switch (next->opcode()) {
case IrOpcode::kFloat32RoundDown:
Emit(kMipsFloorWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
case IrOpcode::kFloat32RoundUp:
Emit(kMipsCeilWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
case IrOpcode::kFloat32RoundTiesEven:
Emit(kMipsRoundWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
case IrOpcode::kFloat32RoundTruncate:
Emit(kMipsTruncWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
default:
Emit(kMipsTruncWS, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
}
} else {
// Match float32 -> float64 -> int32 representation change path.
Emit(kMipsTruncWS, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
}
}
}
VisitRR(this, kMipsTruncWD, node);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRR(this, kMipsTruncUwD, node);
}
void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
VisitRR(this, kMipsTruncUwD, node);
}
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
MipsOperandGenerator g(this);
Node* value = node->InputAt(0);
// Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding
// instruction.
if (CanCover(node, value) &&
value->opcode() == IrOpcode::kChangeInt32ToFloat64) {
Emit(kMipsCvtSW, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
}
VisitRR(this, kMipsCvtSD, node);
}
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, kArchTruncateDoubleToI, node);
}
void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
VisitRR(this, kMipsTruncWD, node);
}
void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
VisitRR(this, kMipsFloat64ExtractLowWord32, node);
}
void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat64InsertLowWord32, g.DefineAsRegister(node),
ImmediateOperand(ImmediateOperand::INLINE, 0),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat32Add(Node* node) {
MipsOperandGenerator g(this);
if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
Float32BinopMatcher m(node);
if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) {
// For Add.S(Mul.S(x, y), z):
Float32BinopMatcher mleft(m.left().node());
Emit(kMipsMaddS, g.DefineAsRegister(node),
g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) {
// For Add.S(x, Mul.S(y, z)):
Float32BinopMatcher mright(m.right().node());
Emit(kMipsMaddS, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(mright.left().node()),
g.UseRegister(mright.right().node()));
return;
}
}
VisitRRR(this, kMipsAddS, node);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
MipsOperandGenerator g(this);
if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
Float64BinopMatcher m(node);
if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) {
// For Add.D(Mul.D(x, y), z):
Float64BinopMatcher mleft(m.left().node());
Emit(kMipsMaddD, g.DefineAsRegister(node),
g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) {
// For Add.D(x, Mul.D(y, z)):
Float64BinopMatcher mright(m.right().node());
Emit(kMipsMaddD, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(mright.left().node()),
g.UseRegister(mright.right().node()));
return;
}
}
VisitRRR(this, kMipsAddD, node);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
MipsOperandGenerator g(this);
if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
Float32BinopMatcher m(node);
if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) {
// For Sub.S(Mul.S(x,y), z) select Msub.S(z, x, y).
Float32BinopMatcher mleft(m.left().node());
Emit(kMipsMsubS, g.DefineAsRegister(node),
g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
}
VisitRRR(this, kMipsSubS, node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
MipsOperandGenerator g(this);
if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
Float64BinopMatcher m(node);
if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) {
// For Sub.D(Mul.S(x,y), z) select Msub.D(z, x, y).
Float64BinopMatcher mleft(m.left().node());
Emit(kMipsMsubD, g.DefineAsRegister(node),
g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
}
VisitRRR(this, kMipsSubD, node);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRRR(this, kMipsMulS, node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitRRR(this, kMipsMulD, node);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRRR(this, kMipsDivS, node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRR(this, kMipsDivD, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsModD, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12),
g.UseFixed(node->InputAt(1), f14))->MarkAsCall();
}
void InstructionSelector::VisitFloat32Max(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat32Max, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Max(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat64Max, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat32Min(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat32Min, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Min(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat64Min, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitRR(this, kMipsAbsS, node);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitRR(this, kMipsAbsD, node);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRR(this, kMipsSqrtS, node);
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRR(this, kMipsSqrtD, node);
}
void InstructionSelector::VisitFloat32RoundDown(Node* node) {
VisitRR(this, kMipsFloat32RoundDown, node);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, kMipsFloat64RoundDown, node);
}
void InstructionSelector::VisitFloat32RoundUp(Node* node) {
VisitRR(this, kMipsFloat32RoundUp, node);
}
void InstructionSelector::VisitFloat64RoundUp(Node* node) {
VisitRR(this, kMipsFloat64RoundUp, node);
}
void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
VisitRR(this, kMipsFloat32RoundTruncate, node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, kMipsFloat64RoundTruncate, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
VisitRR(this, kMipsFloat32RoundTiesEven, node);
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
VisitRR(this, kMipsFloat64RoundTiesEven, node);
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitRR(this, kMipsNegS, node);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitRR(this, kMipsNegD, node);
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
MipsOperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2),
g.UseFixed(node->InputAt(1), f4))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
MipsOperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12))
->MarkAsCall();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
Node* node) {
MipsOperandGenerator g(this);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
int slot = kCArgSlotCount;
for (PushParameter input : (*arguments)) {
if (input.node()) {
Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(slot << kPointerSizeLog2));
++slot;
}
}
} else {
// Possibly align stack here for functions.
