blob: 6ab476ddb0aa615030b23d2b8bd73576604f55cb [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h>
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#if V8_TARGET_ARCH_MIPS
#include "src/assembler-inl.h"
#include "src/base/bits.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/mips/constants-mips.h"
#include "src/mips/simulator-mips.h"
#include "src/ostreams.h"
#include "src/runtime/runtime-utils.h"
// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USE_SIMULATOR)
namespace v8 {
namespace internal {
// Utils functions.
bool HaveSameSign(int32_t a, int32_t b) {
return ((a ^ b) >= 0);
}
uint32_t get_fcsr_condition_bit(uint32_t cc) {
if (cc == 0) {
return 23;
} else {
return 24 + cc;
}
}
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent was through
// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The MipsDebugger class is used by the simulator while debugging simulated
// code.
class MipsDebugger {
public:
explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
void Stop(Instruction* instr);
void Debug();
// Print all registers with a nice formatting.
void PrintAllRegs();
void PrintAllRegsIncludingFPU();
private:
// We set the breakpoint code to 0xfffff to easily recognize it.
static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
static const Instr kNopInstr = 0x0;
Simulator* sim_;
int32_t GetRegisterValue(int regnum);
int32_t GetFPURegisterValue32(int regnum);
int64_t GetFPURegisterValue64(int regnum);
float GetFPURegisterValueFloat(int regnum);
double GetFPURegisterValueDouble(int regnum);
bool GetValue(const char* desc, int32_t* value);
bool GetValue(const char* desc, int64_t* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instruction* breakpc);
bool DeleteBreakpoint(Instruction* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
#define UNSUPPORTED() printf("Sim: Unsupported instruction.\n");
void MipsDebugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->Bits(25, 6);
PrintF("Simulator hit (%u)\n", code);
Debug();
}
int32_t MipsDebugger::GetRegisterValue(int regnum) {
if (regnum == kNumSimuRegisters) {
return sim_->get_pc();
} else {
return sim_->get_register(regnum);
}
}
int32_t MipsDebugger::GetFPURegisterValue32(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_word(regnum);
}
}
int64_t MipsDebugger::GetFPURegisterValue64(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register(regnum);
}
}
float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_float(regnum);
}
}
double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_double(regnum);
}
}
bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
int regnum = Registers::Number(desc);
int fpuregnum = FPURegisters::Number(desc);
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != kInvalidFPURegister) {
*value = GetFPURegisterValue32(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
} else {
return SScanF(desc, "%i", value) == 1;
}
return false;
}
bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
int regnum = Registers::Number(desc);
int fpuregnum = FPURegisters::Number(desc);
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != kInvalidFPURegister) {
*value = GetFPURegisterValue64(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" SCNx64,
reinterpret_cast<uint64_t*>(value)) == 1;
} else {
return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
}
return false;
}
bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void MipsDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void MipsDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
PrintF("\n");
// at, v0, a0.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(1), REG_INFO(2), REG_INFO(4));
// v1, a1.
PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
"", REG_INFO(3), REG_INFO(5));
// a2.
PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
// a3.
PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
PrintF("\n");
// t0-t7, s0-s7
for (int i = 0; i < 8; i++) {
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(8+i), REG_INFO(16+i));
}
PrintF("\n");
// t8, k0, LO.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(24), REG_INFO(26), REG_INFO(32));
// t9, k1, HI.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(25), REG_INFO(27), REG_INFO(33));
// sp, fp, gp.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(29), REG_INFO(30), REG_INFO(28));
// pc.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(31), REG_INFO(34));
#undef REG_INFO
#undef FPU_REG_INFO
}
void MipsDebugger::PrintAllRegsIncludingFPU() {
#define FPU_REG_INFO32(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
GetFPURegisterValue32(n+1), \
GetFPURegisterValue32(n), \
GetFPURegisterValueDouble(n)
#define FPU_REG_INFO64(n) FPURegisters::Name(n), \
GetFPURegisterValue64(n), \
GetFPURegisterValueDouble(n)
PrintAllRegs();
PrintF("\n\n");
// f0, f1, f2, ... f31.
// This must be a compile-time switch,
// compiler will throw out warnings otherwise.
if (kFpuMode == kFP64) {
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(0) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(1) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(2) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(3) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(4) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(5) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(6) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(7) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(8) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(9) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(10));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(11));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(12));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(13));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(14));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(15));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(16));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(17));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(18));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(19));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(20));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(21));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(22));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(23));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(24));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(25));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(26));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(27));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(28));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(29));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(30));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(31));
} else {
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(0) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(2) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(4) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(6) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(8) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(10));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(12));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(14));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(16));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(18));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(20));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(22));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(24));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(26));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(28));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(30));
}
#undef REG_INFO
#undef FPU_REG_INFO32
#undef FPU_REG_INFO64
}
void MipsDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = { cmd, arg1, arg2 };
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != NULL) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
if (!(instr->IsTrap()) ||
instr->InstructionBits() == rtCallRedirInstr) {
sim_->InstructionDecode(
reinterpret_cast<Instruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
PrintF("/!\\ Jumping over generated breakpoint.\n");
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2) {
if (strcmp(arg1, "all") == 0) {
PrintAllRegs();
} else if (strcmp(arg1, "allf") == 0) {
PrintAllRegsIncludingFPU();
} else {
int regnum = Registers::Number(arg1);
int fpuregnum = FPURegisters::Number(arg1);
if (regnum != kInvalidRegister) {
int32_t value;
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08x %d \n", arg1, value, value);
} else if (fpuregnum != kInvalidFPURegister) {
if (IsFp64Mode()) {
int64_t value;
double dvalue;
value = GetFPURegisterValue64(fpuregnum);
dvalue = GetFPURegisterValueDouble(fpuregnum);
PrintF("%3s: 0x%016llx %16.4e\n",
FPURegisters::Name(fpuregnum), value, dvalue);
} else {
if (fpuregnum % 2 == 1) {
int32_t value;
float fvalue;
value = GetFPURegisterValue32(fpuregnum);
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
} else {
double dfvalue;
int32_t lvalue1 = GetFPURegisterValue32(fpuregnum);
int32_t lvalue2 = GetFPURegisterValue32(fpuregnum + 1);
dfvalue = GetFPURegisterValueDouble(fpuregnum);
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
FPURegisters::Name(fpuregnum+1),
FPURegisters::Name(fpuregnum),
lvalue1,
lvalue2,
dfvalue);
}
}
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
if (argc == 3) {
if (strcmp(arg2, "single") == 0) {
int32_t value;
float fvalue;
int fpuregnum = FPURegisters::Number(arg1);
if (fpuregnum != kInvalidFPURegister) {
value = GetFPURegisterValue32(fpuregnum);
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("print <fpu register> single\n");
}
} else {
PrintF("print <register> or print <fpu register> single\n");
}
}
} else if ((strcmp(cmd, "po") == 0)
|| (strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
int32_t value;
OFStream os(stdout);
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj->Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int32_t* cur = NULL;
int32_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
} else { // Command "mem".
int32_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int32_t*>(value);
next_arg++;
}
// TODO(palfia): optimize this.
if (IsFp64Mode()) {
int64_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
} else {
int32_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
}
while (cur < end) {
PrintF(" 0x%08" PRIxPTR ": 0x%08x %10d",
reinterpret_cast<intptr_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
int value = *cur;
Heap* current_heap = sim_->isolate_->heap();
if (((value & 1) == 0) ||
current_heap->ContainsSlow(obj->address())) {
PrintF(" (");
if ((value & 1) == 0) {
PrintF("smi %d", value / 2);
} else {
obj->ShortPrint();
}
PrintF(")");
}
PrintF("\n");
cur++;
}
} else if ((strcmp(cmd, "disasm") == 0) ||
(strcmp(cmd, "dpc") == 0) ||
(strcmp(cmd, "di") == 0)) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * Instruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * Instruction::kInstrSize);
}
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += Instruction::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
PrintF("No flags on MIPS !\n");
} else if (strcmp(cmd, "stop") == 0) {
int32_t value;
intptr_t stop_pc = sim_->get_pc() -
2 * Instruction::kInstrSize;
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc +
Instruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->IsStopInstruction(stop_instr)) {
stop_instr->SetInstructionBits(kNopInstr);
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
// Print registers and disassemble.
PrintAllRegs();
PrintF("\n");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// no length parameter passed, assume 10 instructions
end = cur + (10 * Instruction::kInstrSize);
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += Instruction::kInstrSize;
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi\n");
PrintF(" step one instruction (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to print all registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("stack [<words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("flags\n");
PrintF(" print flags\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and and give control to the Debugger.\n");
PrintF(" All stop codes are watched:\n");
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool ICacheMatch(void* one, void* two) {
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
void* start_addr, size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ(0, start & CachePage::kPageMask);
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page) {
base::CustomMatcherHashMap::Entry* entry =
i_cache->LookupOrInsert(page, ICacheHash(page));
if (entry->value == NULL) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
intptr_t start, int size) {
DCHECK(size <= CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK((start & CachePage::kLineMask) == 0);
DCHECK((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset),
Instruction::kInstrSize));
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(isolate,
&RedirectExternalReference);
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
i_cache_ = isolate_->simulator_i_cache();
if (i_cache_ == NULL) {
i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
isolate_->set_simulator_i_cache(i_cache_);
}
Initialize(isolate);
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
stack_ = reinterpret_cast<char*>(malloc(stack_size_));
pc_modified_ = false;
icount_ = 0;
break_count_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumSimuRegisters; i++) {
registers_[i] = 0;
}
for (int i = 0; i < kNumFPURegisters; i++) {
FPUregisters_[2 * i] = 0;
FPUregisters_[2 * i + 1] = 0; // upper part for MSA ASE
}
if (IsMipsArchVariant(kMips32r6)) {
FCSR_ = kFCSRNaN2008FlagMask;
MSACSR_ = 0;
} else {
DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2));
FCSR_ = 0;
}
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
last_debugger_input_ = NULL;
}
Simulator::~Simulator() { free(stack_); }
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(Isolate* isolate, void* external_function,
ExternalReference::Type type)
: external_function_(external_function),
swi_instruction_(rtCallRedirInstr),
type_(type),
next_(NULL) {
next_ = isolate->simulator_redirection();
Simulator::current(isolate)->
FlushICache(isolate->simulator_i_cache(),
reinterpret_cast<void*>(&swi_instruction_),
Instruction::kInstrSize);
isolate->set_simulator_redirection(this);
}
void* address_of_swi_instruction() {
return reinterpret_cast<void*>(&swi_instruction_);
}
void* external_function() { return external_function_; }
ExternalReference::Type type() { return type_; }
static Redirection* Get(Isolate* isolate, void* external_function,
ExternalReference::Type type) {
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) return current;
}
return new Redirection(isolate, external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
char* addr_of_redirection =
addr_of_swi - offsetof(Redirection, swi_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static void* ReverseRedirection(int32_t reg) {
Redirection* redirection = FromSwiInstruction(
reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
return redirection->external_function();
}
static void DeleteChain(Redirection* redirection) {
while (redirection != nullptr) {
Redirection* next = redirection->next_;
delete redirection;
redirection = next;
}
}
private:
void* external_function_;
uint32_t swi_instruction_;
ExternalReference::Type type_;
Redirection* next_;
};
// static
void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
Redirection* first) {
Redirection::DeleteChain(first);
if (i_cache != nullptr) {
for (base::CustomMatcherHashMap::Entry* entry = i_cache->Start();
entry != nullptr; entry = i_cache->Next(entry)) {
delete static_cast<CachePage*>(entry->value);
}
delete i_cache;
}
}
void* Simulator::RedirectExternalReference(Isolate* isolate,
void* external_function,
ExternalReference::Type type) {
base::LockGuard<base::Mutex> lock_guard(
isolate->simulator_redirection_mutex());
Redirection* redirection = Redirection::Get(isolate, external_function, type);
return redirection->address_of_swi_instruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK(isolate_data != NULL);
DCHECK(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == pc) {
pc_modified_ = true;
}
// Zero register always holds 0.
registers_[reg] = (reg == 0) ? 0 : value;
}
void Simulator::set_dw_register(int reg, const int* dbl) {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
registers_[reg] = dbl[0];
registers_[reg + 1] = dbl[1];
}
void Simulator::set_fpu_register(int fpureg, int64_t value) {
DCHECK(IsFp64Mode());
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
FPUregisters_[fpureg * 2] = value;
}
void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
// Set ONLY lower 32-bits, leaving upper bits untouched.
// TODO(plind): big endian issue.
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
int32_t* pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2]);
*pword = value;
}
void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
// Set ONLY upper 32-bits, leaving lower bits untouched.
// TODO(plind): big endian issue.
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
int32_t* phiword =
(reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2])) + 1;
*phiword = value;
}
void Simulator::set_fpu_register_float(int fpureg, float value) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
*bit_cast<float*>(&FPUregisters_[fpureg * 2]) = value;
}
void Simulator::set_fpu_register_double(int fpureg, double value) {
if (IsFp64Mode()) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
*bit_cast<double*>(&FPUregisters_[fpureg * 2]) = value;
} else {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
int64_t i64 = bit_cast<int64_t>(value);
set_fpu_register_word(fpureg, i64 & 0xffffffff);
set_fpu_register_word(fpureg + 1, i64 >> 32);
}
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == 0)
return 0;
else
return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}
double Simulator::get_double_from_register_pair(int reg) {
// TODO(plind): bad ABI stuff, refactor or remove.
DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
double dm_val = 0.0;
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[2 * sizeof(registers_[0])];
memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
return(dm_val);
}
int64_t Simulator::get_fpu_register(int fpureg) const {
if (IsFp64Mode()) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return FPUregisters_[fpureg * 2];
} else {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
uint64_t i64;
i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg));
i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32;
return static_cast<int64_t>(i64);
}
}
int32_t Simulator::get_fpu_register_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xffffffff);
}
int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xffffffff);
}
int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>((FPUregisters_[fpureg * 2] >> 32) & 0xffffffff);
}
float Simulator::get_fpu_register_float(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg * 2]));
}
double Simulator::get_fpu_register_double(int fpureg) const {
if (IsFp64Mode()) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *bit_cast<double*>(&FPUregisters_[fpureg * 2]);
} else {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
int64_t i64;
i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg));
i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32;
return bit_cast<double>(i64);
}
}
template <typename T>
void Simulator::get_msa_register(int wreg, T* value) {
DCHECK((wreg >= 0) && (wreg < kNumMSARegisters));
memcpy(value, FPUregisters_ + wreg * 2, kSimd128Size);
}
template <typename T>
void Simulator::set_msa_register(int wreg, const T* value) {
DCHECK((wreg >= 0) && (wreg < kNumMSARegisters));
memcpy(FPUregisters_ + wreg * 2, value, kSimd128Size);
}
// Runtime FP routines take up to two double arguments and zero
// or one integer arguments. All are constructed here,
// from a0-a3 or f12 and f14.
void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
if (!IsMipsSoftFloatABI) {
*x = get_fpu_register_double(12);
*y = get_fpu_register_double(14);
*z = get_register(a2);
} else {
// TODO(plind): bad ABI stuff, refactor or remove.