int push_count = static_cast<int>(descriptor->StackParameterCount());
if (push_count > 0) {
Emit(kMipsStackClaim, g.NoOutput(),
g.TempImmediate(push_count << kPointerSizeLog2));
}
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(n << kPointerSizeLog2));
}
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
void InstructionSelector::VisitUnalignedLoad(Node* node) {
UnalignedLoadRepresentation load_rep =
UnalignedLoadRepresentationOf(node->op());
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
UNREACHABLE();
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsUnsigned() ? kMipsUlhu : kMipsUlh;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord32:
opcode = kMipsUlw;
break;
case MachineRepresentation::kFloat32:
opcode = kMipsUlwc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMipsUldc1;
break;
case MachineRepresentation::kSimd128:
opcode = kMipsMsaLd;
break;
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired load opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
}
}
void InstructionSelector::VisitUnalignedStore(Node* node) {
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op());
// TODO(mips): I guess this could be done in a better way.
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kMipsUswc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMipsUsdc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
UNREACHABLE();
break;
case MachineRepresentation::kWord16:
opcode = kMipsUsh;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord32:
opcode = kMipsUsw;
break;
case MachineRepresentation::kSimd128:
opcode = kMipsMsaSt;
break;
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index),
g.UseRegisterOrImmediateZero(value));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired store opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
}
}
void InstructionSelector::VisitCheckedLoad(Node* node) {
CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
MipsOperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedLoadWord32;
break;
case MachineRepresentation::kFloat32:
opcode = kCheckedLoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedLoadFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
? g.UseImmediate(offset)
: g.UseRegister(offset);
InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
? g.CanBeImmediate(length, opcode)
? g.UseImmediate(length)
: g.UseRegister(length)
: g.UseRegister(length);
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), offset_operand, length_operand,
g.UseRegister(buffer));
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
MipsOperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kCheckedStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kCheckedStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedStoreWord32;
break;
case MachineRepresentation::kFloat32:
opcode = kCheckedStoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedStoreFloat64;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
? g.UseImmediate(offset)
: g.UseRegister(offset);
InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
? g.CanBeImmediate(length, opcode)
? g.UseImmediate(length)
: g.UseRegister(length)
: g.UseRegister(length);
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
offset_operand, length_operand, g.UseRegisterOrImmediateZero(value),
g.UseRegister(buffer));
}
namespace {
// Shared routine for multiple compare operations.
static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
MipsOperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(),
cont->reason(), cont->frame_state());
} else if (cont->IsSet()) {
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
} else {
DCHECK(cont->IsTrap());
selector->Emit(opcode, g.NoOutput(), left, right,
g.TempImmediate(cont->trap_id()));
}
}
// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
MipsOperandGenerator g(selector);
Float32BinopMatcher m(node);
InstructionOperand lhs, rhs;
lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
: g.UseRegister(m.left().node());
rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
: g.UseRegister(m.right().node());
VisitCompare(selector, kMipsCmpS, lhs, rhs, cont);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
MipsOperandGenerator g(selector);
Float64BinopMatcher m(node);
InstructionOperand lhs, rhs;
lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
: g.UseRegister(m.left().node());
rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
: g.UseRegister(m.right().node());
VisitCompare(selector, kMipsCmpD, lhs, rhs, cont);
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative) {
MipsOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, opcode)) {
if (opcode == kMipsTst) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else {
switch (cont->condition()) {
case kEqual:
case kNotEqual:
if (cont->IsSet()) {
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseImmediate(right), cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseRegister(right), cont);
}
break;
case kSignedLessThan:
case kSignedGreaterThanOrEqual:
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseImmediate(right), cont);
break;
default:
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseRegister(right), cont);
}
}
} else if (g.CanBeImmediate(left, opcode)) {
if (!commutative) cont->Commute();
if (opcode == kMipsTst) {
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
switch (cont->condition()) {
case kEqual:
case kNotEqual:
if (cont->IsSet()) {
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseImmediate(left), cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseRegister(left), cont);
}
break;
case kSignedLessThan:
case kSignedGreaterThanOrEqual:
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseImmediate(left), cont);
break;
default:
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseRegister(left), cont);
}
}
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
void VisitWordCompare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kMipsCmp, cont, false);
}
// Shared routine for word comparisons against zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal &&
selector->CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (!result || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMipsAddOvf, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMipsSubOvf, cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMipsMulOvf, cont);
default:
break;
}
}
}
break;
case IrOpcode::kWord32And:
return VisitWordCompare(selector, value, kMipsTst, cont, true);
default:
break;
}
}
// Continuation could not be combined with a compare, emit compare against 0.
MipsOperandGenerator g(selector);
InstructionCode const opcode = cont->Encode(kMipsCmp);
InstructionOperand const value_operand = g.UseRegister(value);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), value_operand,
g.TempImmediate(0), cont->kind(), cont->reason(),
cont->frame_state());
} else if (cont->IsSet()) {
selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand,
g.TempImmediate(0));
} else {
DCHECK(cont->IsTrap());
selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
g.TempImmediate(cont->trap_id()));
}
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeIf(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kNotEqual, p.kind(), p.reason(), node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kEqual, p.kind(), p.reason(), node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapUnless(Node* node,
Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
MipsOperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
static const size_t kMaxTableSwitchValueRange = 2 << 16;
size_t table_space_cost = 9 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 2 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min() &&
sw.value_range <= kMaxTableSwitchValueRange) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kMipsSub, index_operand, value_operand,