// We use a char buffer to get around the strict-aliasing rules which
// otherwise allow the compiler to optimize away the copy.
char buffer[sizeof(*x)];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
// Registers a0 and a1 -> x.
reg_buffer[0] = get_register(a0);
reg_buffer[1] = get_register(a1);
memcpy(x, buffer, sizeof(buffer));
// Registers a2 and a3 -> y.
reg_buffer[0] = get_register(a2);
reg_buffer[1] = get_register(a3);
memcpy(y, buffer, sizeof(buffer));
// Register 2 -> z.
reg_buffer[0] = get_register(a2);
memcpy(z, buffer, sizeof(*z));
}
}
// The return value is either in v0/v1 or f0.
void Simulator::SetFpResult(const double& result) {
if (!IsMipsSoftFloatABI) {
set_fpu_register_double(0, result);
} else {
char buffer[2 * sizeof(registers_[0])];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
memcpy(buffer, &result, sizeof(buffer));
// Copy result to v0 and v1.
set_register(v0, reg_buffer[0]);
set_register(v1, reg_buffer[1]);
}
}
// Helper functions for setting and testing the FCSR register's bits.
void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
if (value) {
FCSR_ |= (1 << cc);
} else {
FCSR_ &= ~(1 << cc);
}
}
bool Simulator::test_fcsr_bit(uint32_t cc) {
return FCSR_ & (1 << cc);
}
void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
FCSR_ |= mode & kFPURoundingModeMask;
}
void Simulator::set_msacsr_rounding_mode(FPURoundingMode mode) {
MSACSR_ |= mode & kFPURoundingModeMask;
}
unsigned int Simulator::get_fcsr_rounding_mode() {
return FCSR_ & kFPURoundingModeMask;
}
unsigned int Simulator::get_msacsr_rounding_mode() {
return MSACSR_ & kFPURoundingModeMask;
}
void Simulator::set_fpu_register_word_invalid_result(float original,
float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register_word(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result64(float original,
float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded >= max_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
} else if (rounded < min_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
}
}
void Simulator::set_fpu_register_word_invalid_result(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register_word(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result64(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded >= max_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
} else if (rounded < min_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
}
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(double original, double rounded) {
bool ret = false;
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > max_int32 || rounded < min_int32) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round64_error(double original, double rounded) {
bool ret = false;
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded >= max_int64 || rounded < min_int64) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(float original, float rounded) {
bool ret = false;
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > max_int32 || rounded < min_int32) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round64_error(float original, float rounded) {
bool ret = false;
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded >= max_int64 || rounded < min_int64) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
void Simulator::round_according_to_fcsr(double toRound, double& rounded,
int32_t& rounded_int, double fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RD (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int32_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
rounded -= 1.;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
}
}
void Simulator::round_according_to_fcsr(float toRound, float& rounded,
int32_t& rounded_int, float fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RD (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int32_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
rounded -= 1.f;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
}
}
template <typename T_fp, typename T_int>
void Simulator::round_according_to_msacsr(T_fp toRound, T_fp& rounded,
T_int& rounded_int) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RD (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (get_msacsr_rounding_mode()) {
case kRoundToNearest:
rounded = std::floor(toRound + 0.5);
rounded_int = static_cast<T_int>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - toRound == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
rounded -= 1;
}
break;
case kRoundToZero:
rounded = trunc(toRound);
rounded_int = static_cast<T_int>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(toRound);
rounded_int = static_cast<T_int>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(toRound);
rounded_int = static_cast<T_int>(rounded);
break;
}
}
void Simulator::round64_according_to_fcsr(double toRound, double& rounded,
int64_t& rounded_int, double fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or.
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int64_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
rounded -= 1.;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
}
}
void Simulator::round64_according_to_fcsr(float toRound, float& rounded,
int64_t& rounded_int, float fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or.
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int64_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
rounded -= 1.f;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
}
}
// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
return registers_[pc];
}
// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an
// interrupt is caused. On others it does a funky rotation thing. For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour. Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator. Since the host is typically IA32 we will not
// get the correct MIPS-like behaviour on unaligned accesses.
void Simulator::TraceRegWr(int32_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
union {
int32_t fmt_int32;
float fmt_float;
} v;
v.fmt_int32 = value;
switch (t) {
case WORD:
SNPrintF(trace_buf_, "%08" PRIx32 " (%" PRIu64 ") int32:%" PRId32
" uint32:%" PRIu32,
value, icount_, value, value);
break;
case FLOAT:
SNPrintF(trace_buf_, "%08" PRIx32 " (%" PRIu64 ") flt:%e",
v.fmt_int32, icount_, v.fmt_float);
break;
default:
UNREACHABLE();
}
}
}
void Simulator::TraceRegWr(int64_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
union {
int64_t fmt_int64;
double fmt_double;
} v;
v.fmt_int64 = value;
switch (t) {
case DWORD:
SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRIu64 ") int64:%" PRId64
" uint64:%" PRIu64,
value, icount_, value, value);
break;
case DOUBLE:
SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRIu64 ") dbl:%e",
v.fmt_int64, icount_, v.fmt_double);
break;
default:
UNREACHABLE();
}
}
}
template <typename T>
void Simulator::TraceMSARegWr(T* value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
union {
uint8_t b[16];
uint16_t h[8];
uint32_t w[4];
uint64_t d[2];
float f[4];
double df[2];
} v;
memcpy(v.b, value, kSimd128Size);
switch (t) {
case BYTE:
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")",
v.d[0], v.d[1], icount_);
break;
case HALF:
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")",
v.d[0], v.d[1], icount_);
break;
case WORD:
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64
") int32[0..3]:%" PRId32 " %" PRId32 " %" PRId32
" %" PRId32,
v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]);
break;
case DWORD:
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")",
v.d[0], v.d[1], icount_);
break;
case FLOAT:
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64
") flt[0..3]:%e %e %e %e",
v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]);
break;
case DOUBLE:
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64
") dbl[0..1]:%e %e",
v.d[0], v.d[1], icount_, v.df[0], v.df[1]);
break;
default:
UNREACHABLE();
}
}
}
template <typename T>
void Simulator::TraceMSARegWr(T* value) {
if (::v8::internal::FLAG_trace_sim) {
union {
uint8_t b[kMSALanesByte];
uint16_t h[kMSALanesHalf];
uint32_t w[kMSALanesWord];
uint64_t d[kMSALanesDword];
float f[kMSALanesWord];
double df[kMSALanesDword];
} v;
memcpy(v.b, value, kMSALanesByte);
if (std::is_same<T, int32_t>::value) {
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64
") int32[0..3]:%" PRId32 " %" PRId32 " %" PRId32
" %" PRId32,
v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]);
} else if (std::is_same<T, float>::value) {
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64
") flt[0..3]:%e %e %e %e",
v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]);
} else if (std::is_same<T, double>::value) {
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64
") dbl[0..1]:%e %e",
v.d[0], v.d[1], icount_, v.df[0], v.df[1]);
} else {
SNPrintF(trace_buf_,
"LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")",
v.d[0], v.d[1], icount_);
}
}
}
// TODO(plind): consider making icount_ printing a flag option.
void Simulator::TraceMemRd(int32_t addr, int32_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
union {
int32_t fmt_int32;
float fmt_float;
} v;
v.fmt_int32 = value;
switch (t) {
case WORD:
SNPrintF(trace_buf_, "%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64
") int32:%" PRId32 " uint32:%" PRIu32,
value, addr, icount_, value, value);
break;
case FLOAT:
SNPrintF(trace_buf_,
"%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64 ") flt:%e",
v.fmt_int32, addr, icount_, v.fmt_float);
break;
default:
UNREACHABLE();
}
}
}
void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
switch (t) {
case BYTE:
SNPrintF(trace_buf_,
" %02" PRIx8 " --> [%08" PRIx32 "] (%" PRIu64 ")",
static_cast<uint8_t>(value), addr, icount_);
break;
case HALF:
SNPrintF(trace_buf_,
" %04" PRIx16 " --> [%08" PRIx32 "] (%" PRIu64 ")",
static_cast<uint16_t>(value), addr, icount_);
break;
case WORD:
SNPrintF(trace_buf_,
"%08" PRIx32 " --> [%08" PRIx32 "] (%" PRIu64 ")", value,
addr, icount_);
break;
default:
UNREACHABLE();
}
}
}
template <typename T>
void Simulator::TraceMemRd(int32_t addr, T value) {
if (::v8::internal::FLAG_trace_sim) {
switch (sizeof(T)) {
case 1:
SNPrintF(trace_buf_,
"%08" PRIx8 " <-- [%08" PRIx32 "] (%" PRIu64
") int8:%" PRId8 " uint8:%" PRIu8,
static_cast<uint8_t>(value), addr, icount_,
static_cast<int8_t>(value), static_cast<uint8_t>(value));
break;
case 2:
SNPrintF(trace_buf_,
"%08" PRIx16 " <-- [%08" PRIx32 "] (%" PRIu64
") int16:%" PRId16 " uint16:%" PRIu16,
static_cast<uint16_t>(value), addr, icount_,
static_cast<int16_t>(value), static_cast<uint16_t>(value));
break;
case 4:
SNPrintF(trace_buf_,
"%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64
") int32:%" PRId32 " uint32:%" PRIu32,
static_cast<uint32_t>(value), addr, icount_,
static_cast<int32_t>(value), static_cast<uint32_t>(value));
break;
case 8:
SNPrintF(trace_buf_,
"%08" PRIx64 " <-- [%08" PRIx32 "] (%" PRIu64
") int64:%" PRId64 " uint64:%" PRIu64,
static_cast<uint64_t>(value), addr, icount_,
static_cast<int64_t>(value), static_cast<uint64_t>(value));
break;
default:
UNREACHABLE();
}
}
}
template <typename T>
void Simulator::TraceMemWr(int32_t addr, T value) {
if (::v8::internal::FLAG_trace_sim) {
switch (sizeof(T)) {
case 1:
SNPrintF(trace_buf_,
" %02" PRIx8 " --> [%08" PRIx32 "] (%" PRIu64 ")",
static_cast<uint8_t>(value), addr, icount_);
break;
case 2:
SNPrintF(trace_buf_,
" %04" PRIx16 " --> [%08" PRIx32 "] (%" PRIu64 ")",
static_cast<uint16_t>(value), addr, icount_);
break;
case 4:
SNPrintF(trace_buf_,
"%08" PRIx32 " --> [%08" PRIx32 "] (%" PRIu64 ")",
static_cast<uint32_t>(value), addr, icount_);
break;
case 8:
SNPrintF(trace_buf_,
"%16" PRIx64 " --> [%08" PRIx32 "] (%" PRIu64 ")",
static_cast<uint64_t>(value), addr, icount_);
break;
default:
UNREACHABLE();
}
}
}
void Simulator::TraceMemRd(int32_t addr, int64_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
union {
int64_t fmt_int64;
int32_t fmt_int32[2];
float fmt_float[2];
double fmt_double;
} v;
v.fmt_int64 = value;
switch (t) {
case DWORD:
SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%08" PRIx32 "] (%" PRIu64
") int64:%" PRId64 " uint64:%" PRIu64,
v.fmt_int64, addr, icount_, v.fmt_int64, v.fmt_int64);
break;
case DOUBLE:
SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%08" PRIx32 "] (%" PRIu64
") dbl:%e",
v.fmt_int64, addr, icount_, v.fmt_double);
break;
case FLOAT_DOUBLE:
SNPrintF(trace_buf_, "%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64
") flt:%e dbl:%e",
v.fmt_int32[1], addr, icount_, v.fmt_float[1], v.fmt_double);
break;
default:
UNREACHABLE();
}
}
}
void Simulator::TraceMemWr(int32_t addr, int64_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
switch (t) {
case DWORD:
SNPrintF(trace_buf_,
"%016" PRIx64 " --> [%08" PRIx32 "] (%" PRIu64 ")", value,
addr, icount_);
break;
default:
UNREACHABLE();
}
}
}
int Simulator::ReadW(int32_t addr, Instruction* instr, TraceType t) {
if (addr >=0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory read from bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
switch (t) {
case WORD:
TraceMemRd(addr, static_cast<int32_t>(*ptr), t);
break;
case FLOAT:
// This TraceType is allowed but tracing for this value will be omitted.
break;
default:
UNREACHABLE();
}
return *ptr;
}
PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
return 0;
}
void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
if (addr >= 0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
TraceMemWr(addr, value, WORD);
*ptr = value;
return;
}
PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
double Simulator::ReadD(int32_t addr, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
double* ptr = reinterpret_cast<double*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
TraceMemWr(addr, value, HALF);
*ptr = value;
return;
}
PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
TraceMemWr(addr, value, HALF);
*ptr = value;
return;
}
PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
uint32_t Simulator::ReadBU(int32_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr & 0xff;
}
int32_t Simulator::ReadB(int32_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
void Simulator::WriteB(int32_t addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
TraceMemWr(addr, value, BYTE);
*ptr = value;
}
void Simulator::WriteB(int32_t addr, int8_t value) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
TraceMemWr(addr, value, BYTE);
*ptr = value;
}
template <typename T>
T Simulator::ReadMem(int32_t addr, Instruction* instr) {
int alignment_mask = (1 << sizeof(T)) - 1;
if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) {
T* ptr = reinterpret_cast<T*>(addr);
TraceMemRd(addr, *ptr);
return *ptr;
}
PrintF("Unaligned read of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
sizeof(T), addr, reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
template <typename T>
void Simulator::WriteMem(int32_t addr, T value, Instruction* instr) {
int alignment_mask = (1 << sizeof(T)) - 1;
if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) {
T* ptr = reinterpret_cast<T*>(addr);
*ptr = value;
TraceMemWr(addr, value);
return;
}
PrintF("Unaligned write of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR
"\n",
sizeof(T), addr, reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (GetCurrentStackPosition() < c_limit) {
return reinterpret_cast<uintptr_t>(get_sp());
}
// Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
// to prevent overrunning the stack when pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 1024;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR ": %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED_MIPS();
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, int32_t arg1,
int32_t arg2, int32_t arg3,
int32_t arg4, int32_t arg5,
int32_t arg6, int32_t arg7,
int32_t arg8);
typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int32_t arg0, int32_t arg1,
int32_t arg2, int32_t arg3,
int32_t arg4);
// These prototypes handle the four types of FP calls.
typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(
int32_t arg0, int32_t arg1, void* arg2);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt() {
// There are several instructions that could get us here,
// the break_ instruction, or several variants of traps. All
// Are "SPECIAL" class opcode, and are distinuished by function.
int32_t func = instr_.FunctionFieldRaw();
uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
// We first check if we met a call_rt_redirected.
if (instr_.InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
int32_t arg0 = get_register(a0);
int32_t arg1 = get_register(a1);
int32_t arg2 = get_register(a2);
int32_t arg3 = get_register(a3);
int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
// Args 4 and 5 are on the stack after the reserved space for args 0..3.
int32_t arg4 = stack_pointer[4];
int32_t arg5 = stack_pointer[5];
int32_t arg6 = stack_pointer[6];
int32_t arg7 = stack_pointer[7];
int32_t arg8 = stack_pointer[8];
STATIC_ASSERT(kMaxCParameters == 9);
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
if (!IsMipsSoftFloatABI) {
// With the hard floating point calling convention, double
// arguments are passed in FPU registers. Fetch the arguments
// from there and call the builtin using soft floating point
// convention.
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
if (IsFp64Mode()) {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_hi_word(f12);
arg2 = get_fpu_register_word(f14);
arg3 = get_fpu_register_hi_word(f14);
} else {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_word(f13);
arg2 = get_fpu_register_word(f14);
arg3 = get_fpu_register_word(f15);
}
break;
case ExternalReference::BUILTIN_FP_CALL:
if (IsFp64Mode()) {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_hi_word(f12);
} else {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_word(f13);
}
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
if (IsFp64Mode()) {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_hi_word(f12);
} else {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_word(f13);
}
arg2 = get_register(a2);
break;
default:
break;
}
}
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int32_t saved_ra = get_register(ra);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
// Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
// FPU, or gcc soft-float routines. Hardware FPU is simulated in this
// simulator. Soft-float has additional abstraction of ExternalReference,
// to support serialization.
if (fp_call) {
double dval0, dval1; // one or two double parameters
int32_t ival; // zero or one integer parameters
int64_t iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %d",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
ival);
break;
default:
UNREACHABLE();
break;
}
}
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
set_register(v0, static_cast<int32_t>(iresult));
set_register(v1, static_cast<int32_t>(iresult >> 32));
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
break;
}
if (::v8::internal::FLAG_trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
break;
}
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x\n",
reinterpret_cast<void*>(external), arg0);
}
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
target(arg0);
} else if (
redirection->type() == ExternalReference::PROFILING_API_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x\n",
reinterpret_cast<void*>(external), arg0, arg1);
}
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
target(arg0, Redirection::ReverseRedirection(arg1));
} else if (
redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x\n",
reinterpret_cast<void*>(external), arg0, arg1);
}
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
target(arg0, arg1);
} else if (
redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x %08x\n",
reinterpret_cast<void*>(external), arg0, arg1, arg2);
}
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
target(arg0, arg1, Redirection::ReverseRedirection(arg2));
} else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
// builtin call returning ObjectTriple.