g.TempImmediate(sw.min_value));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMipsAddOvf, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMipsAddOvf, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMipsSubOvf, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMipsSubOvf, &cont);
}
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMipsMulOvf, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMipsMulOvf, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat64ExtractLowWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsFloat64ExtractHighWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
MipsOperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kMipsFloat64InsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
MipsOperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kMipsFloat64InsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
MipsOperandGenerator g(this);
Node* left = node->InputAt(0);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kMipsFloat64SilenceNaN, g.DefineSameAsFirst(node), g.UseRegister(left),
arraysize(temps), temps);
}
void InstructionSelector::VisitAtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicLoadWord32;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired load opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
}
}
void InstructionSelector::VisitAtomicStore(Node* node) {
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kAtomicStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kAtomicStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicStoreWord32;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index),
g.UseRegisterOrImmediateZero(value));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired store opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
}
}
void InstructionSelector::VisitAtomicExchange(Node* node) {
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpRepresentationOf(node->op());
if (type == MachineType::Int8()) {
opcode = kAtomicExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicExchangeWord32;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRI;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionOperand temp[3];
temp[0] = g.TempRegister();
temp[1] = g.TempRegister();
temp[2] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 3, temp);
}
void InstructionSelector::VisitAtomicCompareExchange(Node* node) {
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpRepresentationOf(node->op());
if (type == MachineType::Int8()) {
opcode = kAtomicCompareExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicCompareExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicCompareExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicCompareExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicCompareExchangeWord32;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRI;
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(old_value);
inputs[input_count++] = g.UseUniqueRegister(new_value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionOperand temp[3];
temp[0] = g.TempRegister();
temp[1] = g.TempRegister();
temp[2] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 3, temp);
}
void InstructionSelector::VisitAtomicBinaryOperation(
Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
ArchOpcode uint16_op, ArchOpcode word32_op) {
MipsOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpRepresentationOf(node->op());
if (type == MachineType::Int8()) {
opcode = int8_op;
} else if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Int16()) {
opcode = int16_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = word32_op;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRI;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionOperand temps[4];
temps[0] = g.TempRegister();
temps[1] = g.TempRegister();
temps[2] = g.TempRegister();
temps[3] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 4, temps);
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitAtomic##op(Node* node) { \
VisitAtomicBinaryOperation(node, kAtomic##op##Int8, kAtomic##op##Uint8, \
kAtomic##op##Int16, kAtomic##op##Uint16, \
kAtomic##op##Word32); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
UNREACHABLE();
}
#define SIMD_TYPE_LIST(V) \
V(F32x4) \
V(I32x4) \
V(I16x8) \
V(I8x16)
#define SIMD_FORMAT_LIST(V) \
V(32x4) \
V(16x8) \
V(8x16)
#define SIMD_UNOP_LIST(V) \
V(F32x4SConvertI32x4, kMipsF32x4SConvertI32x4) \
V(F32x4UConvertI32x4, kMipsF32x4UConvertI32x4) \
V(F32x4Abs, kMipsF32x4Abs) \
V(F32x4Neg, kMipsF32x4Neg) \
V(F32x4RecipApprox, kMipsF32x4RecipApprox) \
V(F32x4RecipSqrtApprox, kMipsF32x4RecipSqrtApprox) \
V(I32x4SConvertF32x4, kMipsI32x4SConvertF32x4) \