SimulatorRuntimeTripleCall target =
reinterpret_cast<SimulatorRuntimeTripleCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host triple returning runtime function %p "
"args %08x, %08x, %08x, %08x, %08x\n",
static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4,
arg5);
}
// arg0 is a hidden argument pointing to the return location, so don't
// pass it to the target function.
ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x),
static_cast<void*>(result.y), static_cast<void*>(result.z));
}
// Return is passed back in address pointed to by hidden first argument.
ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0);
*sim_result = result;
set_register(v0, arg0);
} else {
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host function at %p "
"args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x\n",
static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3,
arg4, arg5, arg6, arg7, arg8);
}
int64_t result =
target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
set_register(v0, static_cast<int32_t>(result));
set_register(v1, static_cast<int32_t>(result >> 32));
}
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
}
set_register(ra, saved_ra);
set_pc(get_register(ra));
} else if (func == BREAK && code <= kMaxStopCode) {
if (IsWatchpoint(code)) {
PrintWatchpoint(code);
} else {
IncreaseStopCounter(code);
HandleStop(code, instr_.instr());
}
} else {
// All remaining break_ codes, and all traps are handled here.
MipsDebugger dbg(this);
dbg.Debug();
}
}
// Stop helper functions.
bool Simulator::IsWatchpoint(uint32_t code) {
return (code <= kMaxWatchpointCode);
}
void Simulator::PrintWatchpoint(uint32_t code) {
MipsDebugger dbg(this);
++break_count_;
PrintF("\n---- break %d marker: %3d (instr count: %" PRIu64
") ----------"
"----------------------------------",
code, break_count_, icount_);
dbg.PrintAllRegs(); // Print registers and continue running.
}
void Simulator::HandleStop(uint32_t code, Instruction* instr) {
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (IsEnabledStop(code)) {
MipsDebugger dbg(this);
dbg.Stop(instr);
}
}
bool Simulator::IsStopInstruction(Instruction* instr) {
int32_t func = instr->FunctionFieldRaw();
uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
}
bool Simulator::IsEnabledStop(uint32_t code) {
DCHECK(code <= kMaxStopCode);
DCHECK(code > kMaxWatchpointCode);
return !(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
if (!IsEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
if (IsEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
DCHECK(code <= kMaxStopCode);
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
PrintF("Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n", code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
if (code <= kMaxWatchpointCode) {
PrintF("That is a watchpoint, not a stop.\n");
return;
} else if (code > kMaxStopCode) {
PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
return;
}
const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
code, code, state, count, watched_stops_[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
code, code, state, count);
}
}
}
void Simulator::SignalException(Exception e) {
V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
static_cast<int>(e));
}
// Min/Max template functions for Double and Single arguments.
template <typename T>
static T FPAbs(T a);
template <>
double FPAbs<double>(double a) {
return fabs(a);
}
template <>
float FPAbs<float>(float a) {
return fabsf(a);
}
template <typename T>
static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) {
if (std::isnan(a) && std::isnan(b)) {
result = a;
} else if (std::isnan(a)) {
result = b;
} else if (std::isnan(b)) {
result = a;
} else if (b == a) {
// Handle -0.0 == 0.0 case.
// std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax
// negates the result.
result = std::signbit(b) - static_cast<int>(kind) ? b : a;
} else {
return false;
}
return true;
}
template <typename T>
static T FPUMin(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
return result;
} else {
return b < a ? b : a;
}
}
template <typename T>
static T FPUMax(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) {
return result;
} else {
return b > a ? b : a;
}
}
template <typename T>
static T FPUMinA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
if (FPAbs(a) < FPAbs(b)) {
result = a;
} else if (FPAbs(b) < FPAbs(a)) {
result = b;
} else {
result = a < b ? a : b;
}
}
return result;
}
template <typename T>
static T FPUMaxA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
if (FPAbs(a) > FPAbs(b)) {
result = a;
} else if (FPAbs(b) > FPAbs(a)) {
result = b;
} else {
result = a > b ? a : b;
}
}
return result;
}
enum class KeepSign : bool { no = false, yes };
template <typename T, typename std::enable_if<std::is_floating_point<T>::value,
int>::type = 0>
T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) {
DCHECK(std::isnan(arg));
T qNaN = std::numeric_limits<T>::quiet_NaN();
if (keepSign == KeepSign::yes) {
return std::copysign(qNaN, result);
}
return qNaN;
}
template <typename T>
T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) {
if (std::isnan(first)) {
return FPUCanonalizeNaNArg(result, first, keepSign);
}
return result;
}
template <typename T, typename... Args>
T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) {
if (std::isnan(first)) {
return FPUCanonalizeNaNArg(result, first, keepSign);
}
return FPUCanonalizeNaNArgs(result, keepSign, args...);
}
template <typename Func, typename T, typename... Args>
T FPUCanonalizeOperation(Func f, T first, Args... args) {
return FPUCanonalizeOperation(f, KeepSign::no, first, args...);
}
template <typename Func, typename T, typename... Args>
T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) {
T result = f(first, args...);
if (std::isnan(result)) {
result = FPUCanonalizeNaNArgs(result, keepSign, first, args...);
}
return result;
}
// Handle execution based on instruction types.
void Simulator::DecodeTypeRegisterDRsType() {
double ft, fs, fd;
uint32_t cc, fcsr_cc;
int64_t i64;
fs = get_fpu_register_double(fs_reg());
ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
: 0.0;
fd = get_fpu_register_double(fd_reg());
int64_t ft_int = bit_cast<int64_t>(ft);
int64_t fd_int = bit_cast<int64_t>(fd);
cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(IsMipsArchVariant(kMips32r6));
double result, temp, temp_result;
double upper = std::ceil(fs);
double lower = std::floor(fs);
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
if (upper - fs < fs - lower) {
result = upper;
} else if (upper - fs > fs - lower) {
result = lower;
} else {
temp_result = upper / 2;
double reminder = modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fs > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
SetFPUDoubleResult(fd_reg(), result);
if (result != fs) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
break;
}
case SEL:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
break;
case SELEQZ_C:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
break;
case SELNEZ_C:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
break;
case MOVZ_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
if (rt() == 0) {
SetFPUDoubleResult(fd_reg(), fs);
}
break;
}
case MOVN_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
int32_t rt_reg = instr_.RtValue();
int32_t rt = get_register(rt_reg);
if (rt != 0) {
SetFPUDoubleResult(fd_reg(), fs);
}
break;
}
case MOVF: {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs);
} else {
// MOVF.D
if (!test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs);
}
break;
}
case MIN:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), FPUMin(ft, fs));
break;
case MAX:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), FPUMax(ft, fs));
break;
case MINA:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), FPUMinA(ft, fs));
break;
case MAXA:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), FPUMaxA(ft, fs));
break;
case ADD_D:
SetFPUDoubleResult(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs + rhs; }, fs, ft));
break;
case SUB_D:
SetFPUDoubleResult(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs - rhs; }, fs, ft));
break;
case MADDF_D:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), std::fma(fs, ft, fd));
break;
case MSUBF_D:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUDoubleResult(fd_reg(), std::fma(-fs, ft, fd));
break;
case MUL_D:
SetFPUDoubleResult(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs * rhs; }, fs, ft));
break;
case DIV_D:
SetFPUDoubleResult(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs / rhs; }, fs, ft));
break;
case ABS_D:
SetFPUDoubleResult(
fd_reg(),
FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs));
break;
case MOV_D:
SetFPUDoubleResult(fd_reg(), fs);
break;
case NEG_D:
SetFPUDoubleResult(fd_reg(),
FPUCanonalizeOperation([](double src) { return -src; },
KeepSign::yes, fs));
break;
case SQRT_D:
SetFPUDoubleResult(
fd_reg(),
FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs));
break;
case RSQRT_D:
SetFPUDoubleResult(
fd_reg(), FPUCanonalizeOperation(
[](double fs) { return 1.0 / std::sqrt(fs); }, fs));
break;
case RECIP_D:
SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation(
[](double fs) { return 1.0 / fs; }, fs));
break;
case C_UN_D:
set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_EQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_UEQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_OLT_D:
set_fcsr_bit(fcsr_cc, (fs < ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_ULT_D:
set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_OLE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_ULE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case CVT_W_D: { // Convert double to word.
double rounded;
int32_t result;
round_according_to_fcsr(fs, rounded, result, fs);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case ROUND_W_D: // Round double to word (round half to even).
{
double rounded = std::floor(fs + 0.5);
int32_t result = static_cast<int32_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case TRUNC_W_D: // Truncate double to word (round towards 0).
{
double rounded = trunc(fs);
int32_t result = static_cast<int32_t>(rounded);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case FLOOR_W_D: // Round double to word towards negative infinity.
{
double rounded = std::floor(fs);
int32_t result = static_cast<int32_t>(rounded);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case CEIL_W_D: // Round double to word towards positive infinity.
{
double rounded = std::ceil(fs);
int32_t result = static_cast<int32_t>(rounded);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case CVT_S_D: // Convert double to float (single).
SetFPUFloatResult(fd_reg(), static_cast<float>(fs));
break;
case CVT_L_D: { // Mips32r2: Truncate double to 64-bit long-word.
if (IsFp64Mode()) {
int64_t result;
double rounded;
round64_according_to_fcsr(fs, rounded, result, fs);
SetFPUResult(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
break;
}
case TRUNC_L_D: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
double rounded = trunc(fs);
i64 = static_cast<int64_t>(rounded);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case ROUND_L_D: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
double rounded = std::floor(fs + 0.5);
int64_t result = static_cast<int64_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
int64_t i64 = static_cast<int64_t>(result);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case FLOOR_L_D: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
double rounded = std::floor(fs);
int64_t i64 = static_cast<int64_t>(rounded);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case CEIL_L_D: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
double rounded = std::ceil(fs);
int64_t i64 = static_cast<int64_t>(rounded);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case CLASS_D: { // Mips32r6 instruction
// Convert double input to uint64_t for easier bit manipulation
uint64_t classed = bit_cast<uint64_t>(fs);
// Extracting sign, exponent and mantissa from the input double
uint32_t sign = (classed >> 63) & 1;
uint32_t exponent = (classed >> 52) & 0x00000000000007ff;
uint64_t mantissa = classed & 0x000fffffffffffff;
uint64_t result;
double dResult;
// Setting flags if input double is negative infinity,
// positive infinity, negative zero or positive zero
bool negInf = (classed == 0xFFF0000000000000);
bool posInf = (classed == 0x7FF0000000000000);
bool negZero = (classed == 0x8000000000000000);
bool posZero = (classed == 0x0000000000000000);
bool signalingNan;
bool quietNan;
bool negSubnorm;
bool posSubnorm;
bool negNorm;
bool posNorm;
// Setting flags if double is NaN
signalingNan = false;
quietNan = false;
if (!negInf && !posInf && exponent == 0x7ff) {
quietNan = ((mantissa & 0x0008000000000000) != 0) &&
((mantissa & (0x0008000000000000 - 1)) == 0);
signalingNan = !quietNan;
}
// Setting flags if double is subnormal number
posSubnorm = false;
negSubnorm = false;
if ((exponent == 0) && (mantissa != 0)) {
DCHECK(sign == 0 || sign == 1);
posSubnorm = (sign == 0);
negSubnorm = (sign == 1);
}
// Setting flags if double is normal number
posNorm = false;
negNorm = false;
if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
!quietNan && !negZero && !posZero) {
DCHECK(sign == 0 || sign == 1);
posNorm = (sign == 0);
negNorm = (sign == 1);
}
// Calculating result according to description of CLASS.D instruction
result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
(posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
(negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
DCHECK(result != 0);
dResult = bit_cast<double>(result);
SetFPUDoubleResult(fd_reg(), dResult);
break;
}
case C_F_D: {
set_fcsr_bit(fcsr_cc, false);
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
}
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterWRsType() {
float fs = get_fpu_register_float(fs_reg());
float ft = get_fpu_register_float(ft_reg());
int32_t alu_out = 0x12345678;
switch (instr_.FunctionFieldRaw()) {
case CVT_S_W: // Convert word to float (single).
alu_out = get_fpu_register_signed_word(fs_reg());
SetFPUFloatResult(fd_reg(), static_cast<float>(alu_out));
break;
case CVT_D_W: // Convert word to double.
alu_out = get_fpu_register_signed_word(fs_reg());
SetFPUDoubleResult(fd_reg(), static_cast<double>(alu_out));
break;
case CMP_AF:
SetFPUWordResult(fd_reg(), 0);
break;
case CMP_UN:
if (std::isnan(fs) || std::isnan(ft)) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_EQ:
if (fs == ft) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_UEQ:
if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_LT:
if (fs < ft) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_ULT:
if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_LE:
if (fs <= ft) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_ULE:
if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_OR:
if (!std::isnan(fs) && !std::isnan(ft)) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_UNE:
if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
case CMP_NE:
if (fs != ft) {
SetFPUWordResult(fd_reg(), -1);
} else {
SetFPUWordResult(fd_reg(), 0);
}
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterSRsType() {
float fs, ft, fd;
fs = get_fpu_register_float(fs_reg());
ft = get_fpu_register_float(ft_reg());
fd = get_fpu_register_float(fd_reg());
int32_t ft_int = bit_cast<int32_t>(ft);
int32_t fd_int = bit_cast<int32_t>(fd);
uint32_t cc, fcsr_cc;
cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(IsMipsArchVariant(kMips32r6));
float result, temp_result;
double temp;
float upper = std::ceil(fs);
float lower = std::floor(fs);
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
if (upper - fs < fs - lower) {
result = upper;
} else if (upper - fs > fs - lower) {
result = lower;
} else {
temp_result = upper / 2;
float reminder = modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fs > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
SetFPUFloatResult(fd_reg(), result);
if (result != fs) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
break;
}
case ADD_S:
SetFPUFloatResult(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; },
fs, ft));
break;
case SUB_S:
SetFPUFloatResult(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; },
fs, ft));
break;
case MADDF_S:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), std::fma(fs, ft, fd));
break;
case MSUBF_S:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), std::fma(-fs, ft, fd));
break;
case MUL_S:
SetFPUFloatResult(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; },
fs, ft));
break;
case DIV_S:
SetFPUFloatResult(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; },
fs, ft));
break;
case ABS_S:
SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation(
[](float fs) { return FPAbs(fs); }, fs));
break;
case MOV_S:
SetFPUFloatResult(fd_reg(), fs);
break;
case NEG_S:
SetFPUFloatResult(fd_reg(),
FPUCanonalizeOperation([](float src) { return -src; },
KeepSign::yes, fs));
break;
case SQRT_S:
SetFPUFloatResult(
fd_reg(),
FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs));
break;
case RSQRT_S:
SetFPUFloatResult(
fd_reg(), FPUCanonalizeOperation(
[](float src) { return 1.0 / std::sqrt(src); }, fs));
break;
case RECIP_S:
SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation(
[](float src) { return 1.0 / src; }, fs));
break;
case C_F_D:
set_fcsr_bit(fcsr_cc, false);
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_UN_D:
set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_EQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_UEQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_OLT_D:
set_fcsr_bit(fcsr_cc, (fs < ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_ULT_D:
set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_OLE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case C_ULE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
TraceRegWr(test_fcsr_bit(fcsr_cc));
break;
case CVT_D_S:
SetFPUDoubleResult(fd_reg(), static_cast<double>(fs));
break;
case SEL:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
break;
case CLASS_S: { // Mips32r6 instruction
// Convert float input to uint32_t for easier bit manipulation
float fs = get_fpu_register_float(fs_reg());
uint32_t classed = bit_cast<uint32_t>(fs);
// Extracting sign, exponent and mantissa from the input float
uint32_t sign = (classed >> 31) & 1;
uint32_t exponent = (classed >> 23) & 0x000000ff;
uint32_t mantissa = classed & 0x007fffff;
uint32_t result;
float fResult;
// Setting flags if input float is negative infinity,
// positive infinity, negative zero or positive zero
bool negInf = (classed == 0xFF800000);
bool posInf = (classed == 0x7F800000);
bool negZero = (classed == 0x80000000);
bool posZero = (classed == 0x00000000);
bool signalingNan;
bool quietNan;
bool negSubnorm;
bool posSubnorm;
bool negNorm;
bool posNorm;
// Setting flags if float is NaN
signalingNan = false;
quietNan = false;
if (!negInf && !posInf && (exponent == 0xff)) {
quietNan = ((mantissa & 0x00200000) == 0) &&
((mantissa & (0x00200000 - 1)) == 0);
signalingNan = !quietNan;
}
// Setting flags if float is subnormal number
posSubnorm = false;
negSubnorm = false;
if ((exponent == 0) && (mantissa != 0)) {
DCHECK(sign == 0 || sign == 1);
posSubnorm = (sign == 0);
negSubnorm = (sign == 1);
}
// Setting flags if float is normal number
posNorm = false;
negNorm = false;
if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
!quietNan && !negZero && !posZero) {
DCHECK(sign == 0 || sign == 1);
posNorm = (sign == 0);
negNorm = (sign == 1);
}
// Calculating result according to description of CLASS.S instruction
result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
(posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
(negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
DCHECK(result != 0);
fResult = bit_cast<float>(result);
SetFPUFloatResult(fd_reg(), fResult);
break;
}
case SELEQZ_C:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(
fd_reg(),
(ft_int & 0x1) == 0 ? get_fpu_register_float(fs_reg()) : 0.0);
break;
case SELNEZ_C:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(
fd_reg(),
(ft_int & 0x1) != 0 ? get_fpu_register_float(fs_reg()) : 0.0);
break;
case MOVZ_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
if (rt() == 0) {
SetFPUFloatResult(fd_reg(), fs);
}
break;
}
case MOVN_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
if (rt() != 0) {
SetFPUFloatResult(fd_reg(), fs);
}
break;
}
case MOVF: {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs);
} else {
// MOVF.D
if (!test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs);
}
break;
}
case TRUNC_W_S: { // Truncate single to word (round towards 0).
float rounded = trunc(fs);
int32_t result = static_cast<int32_t>(rounded);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case TRUNC_L_S: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
float rounded = trunc(fs);
int64_t i64 = static_cast<int64_t>(rounded);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case FLOOR_W_S: // Round double to word towards negative infinity.
{
float rounded = std::floor(fs);
int32_t result = static_cast<int32_t>(rounded);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case FLOOR_L_S: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
float rounded = std::floor(fs);
int64_t i64 = static_cast<int64_t>(rounded);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case ROUND_W_S: {
float rounded = std::floor(fs + 0.5);
int32_t result = static_cast<int32_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
break;
}
case ROUND_L_S: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
float rounded = std::floor(fs + 0.5);
int64_t result = static_cast<int64_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
int64_t i64 = static_cast<int64_t>(result);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case CEIL_W_S: // Round double to word towards positive infinity.
{
float rounded = std::ceil(fs);
int32_t result = static_cast<int32_t>(rounded);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case CEIL_L_S: { // Mips32r2 instruction.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
float rounded = std::ceil(fs);
int64_t i64 = static_cast<int64_t>(rounded);
if (IsFp64Mode()) {
SetFPUResult(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case MIN:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), FPUMin(ft, fs));
break;
case MAX:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), FPUMax(ft, fs));
break;
case MINA:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), FPUMinA(ft, fs));
break;
case MAXA:
DCHECK(IsMipsArchVariant(kMips32r6));
SetFPUFloatResult(fd_reg(), FPUMaxA(ft, fs));
break;
case CVT_L_S: {
if (IsFp64Mode()) {
int64_t result;
float rounded;
round64_according_to_fcsr(fs, rounded, result, fs);
SetFPUResult(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
} else {
UNSUPPORTED();
}
break;
}
case CVT_W_S: {
float rounded;
int32_t result;
round_according_to_fcsr(fs, rounded, result, fs);
SetFPUWordResult(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
break;
}
default:
// CVT_W_S CVT_L_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
// CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterLRsType() {
double fs = get_fpu_register_double(fs_reg());
double ft = get_fpu_register_double(ft_reg());
switch (instr_.FunctionFieldRaw()) {
case CVT_D_L: // Mips32r2 instruction.
// Watch the signs here, we want 2 32-bit vals
// to make a sign-64.
int64_t i64;
if (IsFp64Mode()) {
i64 = get_fpu_register(fs_reg());
} else {
i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg()));
i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32;
}
SetFPUDoubleResult(fd_reg(), static_cast<double>(i64));
break;
case CVT_S_L:
if (IsFp64Mode()) {
i64 = get_fpu_register(fs_reg());
} else {
i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg()));
i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32;
}
SetFPUFloatResult(fd_reg(), static_cast<float>(i64));
break;
case CMP_AF: // Mips64r6 CMP.D instructions.
SetFPUResult(fd_reg(), 0);
break;
case CMP_UN:
if (std::isnan(fs) || std::isnan(ft)) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_EQ:
if (fs == ft) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_UEQ:
if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_LT:
if (fs < ft) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_ULT:
if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_LE:
if (fs <= ft) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_ULE:
if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_OR:
if (!std::isnan(fs) && !std::isnan(ft)) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_UNE:
if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
case CMP_NE:
if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
SetFPUResult(fd_reg(), -1);
} else {
SetFPUResult(fd_reg(), 0);
}
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterCOP1() {
switch (instr_.RsFieldRaw()) {
case CFC1:
// At the moment only FCSR is supported.
DCHECK(fs_reg() == kFCSRRegister);
SetResult(rt_reg(), FCSR_);
break;
case MFC1:
SetResult(rt_reg(), get_fpu_register_word(fs_reg()));
break;
case MFHC1:
if (IsFp64Mode()) {
SetResult(rt_reg(), get_fpu_register_hi_word(fs_reg()));
} else {
SetResult(rt_reg(), get_fpu_register_word(fs_reg() + 1));
}
break;
case CTC1: {
// At the moment only FCSR is supported.
DCHECK(fs_reg() == kFCSRRegister);
int32_t reg = registers_[rt_reg()];
if (IsMipsArchVariant(kMips32r6)) {
FCSR_ = reg | kFCSRNaN2008FlagMask;
} else {
DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2));
FCSR_ = reg & ~kFCSRNaN2008FlagMask;
}
TraceRegWr(static_cast<int32_t>(FCSR_));
break;
}
case MTC1:
// Hardware writes upper 32-bits to zero on mtc1.
set_fpu_register_hi_word(fs_reg(), 0);
set_fpu_register_word(fs_reg(), registers_[rt_reg()]);
TraceRegWr(get_fpu_register_word(fs_reg()), FLOAT);
break;
case MTHC1:
if (IsFp64Mode()) {
set_fpu_register_hi_word(fs_reg(), registers_[rt_reg()]);
TraceRegWr(get_fpu_register(fs_reg()), DOUBLE);
} else {
set_fpu_register_word(fs_reg() + 1, registers_[rt_reg()]);
if (fs_reg() % 2) {
TraceRegWr(get_fpu_register_word(fs_reg() + 1), FLOAT);
} else {
TraceRegWr(get_fpu_register(fs_reg()), DOUBLE);
}
}
break;
case S: {
DecodeTypeRegisterSRsType();
break;
}
case D:
DecodeTypeRegisterDRsType();
break;
case W:
DecodeTypeRegisterWRsType();
break;
case L:
DecodeTypeRegisterLRsType();
break;
case PS:
// Not implemented.
UNREACHABLE();
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterCOP1X() {
switch (instr_.FunctionFieldRaw()) {
case MADD_S: {
DCHECK(IsMipsArchVariant(kMips32r2));
float fr, ft, fs;
fr = get_fpu_register_float(fr_reg());
fs = get_fpu_register_float(fs_reg());
ft = get_fpu_register_float(ft_reg());
SetFPUFloatResult(fd_reg(), fs * ft + fr);
break;
}
case MSUB_S: {
DCHECK(IsMipsArchVariant(kMips32r2));
float fr, ft, fs;
fr = get_fpu_register_float(fr_reg());
fs = get_fpu_register_float(fs_reg());
ft = get_fpu_register_float(ft_reg());
SetFPUFloatResult(fd_reg(), fs * ft - fr);
break;
}
case MADD_D: {
DCHECK(IsMipsArchVariant(kMips32r2));
double fr, ft, fs;
fr = get_fpu_register_double(fr_reg());
fs = get_fpu_register_double(fs_reg());
ft = get_fpu_register_double(ft_reg());
SetFPUDoubleResult(fd_reg(), fs * ft + fr);
break;
}
case MSUB_D: {
DCHECK(IsMipsArchVariant(kMips32r2));
double fr, ft, fs;
fr = get_fpu_register_double(fr_reg());
fs = get_fpu_register_double(fs_reg());
ft = get_fpu_register_double(ft_reg());
SetFPUDoubleResult(fd_reg(), fs * ft - fr);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterSPECIAL() {
int64_t alu_out = 0x12345678;
int64_t i64hilo = 0;
uint64_t u64hilo = 0;
bool do_interrupt = false;
switch (instr_.FunctionFieldRaw()) {
case SELEQZ_S:
DCHECK(IsMipsArchVariant(kMips32r6));
SetResult(rd_reg(), rt() == 0 ? rs() : 0);
break;
case SELNEZ_S:
DCHECK(IsMipsArchVariant(kMips32r6));
SetResult(rd_reg(), rt() != 0 ? rs() : 0);
break;
case JR: {
int32_t next_pc = rs();
int32_t current_pc = get_pc();
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_pc(next_pc);
pc_modified_ = true;
break;
}
case JALR: {
int32_t next_pc = rs();
int32_t return_addr_reg = rd_reg();
int32_t current_pc = get_pc();
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize);
set_pc(next_pc);
pc_modified_ = true;
break;
}
case SLL:
alu_out = rt() << sa();
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
case SRL:
if (rs_reg() == 0) {
// Regular logical right shift of a word by a fixed number of
// bits instruction. RS field is always equal to 0.
alu_out = rt_u() >> sa();
} else {
// Logical right-rotate of a word by a fixed number of bits. This
// is special case of SRL instruction, added in MIPS32 Release 2.
// RS field is equal to 00001.
alu_out = base::bits::RotateRight32(rt_u(), sa());
}
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
case SRA:
alu_out = rt() >> sa();
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
case SLLV:
alu_out = rt() << rs();
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
case SRLV:
if (sa() == 0) {
// Regular logical right-shift of a word by a variable number of
// bits instruction. SA field is always equal to 0.
alu_out = rt_u() >> rs();
} else {
// Logical right-rotate of a word by a variable number of bits.
// This is special case od SRLV instruction, added in MIPS32
// Release 2. SA field is equal to 00001.
alu_out = base::bits::RotateRight32(rt_u(), rs_u());
}
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
case SRAV:
SetResult(rd_reg(), rt() >> rs());
break;
case LSA: {
DCHECK(IsMipsArchVariant(kMips32r6));
int8_t sa = lsa_sa() + 1;
int32_t _rt = rt();
int32_t _rs = rs();
int32_t res = _rs << sa;
res += _rt;
DCHECK_EQ(res, (rs() << (lsa_sa() + 1)) + rt());
SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt());
break;
}
case MFHI: // MFHI == CLZ on R6.
if (!IsMipsArchVariant(kMips32r6)) {
DCHECK(sa() == 0);
alu_out = get_register(HI);
} else {
// MIPS spec: If no bits were set in GPR rs, the result written to
// GPR rd is 32.
DCHECK(sa() == 1);
alu_out = base::bits::CountLeadingZeros32(rs_u());
}
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
case MFLO:
alu_out = get_register(LO);
SetResult(rd_reg(), static_cast<int32_t>(alu_out));
break;
// Instructions using HI and LO registers.
case MULT:
i64hilo = static_cast<int64_t>(rs()) * static_cast<int64_t>(rt());
if (!IsMipsArchVariant(kMips32r6)) {
set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
set_register(HI, static_cast<int32_t>(i64hilo >> 32));
} else {
switch (sa()) {
case MUL_OP:
SetResult(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff));
break;
case MUH_OP:
SetResult(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
}
break;
case MULTU:
u64hilo = static_cast<uint64_t>(rs_u()) * static_cast<uint64_t>(rt_u());
if (!IsMipsArchVariant(kMips32r6)) {
set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
set_register(HI, static_cast<int32_t>(u64hilo >> 32));
} else {
switch (sa()) {
case MUL_OP:
SetResult(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff));
break;
case MUH_OP:
SetResult(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
}
break;
case DIV:
if (IsMipsArchVariant(kMips32r6)) {
switch (sa()) {
case DIV_OP:
if (rs() == INT_MIN && rt() == -1) {
SetResult(rd_reg(), INT_MIN);
} else if (rt() != 0) {
SetResult(rd_reg(), rs() / rt());
}
break;
case MOD_OP:
if (rs() == INT_MIN && rt() == -1) {
SetResult(rd_reg(), 0);
} else if (rt() != 0) {
SetResult(rd_reg(), rs() % rt());
}
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
} else {
// Divide by zero and overflow was not checked in the
// configuration step - div and divu do not raise exceptions. On
// division by 0 the result will be UNPREDICTABLE. On overflow
// (INT_MIN/-1), return INT_MIN which is what the hardware does.
if (rs() == INT_MIN && rt() == -1) {
set_register(LO, INT_MIN);
set_register(HI, 0);
} else if (rt() != 0) {
set_register(LO, rs() / rt());
set_register(HI, rs() % rt());
}
}
break;
case DIVU:
if (IsMipsArchVariant(kMips32r6)) {
switch (sa()) {
case DIV_OP:
if (rt_u() != 0) {
SetResult(rd_reg(), rs_u() / rt_u());
}
break;
case MOD_OP:
if (rt_u() != 0) {
SetResult(rd_reg(), rs_u() % rt_u());
}
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
} else {
if (rt_u() != 0) {
set_register(LO, rs_u() / rt_u());
set_register(HI, rs_u() % rt_u());
}
}
break;
case ADD:
if (HaveSameSign(rs(), rt())) {
if (rs() > 0) {
if (rs() <= (Registers::kMaxValue - rt())) {
SignalException(kIntegerOverflow);
}
} else if (rs() < 0) {
if (rs() >= (Registers::kMinValue - rt())) {
SignalException(kIntegerUnderflow);
}
}
}
SetResult(rd_reg(), rs() + rt());
break;
case ADDU:
SetResult(rd_reg(), rs() + rt());
break;
case SUB:
if (!HaveSameSign(rs(), rt())) {
if (rs() > 0) {
if (rs() <= (Registers::kMaxValue + rt())) {
SignalException(kIntegerOverflow);
}
} else if (rs() < 0) {
if (rs() >= (Registers::kMinValue + rt())) {
SignalException(kIntegerUnderflow);
}
}
}
SetResult(rd_reg(), rs() - rt());
break;
case SUBU:
SetResult(rd_reg(), rs() - rt());
break;
case AND:
SetResult(rd_reg(), rs() & rt());
break;
case OR:
SetResult(rd_reg(), rs() | rt());
break;
case XOR:
SetResult(rd_reg(), rs() ^ rt());
break;
case NOR:
SetResult(rd_reg(), ~(rs() | rt()));
break;
case SLT:
SetResult(rd_reg(), rs() < rt() ? 1 : 0);
break;
case SLTU:
SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
break;
// Break and trap instructions.
case BREAK:
do_interrupt = true;
break;
case TGE:
do_interrupt = rs() >= rt();
break;
case TGEU:
do_interrupt = rs_u() >= rt_u();
break;
case TLT:
do_interrupt = rs() < rt();
break;
case TLTU:
do_interrupt = rs_u() < rt_u();
break;
case TEQ:
do_interrupt = rs() == rt();
break;
case TNE:
do_interrupt = rs() != rt();
break;
case SYNC:
// TODO(palfia): Ignore sync instruction for now.
break;
// Conditional moves.
case MOVN:
if (rt()) {
SetResult(rd_reg(), rs());
}
break;
case MOVCI: {
uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
if (instr_.Bit(16)) { // Read Tf bit.
if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
} else {
if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
}
break;
}
case MOVZ:
if (!rt()) {
SetResult(rd_reg(), rs());
}
break;
default:
UNREACHABLE();
}
if (do_interrupt) {
SoftwareInterrupt();
}
}
void Simulator::DecodeTypeRegisterSPECIAL2() {
int32_t alu_out;
switch (instr_.FunctionFieldRaw()) {
case MUL:
// Only the lower 32 bits are kept.
alu_out = rs_u() * rt_u();
// HI and LO are UNPREDICTABLE after the operation.
set_register(LO, Unpredictable);
set_register(HI, Unpredictable);
break;
case CLZ:
// MIPS32 spec: If no bits were set in GPR rs, the result written to
// GPR rd is 32.
alu_out = base::bits::CountLeadingZeros32(rs_u());
break;
default:
alu_out = 0x12345678;
UNREACHABLE();
}
SetResult(rd_reg(), alu_out);
}
void Simulator::DecodeTypeRegisterSPECIAL3() {
int32_t alu_out;
switch (instr_.FunctionFieldRaw()) {
case INS: { // Mips32r2 instruction.