V(I32x4UConvertF32x4, kMipsI32x4UConvertF32x4) \
V(I32x4Neg, kMipsI32x4Neg) \
V(I32x4SConvertI16x8Low, kMipsI32x4SConvertI16x8Low) \
V(I32x4SConvertI16x8High, kMipsI32x4SConvertI16x8High) \
V(I32x4UConvertI16x8Low, kMipsI32x4UConvertI16x8Low) \
V(I32x4UConvertI16x8High, kMipsI32x4UConvertI16x8High) \
V(I16x8Neg, kMipsI16x8Neg) \
V(I16x8SConvertI8x16Low, kMipsI16x8SConvertI8x16Low) \
V(I16x8SConvertI8x16High, kMipsI16x8SConvertI8x16High) \
V(I16x8UConvertI8x16Low, kMipsI16x8UConvertI8x16Low) \
V(I16x8UConvertI8x16High, kMipsI16x8UConvertI8x16High) \
V(I8x16Neg, kMipsI8x16Neg) \
V(S128Not, kMipsS128Not) \
V(S1x4AnyTrue, kMipsS1x4AnyTrue) \
V(S1x4AllTrue, kMipsS1x4AllTrue) \
V(S1x8AnyTrue, kMipsS1x8AnyTrue) \
V(S1x8AllTrue, kMipsS1x8AllTrue) \
V(S1x16AnyTrue, kMipsS1x16AnyTrue) \
V(S1x16AllTrue, kMipsS1x16AllTrue)
#define SIMD_SHIFT_OP_LIST(V) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU) \
V(I8x16Shl) \
V(I8x16ShrS) \
V(I8x16ShrU)
#define SIMD_BINOP_LIST(V) \
V(F32x4Add, kMipsF32x4Add) \
V(F32x4AddHoriz, kMipsF32x4AddHoriz) \
V(F32x4Sub, kMipsF32x4Sub) \
V(F32x4Mul, kMipsF32x4Mul) \
V(F32x4Max, kMipsF32x4Max) \
V(F32x4Min, kMipsF32x4Min) \
V(F32x4Eq, kMipsF32x4Eq) \
V(F32x4Ne, kMipsF32x4Ne) \
V(F32x4Lt, kMipsF32x4Lt) \
V(F32x4Le, kMipsF32x4Le) \
V(I32x4Add, kMipsI32x4Add) \
V(I32x4AddHoriz, kMipsI32x4AddHoriz) \
V(I32x4Sub, kMipsI32x4Sub) \
V(I32x4Mul, kMipsI32x4Mul) \
V(I32x4MaxS, kMipsI32x4MaxS) \
V(I32x4MinS, kMipsI32x4MinS) \
V(I32x4MaxU, kMipsI32x4MaxU) \
V(I32x4MinU, kMipsI32x4MinU) \
V(I32x4Eq, kMipsI32x4Eq) \
V(I32x4Ne, kMipsI32x4Ne) \
V(I32x4GtS, kMipsI32x4GtS) \
V(I32x4GeS, kMipsI32x4GeS) \
V(I32x4GtU, kMipsI32x4GtU) \
V(I32x4GeU, kMipsI32x4GeU) \
V(I16x8Add, kMipsI16x8Add) \
V(I16x8AddSaturateS, kMipsI16x8AddSaturateS) \
V(I16x8AddSaturateU, kMipsI16x8AddSaturateU) \
V(I16x8AddHoriz, kMipsI16x8AddHoriz) \
V(I16x8Sub, kMipsI16x8Sub) \
V(I16x8SubSaturateS, kMipsI16x8SubSaturateS) \
V(I16x8SubSaturateU, kMipsI16x8SubSaturateU) \
V(I16x8Mul, kMipsI16x8Mul) \
V(I16x8MaxS, kMipsI16x8MaxS) \
V(I16x8MinS, kMipsI16x8MinS) \
V(I16x8MaxU, kMipsI16x8MaxU) \
V(I16x8MinU, kMipsI16x8MinU) \
V(I16x8Eq, kMipsI16x8Eq) \
V(I16x8Ne, kMipsI16x8Ne) \
V(I16x8GtS, kMipsI16x8GtS) \
V(I16x8GeS, kMipsI16x8GeS) \
V(I16x8GtU, kMipsI16x8GtU) \
V(I16x8GeU, kMipsI16x8GeU) \
V(I16x8SConvertI32x4, kMipsI16x8SConvertI32x4) \
V(I16x8UConvertI32x4, kMipsI16x8UConvertI32x4) \
V(I8x16Add, kMipsI8x16Add) \
V(I8x16AddSaturateS, kMipsI8x16AddSaturateS) \
V(I8x16AddSaturateU, kMipsI8x16AddSaturateU) \
V(I8x16Sub, kMipsI8x16Sub) \
V(I8x16SubSaturateS, kMipsI8x16SubSaturateS) \
V(I8x16SubSaturateU, kMipsI8x16SubSaturateU) \
V(I8x16Mul, kMipsI8x16Mul) \
V(I8x16MaxS, kMipsI8x16MaxS) \
V(I8x16MinS, kMipsI8x16MinS) \
V(I8x16MaxU, kMipsI8x16MaxU) \
V(I8x16MinU, kMipsI8x16MinU) \
V(I8x16Eq, kMipsI8x16Eq) \
V(I8x16Ne, kMipsI8x16Ne) \
V(I8x16GtS, kMipsI8x16GtS) \
V(I8x16GeS, kMipsI8x16GeS) \
V(I8x16GtU, kMipsI8x16GtU) \
V(I8x16GeU, kMipsI8x16GeU) \
V(I8x16SConvertI16x8, kMipsI8x16SConvertI16x8) \
V(I8x16UConvertI16x8, kMipsI8x16UConvertI16x8) \
V(S128And, kMipsS128And) \
V(S128Or, kMipsS128Or) \
V(S128Xor, kMipsS128Xor)
void InstructionSelector::VisitS128Zero(Node* node) {
MipsOperandGenerator g(this);
Emit(kMipsS128Zero, g.DefineSameAsFirst(node));
}
#define SIMD_VISIT_SPLAT(Type) \
void InstructionSelector::Visit##Type##Splat(Node* node) { \
VisitRR(this, kMips##Type##Splat, node); \
}
SIMD_TYPE_LIST(SIMD_VISIT_SPLAT)
#undef SIMD_VISIT_SPLAT
#define SIMD_VISIT_EXTRACT_LANE(Type) \
void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \
VisitRRI(this, kMips##Type##ExtractLane, node); \
}
SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE)
#undef SIMD_VISIT_EXTRACT_LANE
#define SIMD_VISIT_REPLACE_LANE(Type) \
void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \
VisitRRIR(this, kMips##Type##ReplaceLane, node); \
}
SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE)
#undef SIMD_VISIT_REPLACE_LANE
#define SIMD_VISIT_UNOP(Name, instruction) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRR(this, instruction, node); \
}
SIMD_UNOP_LIST(SIMD_VISIT_UNOP)
#undef SIMD_VISIT_UNOP
#define SIMD_VISIT_SHIFT_OP(Name) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRRI(this, kMips##Name, node); \
}
SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP)
#undef SIMD_VISIT_SHIFT_OP
#define SIMD_VISIT_BINOP(Name, instruction) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRRR(this, instruction, node); \
}
SIMD_BINOP_LIST(SIMD_VISIT_BINOP)
#undef SIMD_VISIT_BINOP