// Interpret rd field as 5-bit msb of insert.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of insert.
uint16_t lsb = sa();
uint16_t size = msb - lsb + 1;
uint32_t mask;
if (size < 32) {
mask = (1 << size) - 1;
} else {
mask = std::numeric_limits<uint32_t>::max();
}
alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
// Ins instr leaves result in Rt, rather than Rd.
SetResult(rt_reg(), alu_out);
break;
}
case EXT: { // Mips32r2 instruction.
// Interpret rd field as 5-bit msb of extract.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of extract.
uint16_t lsb = sa();
uint16_t size = msb + 1;
uint32_t mask;
if (size < 32) {
mask = (1 << size) - 1;
} else {
mask = std::numeric_limits<uint32_t>::max();
}
alu_out = (rs_u() & (mask << lsb)) >> lsb;
SetResult(rt_reg(), alu_out);
break;
}
case BSHFL: {
int sa = instr_.SaFieldRaw() >> kSaShift;
switch (sa) {
case BITSWAP: {
uint32_t input = static_cast<uint32_t>(rt());
uint32_t output = 0;
uint8_t i_byte, o_byte;
// Reverse the bit in byte for each individual byte
for (int i = 0; i < 4; i++) {
output = output >> 8;
i_byte = input & 0xff;
// Fast way to reverse bits in byte
// Devised by Sean Anderson, July 13, 2001
o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
(i_byte * 0x8020LU & 0x88440LU)) *
0x10101LU >>
16);
output = output | (static_cast<uint32_t>(o_byte << 24));
input = input >> 8;
}
alu_out = static_cast<int32_t>(output);
break;
}
case SEB: {
uint8_t input = static_cast<uint8_t>(rt());
uint32_t output = input;
uint32_t mask = 0x00000080;
// Extending sign
if (mask & input) {
output |= 0xFFFFFF00;
}
alu_out = static_cast<int32_t>(output);
break;
}
case SEH: {
uint16_t input = static_cast<uint16_t>(rt());
uint32_t output = input;
uint32_t mask = 0x00008000;
// Extending sign
if (mask & input) {
output |= 0xFFFF0000;
}
alu_out = static_cast<int32_t>(output);
break;
}
case WSBH: {
uint32_t input = static_cast<uint32_t>(rt());
uint32_t output = 0;
uint32_t mask = 0xFF000000;
for (int i = 0; i < 4; i++) {
uint32_t tmp = mask & input;
if (i % 2 == 0) {
tmp = tmp >> 8;
} else {
tmp = tmp << 8;
}
output = output | tmp;
mask = mask >> 8;
}
alu_out = static_cast<int32_t>(output);
break;
}
default: {
const uint8_t bp = instr_.Bp2Value();
sa >>= kBp2Bits;
switch (sa) {
case ALIGN: {
if (bp == 0) {
alu_out = static_cast<int32_t>(rt());
} else {
uint32_t rt_hi = rt() << (8 * bp);
uint32_t rs_lo = rs() >> (8 * (4 - bp));
alu_out = static_cast<int32_t>(rt_hi | rs_lo);
}
break;
}
default:
alu_out = 0x12345678;
UNREACHABLE();
break;
}
}
}
SetResult(rd_reg(), alu_out);
break;
}
default:
UNREACHABLE();
}
}
int Simulator::DecodeMsaDataFormat() {
int df = -1;
if (instr_.IsMSABranchInstr()) {
switch (instr_.RsFieldRaw()) {
case BZ_V:
case BNZ_V:
df = MSA_VECT;
break;
case BZ_B:
case BNZ_B:
df = MSA_BYTE;
break;
case BZ_H:
case BNZ_H:
df = MSA_HALF;
break;
case BZ_W:
case BNZ_W:
df = MSA_WORD;
break;
case BZ_D:
case BNZ_D:
df = MSA_DWORD;
break;
default:
UNREACHABLE();
break;
}
} else {
int DF[] = {MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD};
switch (instr_.MSAMinorOpcodeField()) {
case kMsaMinorI5:
case kMsaMinorI10:
case kMsaMinor3R:
df = DF[instr_.Bits(22, 21)];
break;
case kMsaMinorMI10:
df = DF[instr_.Bits(1, 0)];
break;
case kMsaMinorBIT:
df = DF[instr_.MsaBitDf()];
break;
case kMsaMinorELM:
df = DF[instr_.MsaElmDf()];
break;
case kMsaMinor3RF: {
uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask;
switch (opcode) {
case FEXDO:
case FTQ:
case MUL_Q:
case MADD_Q:
case MSUB_Q:
case MULR_Q:
case MADDR_Q:
case MSUBR_Q:
df = DF[1 + instr_.Bit(21)];
break;
default:
df = DF[2 + instr_.Bit(21)];
break;
}
} break;
case kMsaMinor2R:
df = DF[instr_.Bits(17, 16)];
break;
case kMsaMinor2RF:
df = DF[2 + instr_.Bit(16)];
break;
default:
UNREACHABLE();
break;
}
}
return df;
}
void Simulator::DecodeTypeMsaI8() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaI8Mask;
int8_t i8 = instr_.MsaImm8Value();
msa_reg_t ws, wd;
switch (opcode) {
case ANDI_B:
get_msa_register(instr_.WsValue(), ws.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = ws.b[i] & i8;
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case ORI_B:
get_msa_register(instr_.WsValue(), ws.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = ws.b[i] | i8;
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case NORI_B:
get_msa_register(instr_.WsValue(), ws.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = ~(ws.b[i] | i8);
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case XORI_B:
get_msa_register(instr_.WsValue(), ws.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = ws.b[i] ^ i8;
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case BMNZI_B:
get_msa_register(instr_.WsValue(), ws.b);
get_msa_register(instr_.WdValue(), wd.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = (ws.b[i] & i8) | (wd.b[i] & ~i8);
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case BMZI_B:
get_msa_register(instr_.WsValue(), ws.b);
get_msa_register(instr_.WdValue(), wd.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = (ws.b[i] & ~i8) | (wd.b[i] & i8);
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case BSELI_B:
get_msa_register(instr_.WsValue(), ws.b);
get_msa_register(instr_.WdValue(), wd.b);
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = (ws.b[i] & ~wd.b[i]) | (wd.b[i] & i8);
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case SHF_B:
get_msa_register(instr_.WsValue(), ws.b);
for (int i = 0; i < kMSALanesByte; i++) {
int j = i % 4;
int k = (i8 >> (2 * j)) & 0x3;
wd.b[i] = ws.b[i - j + k];
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
case SHF_H:
get_msa_register(instr_.WsValue(), ws.h);
for (int i = 0; i < kMSALanesHalf; i++) {
int j = i % 4;
int k = (i8 >> (2 * j)) & 0x3;
wd.h[i] = ws.h[i - j + k];
}
set_msa_register(instr_.WdValue(), wd.h);
TraceMSARegWr(wd.h);
break;
case SHF_W:
get_msa_register(instr_.WsValue(), ws.w);
for (int i = 0; i < kMSALanesWord; i++) {
int j = (i8 >> (2 * i)) & 0x3;
wd.w[i] = ws.w[j];
}
set_msa_register(instr_.WdValue(), wd.w);
TraceMSARegWr(wd.w);
break;
default:
UNREACHABLE();
}
}
template <typename T>
T Simulator::MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5) {
T res;
uint32_t ui5 = i5 & 0x1Fu;
uint64_t ws_u64 = static_cast<uint64_t>(ws);
uint64_t ui5_u64 = static_cast<uint64_t>(ui5);
switch (opcode) {
case ADDVI:
res = static_cast<T>(ws + ui5);
break;
case SUBVI:
res = static_cast<T>(ws - ui5);
break;
case MAXI_S:
res = static_cast<T>(Max(ws, static_cast<T>(i5)));
break;
case MINI_S:
res = static_cast<T>(Min(ws, static_cast<T>(i5)));
break;
case MAXI_U:
res = static_cast<T>(Max(ws_u64, ui5_u64));
break;
case MINI_U:
res = static_cast<T>(Min(ws_u64, ui5_u64));
break;
case CEQI:
res = static_cast<T>(!Compare(ws, static_cast<T>(i5)) ? -1ull : 0ull);
break;
case CLTI_S:
res = static_cast<T>((Compare(ws, static_cast<T>(i5)) == -1) ? -1ull
: 0ull);
break;
case CLTI_U:
res = static_cast<T>((Compare(ws_u64, ui5_u64) == -1) ? -1ull : 0ull);
break;
case CLEI_S:
res =
static_cast<T>((Compare(ws, static_cast<T>(i5)) != 1) ? -1ull : 0ull);
break;
case CLEI_U:
res = static_cast<T>((Compare(ws_u64, ui5_u64) != 1) ? -1ull : 0ull);
break;
default:
UNREACHABLE();
}
return res;
}
void Simulator::DecodeTypeMsaI5() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask;
msa_reg_t ws, wd;
// sign extend 5bit value to int32_t
int32_t i5 = static_cast<int32_t>(instr_.MsaImm5Value() << 27) >> 27;
#define MSA_I5_DF(elem, num_of_lanes) \
get_msa_register(instr_.WsValue(), ws.elem); \
for (int i = 0; i < num_of_lanes; i++) { \
wd.elem[i] = MsaI5InstrHelper(opcode, ws.elem[i], i5); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem)
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
MSA_I5_DF(b, kMSALanesByte);
break;
case MSA_HALF:
MSA_I5_DF(h, kMSALanesHalf);
break;
case MSA_WORD:
MSA_I5_DF(w, kMSALanesWord);
break;
case MSA_DWORD:
MSA_I5_DF(d, kMSALanesDword);
break;
default:
UNREACHABLE();
}
#undef MSA_I5_DF
}
void Simulator::DecodeTypeMsaI10() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask;
int64_t s10 = (static_cast<int64_t>(instr_.MsaImm10Value()) << 54) >> 54;
msa_reg_t wd;
#define MSA_I10_DF(elem, num_of_lanes, T) \
for (int i = 0; i < num_of_lanes; ++i) { \
wd.elem[i] = static_cast<T>(s10); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem)
if (opcode == LDI) {
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
MSA_I10_DF(b, kMSALanesByte, int8_t);
break;
case MSA_HALF:
MSA_I10_DF(h, kMSALanesHalf, int16_t);
break;
case MSA_WORD:
MSA_I10_DF(w, kMSALanesWord, int32_t);
break;
case MSA_DWORD:
MSA_I10_DF(d, kMSALanesDword, int64_t);
break;
default:
UNREACHABLE();
}
} else {
UNREACHABLE();
}
#undef MSA_I10_DF
}
void Simulator::DecodeTypeMsaELM() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaLongerELMMask;
int32_t n = instr_.MsaElmNValue();
int32_t alu_out;
switch (opcode) {
case CTCMSA:
DCHECK(sa() == kMSACSRRegister);
MSACSR_ = bit_cast<uint32_t>(registers_[rd_reg()]);
TraceRegWr(static_cast<int32_t>(MSACSR_));
break;
case CFCMSA:
DCHECK(rd_reg() == kMSACSRRegister);
SetResult(sa(), bit_cast<int32_t>(MSACSR_));
break;
case MOVE_V:
UNIMPLEMENTED();
break;
default:
opcode &= kMsaELMMask;
switch (opcode) {
case COPY_S:
case COPY_U: {
msa_reg_t ws;
switch (DecodeMsaDataFormat()) {
case MSA_BYTE: {
DCHECK(n < kMSALanesByte);
get_msa_register(instr_.WsValue(), ws.b);
alu_out = static_cast<int32_t>(ws.b[n]);
SetResult(wd_reg(),
(opcode == COPY_U) ? alu_out & 0xFFu : alu_out);
break;
}
case MSA_HALF: {
DCHECK(n < kMSALanesHalf);
get_msa_register(instr_.WsValue(), ws.h);
alu_out = static_cast<int32_t>(ws.h[n]);
SetResult(wd_reg(),
(opcode == COPY_U) ? alu_out & 0xFFFFu : alu_out);
break;
}
case MSA_WORD: {
DCHECK(n < kMSALanesWord);
get_msa_register(instr_.WsValue(), ws.w);
alu_out = static_cast<int32_t>(ws.w[n]);
SetResult(wd_reg(), alu_out);
break;
}
default:
UNREACHABLE();
}
} break;
case INSERT: {
msa_reg_t wd;
switch (DecodeMsaDataFormat()) {
case MSA_BYTE: {
DCHECK(n < kMSALanesByte);
int32_t rs = get_register(instr_.WsValue());
get_msa_register(instr_.WdValue(), wd.b);
wd.b[n] = rs & 0xFFu;
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
}
case MSA_HALF: {
DCHECK(n < kMSALanesHalf);
int32_t rs = get_register(instr_.WsValue());
get_msa_register(instr_.WdValue(), wd.h);
wd.h[n] = rs & 0xFFFFu;
set_msa_register(instr_.WdValue(), wd.h);
TraceMSARegWr(wd.h);
break;
}
case MSA_WORD: {
DCHECK(n < kMSALanesWord);
int32_t rs = get_register(instr_.WsValue());
get_msa_register(instr_.WdValue(), wd.w);
wd.w[n] = rs;
set_msa_register(instr_.WdValue(), wd.w);
TraceMSARegWr(wd.w);
break;
}
default:
UNREACHABLE();
}
} break;
case SLDI:
case SPLATI:
case INSVE:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
break;
}
}
template <typename T>
T Simulator::MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m) {
typedef typename std::make_unsigned<T>::type uT;
T res;
switch (opcode) {
case SLLI:
res = static_cast<T>(ws << m);
break;
case SRAI:
res = static_cast<T>(ArithmeticShiftRight(ws, m));
break;
case SRLI:
res = static_cast<T>(static_cast<uT>(ws) >> m);
break;
case BCLRI:
res = static_cast<T>(static_cast<T>(~(1ull << m)) & ws);
break;
case BSETI:
res = static_cast<T>(static_cast<T>(1ull << m) | ws);
break;
case BNEGI:
res = static_cast<T>(static_cast<T>(1ull << m) ^ ws);
break;
case BINSLI: {
int elem_size = 8 * sizeof(T);
int bits = m + 1;
if (bits == elem_size) {
res = static_cast<T>(ws);
} else {
uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits);
res = static_cast<T>((static_cast<T>(mask) & ws) |
(static_cast<T>(~mask) & wd));
}
} break;
case BINSRI: {
int elem_size = 8 * sizeof(T);
int bits = m + 1;
if (bits == elem_size) {
res = static_cast<T>(ws);
} else {
uint64_t mask = (1ull << bits) - 1;
res = static_cast<T>((static_cast<T>(mask) & ws) |
(static_cast<T>(~mask) & wd));
}
} break;
case SAT_S: {
#define M_MAX_INT(x) static_cast<int64_t>((1LL << ((x)-1)) - 1)
#define M_MIN_INT(x) static_cast<int64_t>(-(1LL << ((x)-1)))
int shift = 64 - 8 * sizeof(T);
int64_t ws_i64 = (static_cast<int64_t>(ws) << shift) >> shift;
res = static_cast<T>(ws_i64 < M_MIN_INT(m + 1)
? M_MIN_INT(m + 1)
: ws_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1)
: ws_i64);
#undef M_MAX_INT
#undef M_MIN_INT
} break;
case SAT_U: {
#define M_MAX_UINT(x) static_cast<uint64_t>(-1ULL >> (64 - (x)))
uint64_t mask = static_cast<uint64_t>(-1ULL >> (64 - 8 * sizeof(T)));
uint64_t ws_u64 = static_cast<uint64_t>(ws) & mask;
res = static_cast<T>(ws_u64 < M_MAX_UINT(m + 1) ? ws_u64
: M_MAX_UINT(m + 1));
#undef M_MAX_UINT
} break;
case SRARI:
if (!m) {
res = static_cast<T>(ws);
} else {
res = static_cast<T>(ArithmeticShiftRight(ws, m)) +
static_cast<T>((ws >> (m - 1)) & 0x1);
}
break;
case SRLRI:
if (!m) {
res = static_cast<T>(ws);
} else {
res = static_cast<T>(static_cast<uT>(ws) >> m) +
static_cast<T>((ws >> (m - 1)) & 0x1);
}
break;
default:
UNREACHABLE();
}
return res;
}
void Simulator::DecodeTypeMsaBIT() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaBITMask;
int32_t m = instr_.MsaBitMValue();
msa_reg_t wd, ws;
#define MSA_BIT_DF(elem, num_of_lanes) \
get_msa_register(instr_.WsValue(), ws.elem); \
if (opcode == BINSLI || opcode == BINSRI) { \
get_msa_register(instr_.WdValue(), wd.elem); \
} \
for (int i = 0; i < num_of_lanes; i++) { \
wd.elem[i] = MsaBitInstrHelper(opcode, wd.elem[i], ws.elem[i], m); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem)
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
DCHECK(m < kMSARegSize / kMSALanesByte);
MSA_BIT_DF(b, kMSALanesByte);
break;
case MSA_HALF:
DCHECK(m < kMSARegSize / kMSALanesHalf);
MSA_BIT_DF(h, kMSALanesHalf);
break;
case MSA_WORD:
DCHECK(m < kMSARegSize / kMSALanesWord);
MSA_BIT_DF(w, kMSALanesWord);
break;
case MSA_DWORD:
DCHECK(m < kMSARegSize / kMSALanesDword);
MSA_BIT_DF(d, kMSALanesDword);
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeMsaMI10() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaMI10Mask;
int32_t s10 = (static_cast<int32_t>(instr_.MsaImmMI10Value()) << 22) >> 22;
int32_t rs = get_register(instr_.WsValue());
int32_t addr;
msa_reg_t wd;
#define MSA_MI10_LOAD(elem, num_of_lanes, T) \
for (int i = 0; i < num_of_lanes; ++i) { \
addr = rs + (s10 + i) * sizeof(T); \
wd.elem[i] = ReadMem<T>(addr, instr_.instr()); \
} \
set_msa_register(instr_.WdValue(), wd.elem);
#define MSA_MI10_STORE(elem, num_of_lanes, T) \
get_msa_register(instr_.WdValue(), wd.elem); \
for (int i = 0; i < num_of_lanes; ++i) { \
addr = rs + (s10 + i) * sizeof(T); \
WriteMem<T>(addr, wd.elem[i], instr_.instr()); \
}
if (opcode == MSA_LD) {
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
MSA_MI10_LOAD(b, kMSALanesByte, int8_t);
break;
case MSA_HALF:
MSA_MI10_LOAD(h, kMSALanesHalf, int16_t);
break;
case MSA_WORD:
MSA_MI10_LOAD(w, kMSALanesWord, int32_t);
break;
case MSA_DWORD:
MSA_MI10_LOAD(d, kMSALanesDword, int64_t);
break;
default:
UNREACHABLE();
}
} else if (opcode == MSA_ST) {
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
MSA_MI10_STORE(b, kMSALanesByte, int8_t);
break;
case MSA_HALF:
MSA_MI10_STORE(h, kMSALanesHalf, int16_t);
break;
case MSA_WORD:
MSA_MI10_STORE(w, kMSALanesWord, int32_t);
break;
case MSA_DWORD:
MSA_MI10_STORE(d, kMSALanesDword, int64_t);
break;
default:
UNREACHABLE();
}
} else {
UNREACHABLE();
}
#undef MSA_MI10_LOAD
#undef MSA_MI10_STORE
}
template <typename T>
T Simulator::Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt) {
typedef typename std::make_unsigned<T>::type uT;
T res;
T wt_modulo = wt % (sizeof(T) * 8);
switch (opcode) {
case SLL_MSA:
res = static_cast<T>(ws << wt_modulo);
break;
case SRA_MSA:
res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo));
break;
case SRL_MSA:
res = static_cast<T>(static_cast<uT>(ws) >> wt_modulo);
break;
case BCLR:
res = static_cast<T>(static_cast<T>(~(1ull << wt_modulo)) & ws);
break;
case BSET:
res = static_cast<T>(static_cast<T>(1ull << wt_modulo) | ws);
break;
case BNEG:
res = static_cast<T>(static_cast<T>(1ull << wt_modulo) ^ ws);
break;
case BINSL: {
int elem_size = 8 * sizeof(T);
int bits = wt_modulo + 1;
if (bits == elem_size) {
res = static_cast<T>(ws);
} else {
uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits);
res = static_cast<T>((static_cast<T>(mask) & ws) |
(static_cast<T>(~mask) & wd));
}
} break;
case BINSR: {
int elem_size = 8 * sizeof(T);
int bits = wt_modulo + 1;
if (bits == elem_size) {
res = static_cast<T>(ws);
} else {
uint64_t mask = (1ull << bits) - 1;
res = static_cast<T>((static_cast<T>(mask) & ws) |
(static_cast<T>(~mask) & wd));
}
} break;
case ADDV:
res = ws + wt;
break;
case SUBV:
res = ws - wt;
break;
case MAX_S:
res = Max(ws, wt);
break;
case MAX_U:
res = static_cast<T>(Max(static_cast<uT>(ws), static_cast<uT>(wt)));
break;
case MIN_S:
res = Min(ws, wt);
break;
case MIN_U:
res = static_cast<T>(Min(static_cast<uT>(ws), static_cast<uT>(wt)));
break;
case MAX_A:
// We use negative abs in order to avoid problems
// with corner case for MIN_INT
res = Nabs(ws) < Nabs(wt) ? ws : wt;
break;
case MIN_A:
// We use negative abs in order to avoid problems
// with corner case for MIN_INT
res = Nabs(ws) > Nabs(wt) ? ws : wt;
break;
case CEQ:
res = static_cast<T>(!Compare(ws, wt) ? -1ull : 0ull);
break;
case CLT_S:
res = static_cast<T>((Compare(ws, wt) == -1) ? -1ull : 0ull);
break;
case CLT_U:
res = static_cast<T>(
(Compare(static_cast<uT>(ws), static_cast<uT>(wt)) == -1) ? -1ull
: 0ull);
break;
case CLE_S:
res = static_cast<T>((Compare(ws, wt) != 1) ? -1ull : 0ull);
break;
case CLE_U:
res = static_cast<T>(
(Compare(static_cast<uT>(ws), static_cast<uT>(wt)) != 1) ? -1ull
: 0ull);
break;
case ADD_A:
res = static_cast<T>(Abs(ws) + Abs(wt));
break;
case ADDS_A: {
T ws_nabs = Nabs(ws);
T wt_nabs = Nabs(wt);
if (ws_nabs < -std::numeric_limits<T>::max() - wt_nabs) {
res = std::numeric_limits<T>::max();
} else {
res = -(ws_nabs + wt_nabs);
}
} break;
case ADDS_S:
res = SaturateAdd(ws, wt);
break;
case ADDS_U: {
uT ws_u = static_cast<uT>(ws);
uT wt_u = static_cast<uT>(wt);
res = static_cast<T>(SaturateAdd(ws_u, wt_u));
} break;
case AVE_S:
res = static_cast<T>((wt & ws) + ((wt ^ ws) >> 1));
break;
case AVE_U: {
uT ws_u = static_cast<uT>(ws);
uT wt_u = static_cast<uT>(wt);
res = static_cast<T>((wt_u & ws_u) + ((wt_u ^ ws_u) >> 1));
} break;
case AVER_S:
res = static_cast<T>((wt | ws) - ((wt ^ ws) >> 1));
break;
case AVER_U: {
uT ws_u = static_cast<uT>(ws);
uT wt_u = static_cast<uT>(wt);
res = static_cast<T>((wt_u | ws_u) - ((wt_u ^ ws_u) >> 1));
} break;
case SUBS_S:
res = SaturateSub(ws, wt);
break;
case SUBS_U: {
uT ws_u = static_cast<uT>(ws);
uT wt_u = static_cast<uT>(wt);
res = static_cast<T>(SaturateSub(ws_u, wt_u));
} break;
case SUBSUS_U: {
uT wsu = static_cast<uT>(ws);
if (wt > 0) {
uT wtu = static_cast<uT>(wt);
if (wtu > wsu) {
res = 0;
} else {
res = static_cast<T>(wsu - wtu);
}
} else {
if (wsu > std::numeric_limits<uT>::max() + wt) {
res = static_cast<T>(std::numeric_limits<uT>::max());
} else {
res = static_cast<T>(wsu - wt);
}
}
} break;
case SUBSUU_S: {
uT wsu = static_cast<uT>(ws);
uT wtu = static_cast<uT>(wt);
uT wdu;
if (wsu > wtu) {
wdu = wsu - wtu;
if (wdu > std::numeric_limits<T>::max()) {
res = std::numeric_limits<T>::max();
} else {
res = static_cast<T>(wdu);
}
} else {
wdu = wtu - wsu;
CHECK(-std::numeric_limits<T>::max() ==
std::numeric_limits<T>::min() + 1);
if (wdu <= std::numeric_limits<T>::max()) {
res = -static_cast<T>(wdu);
} else {
res = std::numeric_limits<T>::min();
}
}
} break;
case ASUB_S:
res = static_cast<T>(Abs(ws - wt));
break;
case ASUB_U: {
uT wsu = static_cast<uT>(ws);
uT wtu = static_cast<uT>(wt);
res = static_cast<T>(wsu > wtu ? wsu - wtu : wtu - wsu);
} break;
case MULV:
res = ws * wt;
break;
case MADDV:
res = wd + ws * wt;
break;
case MSUBV:
res = wd - ws * wt;
break;
case DIV_S_MSA:
res = wt != 0 ? ws / wt : static_cast<T>(Unpredictable);
break;
case DIV_U:
res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) / static_cast<uT>(wt))
: static_cast<T>(Unpredictable);
break;
case MOD_S:
res = wt != 0 ? ws % wt : static_cast<T>(Unpredictable);
break;
case MOD_U:
res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) % static_cast<uT>(wt))
: static_cast<T>(Unpredictable);
break;
case DOTP_S:
case DOTP_U:
case DPADD_S:
case DPADD_U:
case DPSUB_S:
case DPSUB_U:
case SLD:
case SPLAT:
case PCKEV:
case PCKOD:
case ILVL:
case ILVR:
case ILVEV:
case ILVOD:
case VSHF:
UNIMPLEMENTED();
break;
case SRAR: {
int bit = wt_modulo == 0 ? 0 : (ws >> (wt_modulo - 1)) & 1;
res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo) + bit);
} break;
case SRLR: {
uT wsu = static_cast<uT>(ws);
int bit = wt_modulo == 0 ? 0 : (wsu >> (wt_modulo - 1)) & 1;
res = static_cast<T>((wsu >> wt_modulo) + bit);
} break;
case HADD_S:
case HADD_U:
case HSUB_S:
case HSUB_U:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
return res;
}
void Simulator::DecodeTypeMsa3R() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsa3RMask;
msa_reg_t ws, wd, wt;
#define MSA_3R_DF(elem, num_of_lanes) \
get_msa_register(instr_.WdValue(), wd.elem); \
get_msa_register(instr_.WsValue(), ws.elem); \
get_msa_register(instr_.WtValue(), wt.elem); \
for (int i = 0; i < num_of_lanes; i++) { \
wd.elem[i] = Msa3RInstrHelper(opcode, wd.elem[i], ws.elem[i], wt.elem[i]); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem);
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
MSA_3R_DF(b, kMSALanesByte);
break;
case MSA_HALF:
MSA_3R_DF(h, kMSALanesHalf);
break;
case MSA_WORD:
MSA_3R_DF(w, kMSALanesWord);
break;
case MSA_DWORD:
MSA_3R_DF(d, kMSALanesDword);
break;
default:
UNREACHABLE();
}
#undef MSA_3R_DF
}
void Simulator::DecodeTypeMsa3RF() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask;
switch (opcode) {
case FCAF:
case FCUN:
case FCEQ:
case FCUEQ:
case FCLT:
case FCULT:
case FCLE:
case FCULE:
case FSAF:
case FSUN:
case FSEQ:
case FSUEQ:
case FSLT:
case FSULT:
case FSLE:
case FSULE:
case FADD:
case FSUB:
case FMUL:
case FDIV:
case FMADD:
case FMSUB:
case FEXP2:
case FEXDO:
case FTQ:
case FMIN:
case FMIN_A:
case FMAX:
case FMAX_A:
case FCOR:
case FCUNE:
case FCNE:
case MUL_Q:
case MADD_Q:
case MSUB_Q:
case FSOR:
case FSUNE:
case FSNE:
case MULR_Q:
case MADDR_Q:
case MSUBR_Q:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeMsaVec() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsaVECMask;
msa_reg_t wd, ws, wt;
get_msa_register(instr_.WsValue(), ws.w);
get_msa_register(instr_.WtValue(), wt.w);
if (opcode == BMNZ_V || opcode == BMZ_V || opcode == BSEL_V) {
get_msa_register(instr_.WdValue(), wd.w);
}
for (int i = 0; i < kMSALanesWord; i++) {
switch (opcode) {
case AND_V:
wd.w[i] = ws.w[i] & wt.w[i];
break;
case OR_V:
wd.w[i] = ws.w[i] | wt.w[i];
break;
case NOR_V:
wd.w[i] = ~(ws.w[i] | wt.w[i]);
break;
case XOR_V:
wd.w[i] = ws.w[i] ^ wt.w[i];
break;
case BMNZ_V:
wd.w[i] = (wt.w[i] & ws.w[i]) | (~wt.w[i] & wd.w[i]);
break;
case BMZ_V:
wd.w[i] = (~wt.w[i] & ws.w[i]) | (wt.w[i] & wd.w[i]);
break;
case BSEL_V:
wd.w[i] = (~wd.w[i] & ws.w[i]) | (wd.w[i] & wt.w[i]);
break;
default:
UNREACHABLE();
}
}
set_msa_register(instr_.WdValue(), wd.w);
TraceMSARegWr(wd.d);
}
void Simulator::DecodeTypeMsa2R() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsa2RMask;
msa_reg_t wd, ws;
switch (opcode) {
case FILL:
switch (DecodeMsaDataFormat()) {
case MSA_BYTE: {
int32_t rs = get_register(instr_.WsValue());
for (int i = 0; i < kMSALanesByte; i++) {
wd.b[i] = rs & 0xFFu;
}
set_msa_register(instr_.WdValue(), wd.b);
TraceMSARegWr(wd.b);
break;
}
case MSA_HALF: {
int32_t rs = get_register(instr_.WsValue());
for (int i = 0; i < kMSALanesHalf; i++) {
wd.h[i] = rs & 0xFFFFu;
}
set_msa_register(instr_.WdValue(), wd.h);
TraceMSARegWr(wd.h);
break;
}
case MSA_WORD: {
int32_t rs = get_register(instr_.WsValue());
for (int i = 0; i < kMSALanesWord; i++) {
wd.w[i] = rs;
}
set_msa_register(instr_.WdValue(), wd.w);
TraceMSARegWr(wd.w);
break;
}
default:
UNREACHABLE();
}
break;
case PCNT:
#define PCNT_DF(elem, num_of_lanes) \
get_msa_register(instr_.WsValue(), ws.elem); \
for (int i = 0; i < num_of_lanes; i++) { \
uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]); \
wd.elem[i] = base::bits::CountPopulation64(u64elem); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem)
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
PCNT_DF(ub, kMSALanesByte);
break;
case MSA_HALF:
PCNT_DF(uh, kMSALanesHalf);
break;
case MSA_WORD:
PCNT_DF(uw, kMSALanesWord);
break;
case MSA_DWORD:
PCNT_DF(ud, kMSALanesDword);
break;
default:
UNREACHABLE();
}
#undef PCNT_DF
break;
case NLOC:
#define NLOC_DF(elem, num_of_lanes) \
get_msa_register(instr_.WsValue(), ws.elem); \
for (int i = 0; i < num_of_lanes; i++) { \
const uint64_t mask = (num_of_lanes == kMSALanesDword) \
? UINT64_MAX \
: (1ULL << (kMSARegSize / num_of_lanes)) - 1; \
uint64_t u64elem = static_cast<uint64_t>(~ws.elem[i]) & mask; \
wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \
(64 - kMSARegSize / num_of_lanes); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem)
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