void InstructionSelector::VisitS128Select(Node* node) {
VisitRRRR(this, kMipsS128Select, node);
}
namespace {
struct ShuffleEntry {
uint8_t shuffle[kSimd128Size];
ArchOpcode opcode;
};
static const ShuffleEntry arch_shuffles[] = {
{{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23},
kMipsS32x4InterleaveRight},
{{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31},
kMipsS32x4InterleaveLeft},
{{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27},
kMipsS32x4PackEven},
{{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31},
kMipsS32x4PackOdd},
{{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27},
kMipsS32x4InterleaveEven},
{{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31},
kMipsS32x4InterleaveOdd},
{{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23},
kMipsS16x8InterleaveRight},
{{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31},
kMipsS16x8InterleaveLeft},
{{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29},
kMipsS16x8PackEven},
{{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
kMipsS16x8PackOdd},
{{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29},
kMipsS16x8InterleaveEven},
{{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31},
kMipsS16x8InterleaveOdd},
{{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, kMipsS16x4Reverse},
{{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, kMipsS16x2Reverse},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23},
kMipsS8x16InterleaveRight},
{{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31},
kMipsS8x16InterleaveLeft},
{{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
kMipsS8x16PackEven},
{{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
kMipsS8x16PackOdd},
{{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30},
kMipsS8x16InterleaveEven},
{{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31},
kMipsS8x16InterleaveOdd},
{{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kMipsS8x8Reverse},
{{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kMipsS8x4Reverse},
{{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kMipsS8x2Reverse}};
bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table,
size_t num_entries, uint8_t mask, ArchOpcode* opcode) {
for (size_t i = 0; i < num_entries; ++i) {
const ShuffleEntry& entry = table[i];
int j = 0;
for (; j < kSimd128Size; ++j) {
if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) {
break;
}
}
if (j == kSimd128Size) {
*opcode = entry.opcode;
return true;
}
}
return false;
}
} // namespace
void InstructionSelector::VisitS8x16Shuffle(Node* node) {
const uint8_t* shuffle = OpParameter<uint8_t*>(node);
uint8_t mask = CanonicalizeShuffle(node);
uint8_t shuffle32x4[4];
ArchOpcode opcode;
if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles),
mask, &opcode)) {
VisitRRR(this, opcode, node);
return;
}
uint8_t offset;
MipsOperandGenerator g(this);
if (TryMatchConcat(shuffle, mask, &offset)) {
Emit(kMipsS8x16Concat, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)),
g.UseImmediate(offset));
return;
}
if (TryMatch32x4Shuffle(shuffle, shuffle32x4)) {
Emit(kMipsS32x4Shuffle, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
g.UseImmediate(Pack4Lanes(shuffle32x4, mask)));
return;
}
Emit(kMipsS8x16Shuffle, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
g.UseImmediate(Pack4Lanes(shuffle, mask)),
g.UseImmediate(Pack4Lanes(shuffle + 4, mask)),
g.UseImmediate(Pack4Lanes(shuffle + 8, mask)),
g.UseImmediate(Pack4Lanes(shuffle + 12, mask)));
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags;
if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode()) {
flags |= MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesEven;
}
return flags | MachineOperatorBuilder::kWord32Ctz |
MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kInt32DivIsSafe |
MachineOperatorBuilder::kUint32DivIsSafe |
MachineOperatorBuilder::kWord32ShiftIsSafe |
MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat32RoundTiesEven |
MachineOperatorBuilder::kWord32ReverseBytes |
MachineOperatorBuilder::kWord64ReverseBytes;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
if (IsMipsArchVariant(kMips32r6)) {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
} else {
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
return MachineOperatorBuilder::AlignmentRequirements::
NoUnalignedAccessSupport();
}
}
#undef SIMD_BINOP_LIST
#undef SIMD_SHIFT_OP_LIST
#undef SIMD_UNOP_LIST
#undef SIMD_TYPE_LIST
#undef SIMD_FORMAT_LIST
#undef TRACE_UNIMPL
#undef TRACE
} // namespace compiler
} // namespace internal
} // namespace v8