NLOC_DF(ub, kMSALanesByte);
break;
case MSA_HALF:
NLOC_DF(uh, kMSALanesHalf);
break;
case MSA_WORD:
NLOC_DF(uw, kMSALanesWord);
break;
case MSA_DWORD:
NLOC_DF(ud, kMSALanesDword);
break;
default:
UNREACHABLE();
}
#undef NLOC_DF
break;
case NLZC:
#define NLZC_DF(elem, num_of_lanes) \
get_msa_register(instr_.WsValue(), ws.elem); \
for (int i = 0; i < num_of_lanes; i++) { \
uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]); \
wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \
(64 - kMSARegSize / num_of_lanes); \
} \
set_msa_register(instr_.WdValue(), wd.elem); \
TraceMSARegWr(wd.elem)
switch (DecodeMsaDataFormat()) {
case MSA_BYTE:
NLZC_DF(ub, kMSALanesByte);
break;
case MSA_HALF:
NLZC_DF(uh, kMSALanesHalf);
break;
case MSA_WORD:
NLZC_DF(uw, kMSALanesWord);
break;
case MSA_DWORD:
NLZC_DF(ud, kMSALanesDword);
break;
default:
UNREACHABLE();
}
#undef NLZC_DF
break;
default:
UNREACHABLE();
}
}
#define BIT(n) (0x1LL << n)
#define QUIET_BIT_S(nan) (bit_cast<int32_t>(nan) & BIT(22))
#define QUIET_BIT_D(nan) (bit_cast<int64_t>(nan) & BIT(51))
static inline bool isSnan(float fp) { return !QUIET_BIT_S(fp); }
static inline bool isSnan(double fp) { return !QUIET_BIT_D(fp); }
#undef QUIET_BIT_S
#undef QUIET_BIT_D
template <typename T_int, typename T_fp, typename T_src, typename T_dst>
T_int Msa2RFInstrHelper(uint32_t opcode, T_src src, T_dst& dst,
Simulator* sim) {
typedef typename std::make_unsigned<T_int>::type T_uint;
switch (opcode) {
case FCLASS: {
#define SNAN_BIT BIT(0)
#define QNAN_BIT BIT(1)
#define NEG_INFINITY_BIT BIT(2)
#define NEG_NORMAL_BIT BIT(3)
#define NEG_SUBNORMAL_BIT BIT(4)
#define NEG_ZERO_BIT BIT(5)
#define POS_INFINITY_BIT BIT(6)
#define POS_NORMAL_BIT BIT(7)
#define POS_SUBNORMAL_BIT BIT(8)
#define POS_ZERO_BIT BIT(9)
T_fp element = *reinterpret_cast<T_fp*>(&src);
switch (std::fpclassify(element)) {
case FP_INFINITE:
if (std::signbit(element)) {
dst = NEG_INFINITY_BIT;
} else {
dst = POS_INFINITY_BIT;
}
break;
case FP_NAN:
if (isSnan(element)) {
dst = SNAN_BIT;
} else {
dst = QNAN_BIT;
}
break;
case FP_NORMAL:
if (std::signbit(element)) {
dst = NEG_NORMAL_BIT;
} else {
dst = POS_NORMAL_BIT;
}
break;
case FP_SUBNORMAL:
if (std::signbit(element)) {
dst = NEG_SUBNORMAL_BIT;
} else {
dst = POS_SUBNORMAL_BIT;
}
break;
case FP_ZERO:
if (std::signbit(element)) {
dst = NEG_ZERO_BIT;
} else {
dst = POS_ZERO_BIT;
}
break;
default:
UNREACHABLE();
}
break;
}
#undef BIT
#undef SNAN_BIT
#undef QNAN_BIT
#undef NEG_INFINITY_BIT
#undef NEG_NORMAL_BIT
#undef NEG_SUBNORMAL_BIT
#undef NEG_ZERO_BIT
#undef POS_INFINITY_BIT
#undef POS_NORMAL_BIT
#undef POS_SUBNORMAL_BIT
#undef POS_ZERO_BIT
case FTRUNC_S: {
T_fp element = bit_cast<T_fp>(src);
const T_int max_int = std::numeric_limits<T_int>::max();
const T_int min_int = std::numeric_limits<T_int>::min();
if (std::isnan(element)) {
dst = 0;
} else if (element > max_int || element < min_int) {
dst = element > max_int ? max_int : min_int;
} else {
dst = static_cast<T_int>(std::trunc(element));
}
break;
}
case FTRUNC_U: {
T_fp element = bit_cast<T_fp>(src);
const T_uint max_int = std::numeric_limits<T_uint>::max();
if (std::isnan(element)) {
dst = 0;
} else if (element > max_int || element < 0) {
dst = element > max_int ? max_int : 0;
} else {
dst = static_cast<T_uint>(std::trunc(element));
}
break;
}
case FSQRT: {
T_fp element = bit_cast<T_fp>(src);
if (element < 0 || std::isnan(element)) {
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
} else {
dst = bit_cast<T_int>(std::sqrt(element));
}
break;
}
case FRSQRT: {
T_fp element = bit_cast<T_fp>(src);
if (element < 0 || std::isnan(element)) {
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
} else {
dst = bit_cast<T_int>(1 / std::sqrt(element));
}
break;
}
case FRCP: {
T_fp element = bit_cast<T_fp>(src);
if (std::isnan(element)) {
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
} else {
dst = bit_cast<T_int>(1 / element);
}
break;
}
case FRINT: {
T_fp element = bit_cast<T_fp>(src);
if (std::isnan(element)) {
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
} else {
T_int dummy;
sim->round_according_to_msacsr<T_fp, T_int>(element, element, dummy);
dst = bit_cast<T_int>(element);
}
break;
}
case FLOG2: {
T_fp element = bit_cast<T_fp>(src);
switch (std::fpclassify(element)) {
case FP_NORMAL:
case FP_SUBNORMAL:
dst = bit_cast<T_int>(std::logb(element));
break;
case FP_ZERO:
dst = bit_cast<T_int>(-std::numeric_limits<T_fp>::infinity());
break;
case FP_NAN:
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
break;
case FP_INFINITE:
if (element < 0) {
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
} else {
dst = bit_cast<T_int>(std::numeric_limits<T_fp>::infinity());
}
break;
default:
UNREACHABLE();
}
break;
}
case FTINT_S: {
T_fp element = bit_cast<T_fp>(src);
const T_int max_int = std::numeric_limits<T_int>::max();
const T_int min_int = std::numeric_limits<T_int>::min();
if (std::isnan(element)) {
dst = 0;
} else if (element < min_int || element > max_int) {
dst = element > max_int ? max_int : min_int;
} else {
sim->round_according_to_msacsr<T_fp, T_int>(element, element, dst);
}
break;
}
case FTINT_U: {
T_fp element = bit_cast<T_fp>(src);
const T_uint max_uint = std::numeric_limits<T_uint>::max();
if (std::isnan(element)) {
dst = 0;
} else if (element < 0 || element > max_uint) {
dst = element > max_uint ? max_uint : 0;
} else {
T_uint res;
sim->round_according_to_msacsr<T_fp, T_uint>(element, element, res);
dst = *reinterpret_cast<T_int*>(&res);
}
break;
}
case FFINT_S:
dst = bit_cast<T_int>(static_cast<T_fp>(src));
break;
case FFINT_U:
typedef typename std::make_unsigned<T_src>::type uT_src;
dst = bit_cast<T_int>(static_cast<T_fp>(bit_cast<uT_src>(src)));
break;
default:
UNREACHABLE();
}
return 0;
}
template <typename T_int, typename T_fp, typename T_reg, typename T_i>
T_int Msa2RFInstrHelper2(uint32_t opcode, T_reg ws, T_i i) {
switch (opcode) {
#define EXTRACT_FLOAT16_SIGN(fp16) (fp16 >> 15)
#define EXTRACT_FLOAT16_EXP(fp16) (fp16 >> 10 & 0x1f)
#define EXTRACT_FLOAT16_FRAC(fp16) (fp16 & 0x3ff)
#define PACK_FLOAT32(sign, exp, frac) \
static_cast<uint32_t>(((sign) << 31) + ((exp) << 23) + (frac))
#define FEXUP_DF(src_index) \
uint_fast16_t element = ws.uh[src_index]; \
uint_fast32_t aSign, aFrac; \
int_fast32_t aExp; \
aSign = EXTRACT_FLOAT16_SIGN(element); \
aExp = EXTRACT_FLOAT16_EXP(element); \
aFrac = EXTRACT_FLOAT16_FRAC(element); \
if (V8_LIKELY(aExp && aExp != 0x1f)) { \
return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13); \
} else if (aExp == 0x1f) { \
if (aFrac) { \
return bit_cast<int32_t>(std::numeric_limits<float>::quiet_NaN()); \
} else { \
return bit_cast<uint32_t>(std::numeric_limits<float>::infinity()) | \
static_cast<uint32_t>(aSign) << 31; \
} \
} else { \
if (aFrac == 0) { \
return PACK_FLOAT32(aSign, 0, 0); \
} else { \
int_fast16_t shiftCount = \
base::bits::CountLeadingZeros32(static_cast<uint32_t>(aFrac)) - 21; \
aFrac <<= shiftCount; \
aExp = -shiftCount; \
return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13); \
} \
}
case FEXUPL:
if (std::is_same<int32_t, T_int>::value) {
FEXUP_DF(i + kMSALanesWord)
} else {
return bit_cast<int64_t>(
static_cast<double>(bit_cast<float>(ws.w[i + kMSALanesDword])));
}
case FEXUPR:
if (std::is_same<int32_t, T_int>::value) {
FEXUP_DF(i)
} else {
return bit_cast<int64_t>(static_cast<double>(bit_cast<float>(ws.w[i])));
}
case FFQL: {
if (std::is_same<int32_t, T_int>::value) {
return bit_cast<int32_t>(static_cast<float>(ws.h[i + kMSALanesWord]) /
(1U << 15));
} else {
return bit_cast<int64_t>(static_cast<double>(ws.w[i + kMSALanesDword]) /
(1U << 31));
}
break;
}
case FFQR: {
if (std::is_same<int32_t, T_int>::value) {
return bit_cast<int32_t>(static_cast<float>(ws.h[i]) / (1U << 15));
} else {
return bit_cast<int64_t>(static_cast<double>(ws.w[i]) / (1U << 31));
}
break;
default:
UNREACHABLE();
}
}
#undef EXTRACT_FLOAT16_SIGN
#undef EXTRACT_FLOAT16_EXP
#undef EXTRACT_FLOAT16_FRAC
#undef PACK_FLOAT32
#undef FEXUP_DF
}
void Simulator::DecodeTypeMsa2RF() {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
uint32_t opcode = instr_.InstructionBits() & kMsa2RFMask;
msa_reg_t wd, ws;
get_msa_register(ws_reg(), &ws);
if (opcode == FEXUPL || opcode == FEXUPR || opcode == FFQL ||
opcode == FFQR) {
switch (DecodeMsaDataFormat()) {
case MSA_WORD:
for (int i = 0; i < kMSALanesWord; i++) {
wd.w[i] = Msa2RFInstrHelper2<int32_t, float>(opcode, ws, i);
}
break;
case MSA_DWORD:
for (int i = 0; i < kMSALanesDword; i++) {
wd.d[i] = Msa2RFInstrHelper2<int64_t, double>(opcode, ws, i);
}
break;
default:
UNREACHABLE();
}
} else {
switch (DecodeMsaDataFormat()) {
case MSA_WORD:
for (int i = 0; i < kMSALanesWord; i++) {
Msa2RFInstrHelper<int32_t, float>(opcode, ws.w[i], wd.w[i], this);
}
break;
case MSA_DWORD:
for (int i = 0; i < kMSALanesDword; i++) {
Msa2RFInstrHelper<int64_t, double>(opcode, ws.d[i], wd.d[i], this);
}
break;
default:
UNREACHABLE();
}
}
set_msa_register(wd_reg(), &wd);
TraceMSARegWr(&wd);
}
void Simulator::DecodeTypeRegister() {
// ---------- Execution.
switch (instr_.OpcodeFieldRaw()) {
case COP1:
DecodeTypeRegisterCOP1();
break;
case COP1X:
DecodeTypeRegisterCOP1X();
break;
case SPECIAL:
DecodeTypeRegisterSPECIAL();
break;
case SPECIAL2:
DecodeTypeRegisterSPECIAL2();
break;
case SPECIAL3:
DecodeTypeRegisterSPECIAL3();
break;
case MSA:
switch (instr_.MSAMinorOpcodeField()) {
case kMsaMinor3R:
DecodeTypeMsa3R();
break;
case kMsaMinor3RF:
DecodeTypeMsa3RF();
break;
case kMsaMinorVEC:
DecodeTypeMsaVec();
break;
case kMsaMinor2R:
DecodeTypeMsa2R();
break;
case kMsaMinor2RF:
DecodeTypeMsa2RF();
break;
case kMsaMinorELM:
DecodeTypeMsaELM();
break;
default:
UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
// Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
void Simulator::DecodeTypeImmediate() {
// Instruction fields.
Opcode op = instr_.OpcodeFieldRaw();
int32_t rs_reg = instr_.RsValue();
int32_t rs = get_register(instr_.RsValue());
uint32_t rs_u = static_cast<uint32_t>(rs);
int32_t rt_reg = instr_.RtValue(); // Destination register.
int32_t rt = get_register(rt_reg);
int16_t imm16 = instr_.Imm16Value();
int32_t ft_reg = instr_.FtValue(); // Destination register.
// Zero extended immediate.
uint32_t oe_imm16 = 0xffff & imm16;
// Sign extended immediate.
int32_t se_imm16 = imm16;
// Next pc.
int32_t next_pc = bad_ra;
// Used for conditional branch instructions.
bool execute_branch_delay_instruction = false;
// Used for arithmetic instructions.
int32_t alu_out = 0;
// Used for memory instructions.
int32_t addr = 0x0;
// Branch instructions common part.
auto BranchAndLinkHelper =
[this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int32_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = this->instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
set_register(31, current_pc + 2 * Instruction::kInstrSize);
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchHelper = [this, &next_pc,
&execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int32_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = this->instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int32_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
int32_t imm = this->instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
set_register(31, current_pc + Instruction::kInstrSize);
}
};
auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int32_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
int32_t imm = this->instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
}
};
switch (op) {
// ------------- COP1. Coprocessor instructions.
case COP1:
switch (instr_.RsFieldRaw()) {
case BC1: { // Branch on coprocessor condition.
// Floating point.
uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
uint32_t cc_value = test_fcsr_bit(fcsr_cc);
bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
BranchHelper(do_branch);
break;
}
case BC1EQZ:
BranchHelper(!(get_fpu_register(ft_reg) & 0x1));
break;
case BC1NEZ:
BranchHelper(get_fpu_register(ft_reg) & 0x1);
break;
case BZ_V:
case BZ_B:
case BZ_H:
case BZ_W:
case BZ_D:
case BNZ_V:
case BNZ_B:
case BNZ_H:
case BNZ_W:
case BNZ_D:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
break;
// ------------- REGIMM class.
case REGIMM:
switch (instr_.RtFieldRaw()) {
case BLTZ:
BranchHelper(rs < 0);
break;
case BGEZ:
BranchHelper(rs >= 0);
break;
case BLTZAL:
BranchAndLinkHelper(rs < 0);
break;
case BGEZAL:
BranchAndLinkHelper(rs >= 0);
break;
default:
UNREACHABLE();
}
break; // case REGIMM.
// ------------- Branch instructions.
// When comparing to zero, the encoding of rt field is always 0, so we don't
// need to replace rt with zero.
case BEQ:
BranchHelper(rs == rt);
break;
case BNE:
BranchHelper(rs != rt);
break;
case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6)
if (IsMipsArchVariant(kMips32r6)) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BLEZALC
BranchAndLinkCompactHelper(rt <= 0, 16);
} else {
if (rs_reg == rt_reg) { // BGEZALC
BranchAndLinkCompactHelper(rt >= 0, 16);
} else { // BGEUC
BranchCompactHelper(
static_cast<uint32_t>(rs) >= static_cast<uint32_t>(rt), 16);
}
}
} else { // BLEZ
BranchHelper(rs <= 0);
}
} else { // BLEZ
BranchHelper(rs <= 0);
}
break;
case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6)
if (IsMipsArchVariant(kMips32r6)) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BGTZALC
BranchAndLinkCompactHelper(rt > 0, 16);
} else {
if (rt_reg == rs_reg) { // BLTZALC
BranchAndLinkCompactHelper(rt < 0, 16);
} else { // BLTUC
BranchCompactHelper(
static_cast<uint32_t>(rs) < static_cast<uint32_t>(rt), 16);
}
}
} else { // BGTZ
BranchHelper(rs > 0);
}
} else { // BGTZ
BranchHelper(rs > 0);
}
break;
case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6)
if (IsMipsArchVariant(kMips32r6)) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BLEZC
BranchCompactHelper(rt <= 0, 16);
} else {
if (rs_reg == rt_reg) { // BGEZC
BranchCompactHelper(rt >= 0, 16);
} else { // BGEC/BLEC
BranchCompactHelper(rs >= rt, 16);
}
}
}
} else { // BLEZL
BranchAndLinkHelper(rs <= 0);
}
break;
case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6)
if (IsMipsArchVariant(kMips32r6)) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BGTZC
BranchCompactHelper(rt > 0, 16);
} else {
if (rs_reg == rt_reg) { // BLTZC
BranchCompactHelper(rt < 0, 16);
} else { // BLTC/BGTC
BranchCompactHelper(rs < rt, 16);
}
}
}
} else { // BGTZL
BranchAndLinkHelper(rs > 0);
}
break;
case POP66: // BEQZC, JIC
if (rs_reg != 0) { // BEQZC
BranchCompactHelper(rs == 0, 21);
} else { // JIC
next_pc = rt + imm16;
}
break;
case POP76: // BNEZC, JIALC
if (rs_reg != 0) { // BNEZC
BranchCompactHelper(rs != 0, 21);
} else { // JIALC
set_register(31, get_pc() + Instruction::kInstrSize);
next_pc = rt + imm16;
}
break;
case BC:
BranchCompactHelper(true, 26);
break;
case BALC:
BranchAndLinkCompactHelper(true, 26);
break;
case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6)
if (IsMipsArchVariant(kMips32r6)) {
if (rs_reg >= rt_reg) { // BOVC
if (HaveSameSign(rs, rt)) {
if (rs > 0) {
BranchCompactHelper(rs > Registers::kMaxValue - rt, 16);
} else if (rs < 0) {
BranchCompactHelper(rs < Registers::kMinValue - rt, 16);
}
}
} else {
if (rs_reg == 0) { // BEQZALC
BranchAndLinkCompactHelper(rt == 0, 16);
} else { // BEQC
BranchCompactHelper(rt == rs, 16);
}
}
} else { // ADDI
if (HaveSameSign(rs, se_imm16)) {
if (rs > 0) {
if (rs <= Registers::kMaxValue - se_imm16) {
SignalException(kIntegerOverflow);
}
} else if (rs < 0) {
if (rs >= Registers::kMinValue - se_imm16) {
SignalException(kIntegerUnderflow);
}
}
}
SetResult(rt_reg, rs + se_imm16);
}
break;
case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6)
if (IsMipsArchVariant(kMips32r6)) {
if (rs_reg >= rt_reg) { // BNVC
if (!HaveSameSign(rs, rt) || rs == 0 || rt == 0) {
BranchCompactHelper(true, 16);
} else {
if (rs > 0) {
BranchCompactHelper(rs <= Registers::kMaxValue - rt, 16);
} else if (rs < 0) {
BranchCompactHelper(rs >= Registers::kMinValue - rt, 16);
}
}
} else {
if (rs_reg == 0) { // BNEZALC
BranchAndLinkCompactHelper(rt != 0, 16);
} else { // BNEC
BranchCompactHelper(rt != rs, 16);
}
}
}
break;
// ------------- Arithmetic instructions.
case ADDIU:
SetResult(rt_reg, rs + se_imm16);
break;
case SLTI:
SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
break;
case SLTIU:
SetResult(rt_reg, rs_u < static_cast<uint32_t>(se_imm16) ? 1 : 0);
break;
case ANDI:
SetResult(rt_reg, rs & oe_imm16);
break;
case ORI:
SetResult(rt_reg, rs | oe_imm16);
break;
case XORI:
SetResult(rt_reg, rs ^ oe_imm16);
break;
case LUI:
if (rs_reg != 0) {
// AUI
DCHECK(IsMipsArchVariant(kMips32r6));
SetResult(rt_reg, rs + (se_imm16 << 16));
} else {
// LUI
SetResult(rt_reg, oe_imm16 << 16);
}
break;
// ------------- Memory instructions.
case LB:
set_register(rt_reg, ReadB(rs + se_imm16));
break;
case LH:
set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
break;
case LWL: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = (1 << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr_.instr());
alu_out <<= byte_shift * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
break;
}
case LW:
set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LBU:
set_register(rt_reg, ReadBU(rs + se_imm16));
break;
case LHU:
set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
break;
case LWR: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr_.instr());
alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
break;
}
case SB:
WriteB(rs + se_imm16, static_cast<int8_t>(rt));
break;
case SH:
WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
break;
case SWL: {
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
// Value to be written in memory.
uint32_t mem_value = ReadW(addr, instr_.instr()) & mask;
mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
WriteW(addr, mem_value, instr_.instr());
break;
}
case SW:
WriteW(rs + se_imm16, rt, instr_.instr());
break;
case SWR: {
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint32_t mask = (1 << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
uint32_t mem_value = ReadW(addr, instr_.instr());
mem_value = (rt << al_offset * 8) | (mem_value & mask);
WriteW(addr, mem_value, instr_.instr());
break;
}
case LL: {
// LL/SC sequence cannot be simulated properly
DCHECK(!IsMipsArchVariant(kMips32r6));
set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
}
case SC: {
// LL/SC sequence cannot be simulated properly
DCHECK(!IsMipsArchVariant(kMips32r6));
WriteW(rs + se_imm16, rt, instr_.instr());
set_register(rt_reg, 1);
break;
}
case LWC1:
set_fpu_register_hi_word(ft_reg, 0);
set_fpu_register_word(ft_reg,
ReadW(rs + se_imm16, instr_.instr(), FLOAT));
if (ft_reg % 2) {
TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg - 1), FLOAT_DOUBLE);
} else {
TraceMemRd(rs + se_imm16, get_fpu_register_word(ft_reg), FLOAT);
}
break;
case LDC1:
set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg), DOUBLE);
break;
case SWC1:
WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr_.instr());
TraceMemWr(rs + se_imm16, get_fpu_register_word(ft_reg));
break;
case SDC1:
WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
TraceMemWr(rs + se_imm16, get_fpu_register(ft_reg));
break;
// ------------- PC-Relative instructions.
case PCREL: {
// rt field: checking 5-bits.
int32_t imm21 = instr_.Imm21Value();
int32_t current_pc = get_pc();
uint8_t rt = (imm21 >> kImm16Bits);
switch (rt) {
case ALUIPC:
addr = current_pc + (se_imm16 << 16);
alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
break;
case AUIPC:
alu_out = current_pc + (se_imm16 << 16);
break;
default: {
int32_t imm19 = instr_.Imm19Value();
// rt field: checking the most significant 2-bits.
rt = (imm21 >> kImm19Bits);
switch (rt) {
case LWPC: {
// Set sign.
imm19 <<= (kOpcodeBits + kRsBits + 2);
imm19 >>= (kOpcodeBits + kRsBits + 2);
addr = current_pc + (imm19 << 2);
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
alu_out = *ptr;
break;
}
case ADDIUPC: {
int32_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xfff80000 : 0);
alu_out = current_pc + (se_imm19 << 2);
break;
}
default:
UNREACHABLE();
break;
}
}
}
SetResult(rs_reg, alu_out);
break;
}
case SPECIAL3: {
switch (instr_.FunctionFieldRaw()) {
case LL_R6: {
// LL/SC sequence cannot be simulated properly
DCHECK(IsMipsArchVariant(kMips32r6));
int32_t base = get_register(instr_.BaseValue());
int32_t offset9 = instr_.Imm9Value();
set_register(rt_reg, ReadW(base + offset9, instr_.instr()));
break;
}
case SC_R6: {
// LL/SC sequence cannot be simulated properly
DCHECK(IsMipsArchVariant(kMips32r6));
int32_t base = get_register(instr_.BaseValue());
int32_t offset9 = instr_.Imm9Value();
WriteW(base + offset9, rt, instr_.instr());
set_register(rt_reg, 1);
break;
}
default:
UNREACHABLE();
}
break;
}
case MSA:
switch (instr_.MSAMinorOpcodeField()) {
case kMsaMinorI8:
DecodeTypeMsaI8();
break;
case kMsaMinorI5:
DecodeTypeMsaI5();
break;
case kMsaMinorI10:
DecodeTypeMsaI10();
break;
case kMsaMinorELM:
DecodeTypeMsaELM();
break;
case kMsaMinorBIT:
DecodeTypeMsaBIT();
break;
case kMsaMinorMI10:
DecodeTypeMsaMI10();
break;
default:
UNREACHABLE();
break;
}
break;
default:
UNREACHABLE();
}
if (execute_branch_delay_instruction) {
// Execute branch delay slot
// We don't check for end_sim_pc. First it should not be met as the current
// pc is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
}
// If needed update pc after the branch delay execution.
if (next_pc != bad_ra) {
set_pc(next_pc);
}
}
// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
void Simulator::DecodeTypeJump() {
SimInstruction simInstr = instr_;
// Get current pc.
int32_t current_pc = get_pc();
// Get unchanged bits of pc.
int32_t pc_high_bits = current_pc & 0xf0000000;
// Next pc.
int32_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
// Execute branch delay slot.
// We don't check for end_sim_pc. First it should not be met as the current pc
// is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
// Update pc and ra if necessary.
// Do this after the branch delay execution.
if (simInstr.IsLinkingInstruction()) {
set_register(31, current_pc + 2 * Instruction::kInstrSize);
}
set_pc(next_pc);
pc_modified_ = true;
}
// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
if (v8::internal::FLAG_check_icache) {
CheckICache(isolate_->simulator_i_cache(), instr);
}
pc_modified_ = false;
v8::internal::EmbeddedVector<char, 256> buffer;
if (::v8::internal::FLAG_trace_sim) {
SNPrintF(trace_buf_, "%s", "");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
}
instr_ = instr;
switch (instr_.InstructionType()) {
case Instruction::kRegisterType:
DecodeTypeRegister();
break;
case Instruction::kImmediateType:
DecodeTypeImmediate();
break;
case Instruction::kJumpType:
DecodeTypeJump();
break;
default:
UNSUPPORTED();
}
if (::v8::internal::FLAG_trace_sim) {
PrintF(" 0x%08" PRIxPTR " %-44s %s\n",
reinterpret_cast<intptr_t>(instr), buffer.start(),
trace_buf_.start());
}
if (!pc_modified_) {
set_register(pc, reinterpret_cast<int32_t>(instr) +
Instruction::kInstrSize);
}
}
void Simulator::Execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int program_counter = get_pc();
if (::v8::internal::FLAG_stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
InstructionDecode(instr);
program_counter = get_pc();
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instruction count.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
if (icount_ == static_cast<uint64_t>(::v8::internal::FLAG_stop_sim_at)) {
MipsDebugger dbg(this);
dbg.Debug();
} else {
InstructionDecode(instr);
}
program_counter = get_pc();
}
}
}
void Simulator::CallInternal(byte* entry) {
// Adjust JS-based stack limit to C-based stack limit.
isolate_->stack_guard()->AdjustStackLimitForSimulator();
// Prepare to execute the code at entry.
set_register(pc, reinterpret_cast<int32_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
set_register(ra, end_sim_pc);
// Remember the values of callee-saved registers.
// The code below assumes that r9 is not used as sb (static base) in
// simulator code and therefore is regarded as a callee-saved register.
int32_t s0_val = get_register(s0);
int32_t s1_val = get_register(s1);
int32_t s2_val = get_register(s2);
int32_t s3_val = get_register(s3);
int32_t s4_val = get_register(s4);
int32_t s5_val = get_register(s5);
int32_t s6_val = get_register(s6);
int32_t s7_val = get_register(s7);
int32_t gp_val = get_register(gp);
int32_t sp_val = get_register(sp);
int32_t fp_val = get_register(fp);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution.
int32_t callee_saved_value = static_cast<int32_t>(icount_);
set_register(s0, callee_saved_value);
set_register(s1, callee_saved_value);
set_register(s2, callee_saved_value);
set_register(s3, callee_saved_value);
set_register(s4, callee_saved_value);
set_register(s5, callee_saved_value);
set_register(s6, callee_saved_value);
set_register(s7, callee_saved_value);
set_register(gp, callee_saved_value);
set_register(fp, callee_saved_value);
// Start the simulation.
Execute();
// Check that the callee-saved registers have been preserved.
CHECK_EQ(callee_saved_value, get_register(s0));
CHECK_EQ(callee_saved_value, get_register(s1));
CHECK_EQ(callee_saved_value, get_register(s2));
CHECK_EQ(callee_saved_value, get_register(s3));
CHECK_EQ(callee_saved_value, get_register(s4));
CHECK_EQ(callee_saved_value, get_register(s5));
CHECK_EQ(callee_saved_value, get_register(s6));
CHECK_EQ(callee_saved_value, get_register(s7));
CHECK_EQ(callee_saved_value, get_register(gp));
CHECK_EQ(callee_saved_value, get_register(fp));
// Restore callee-saved registers with the original value.
set_register(s0, s0_val);
set_register(s1, s1_val);
set_register(s2, s2_val);
set_register(s3, s3_val);
set_register(s4, s4_val);
set_register(s5, s5_val);
set_register(s6, s6_val);
set_register(s7, s7_val);
set_register(gp, gp_val);
set_register(sp, sp_val);
set_register(fp, fp_val);
}
int32_t Simulator::Call(byte* entry, int argument_count, ...) {
va_list parameters;
va_start(parameters, argument_count);
// Set up arguments.
// First four arguments passed in registers.
DCHECK(argument_count >= 4);
set_register(a0, va_arg(parameters, int32_t));
set_register(a1, va_arg(parameters, int32_t));
set_register(a2, va_arg(parameters, int32_t));
set_register(a3, va_arg(parameters, int32_t));
// Remaining arguments passed on stack.
int original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)
- kCArgsSlotsSize);
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
// Store remaining arguments on stack, from low to high memory.
intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
for (int i = 4; i < argument_count; i++) {
stack_argument[i - 4 + kCArgSlotCount] = va_arg(parameters, int32_t);
}
va_end(parameters);
set_register(sp, entry_stack);
CallInternal(entry);
// Pop stack passed arguments.
CHECK_EQ(entry_stack, get_register(sp));
set_register(sp, original_stack);
int32_t result = get_register(v0);
return result;
}
double Simulator::CallFP(byte* entry, double d0, double d1) {
if (!IsMipsSoftFloatABI) {
set_fpu_register_double(f12, d0);
set_fpu_register_double(f14, d1);
} else {
int buffer[2];
DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0));
memcpy(buffer, &d0, sizeof(d0));
set_dw_register(a0, buffer);
memcpy(buffer, &d1, sizeof(d1));
set_dw_register(a2, buffer);
}
CallInternal(entry);
if (!IsMipsSoftFloatABI) {
return get_fpu_register_double(f0);
} else {
return get_double_from_register_pair(v0);
}
}
uintptr_t Simulator::PushAddress(uintptr_t address) {
int new_sp = get_register(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_register(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
int current_sp = get_register(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
set_register(sp, current_sp + sizeof(uintptr_t));
return address;
}
#undef UNSUPPORTED
} // namespace internal
} // namespace v8
#endif // USE_SIMULATOR
#endif // V8_TARGET_ARCH_MIPS