blob: f022b410725ff9da34a3d2e0f2c3234ef2cb4cd4 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
// A light-weight S390 Assembler
// Generates user mode instructions for z/Architecture
#ifndef V8_S390_ASSEMBLER_S390_H_
#define V8_S390_ASSEMBLER_S390_H_
#include <stdio.h>
#if V8_HOST_ARCH_S390
// elf.h include is required for auxv check for STFLE facility used
// for hardware detection, which is sensible only on s390 hosts.
#include <elf.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#include <vector>
#include "src/assembler.h"
#include "src/s390/constants-s390.h"
#define ABI_USES_FUNCTION_DESCRIPTORS 0
#define ABI_PASSES_HANDLES_IN_REGS 1
// ObjectPair is defined under runtime/runtime-util.h.
// On 31-bit, ObjectPair == uint64_t. ABI dictates long long
// be returned with the lower addressed half in r2
// and the higher addressed half in r3. (Returns in Regs)
// On 64-bit, ObjectPair is a Struct. ABI dictaes Structs be
// returned in a storage buffer allocated by the caller,
// with the address of this buffer passed as a hidden
// argument in r2. (Does NOT return in Regs)
// For x86 linux, ObjectPair is returned in registers.
#if V8_TARGET_ARCH_S390X
#define ABI_RETURNS_OBJECTPAIR_IN_REGS 0
#else
#define ABI_RETURNS_OBJECTPAIR_IN_REGS 1
#endif
#define ABI_CALL_VIA_IP 1
#define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r13)
#define DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 16;
// Caller-saved/arguments registers
const RegList kJSCallerSaved = 1 << 1 | 1 << 2 | // r2 a1
1 << 3 | // r3 a2
1 << 4 | // r4 a3
1 << 5; // r5 a4
const int kNumJSCallerSaved = 5;
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved =
1 << 6 | // r6 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 7 | // r7 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 8 | // r8 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 9 | // r9 (HandleScope logic in MacroAssembler)
1 << 10 | // r10 (Roots register in Javascript)
1 << 11 | // r11 (fp in Javascript)
1 << 12 | // r12 (ip in Javascript)
1 << 13; // r13 (cp in Javascript)
// 1 << 15; // r15 (sp in Javascript)
const int kNumCalleeSaved = 8;
#ifdef V8_TARGET_ARCH_S390X
const RegList kCallerSavedDoubles = 1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 4 | // d4
1 << 5 | // d5
1 << 6 | // d6
1 << 7; // d7
const int kNumCallerSavedDoubles = 8;
const RegList kCalleeSavedDoubles = 1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d11
1 << 12 | // d12
1 << 13 | // d12
1 << 14 | // d12
1 << 15; // d13
const int kNumCalleeSavedDoubles = 8;
#else
const RegList kCallerSavedDoubles = 1 << 14 | // d14
1 << 15 | // d15
1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 5 | // d5
1 << 7 | // d7
1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d10
1 << 12 | // d10
1 << 13; // d11
const int kNumCallerSavedDoubles = 14;
const RegList kCalleeSavedDoubles = 1 << 4 | // d4
1 << 6; // d6
const int kNumCalleeSavedDoubles = 2;
#endif
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
// TODO(regis): Only 8 registers may actually be sufficient. Revisit.
const int kNumSafepointRegisters = 16;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
// The following constants describe the stack frame linkage area as
// defined by the ABI.
#if V8_TARGET_ARCH_S390X
// [0] Back Chain
// [1] Reserved for compiler use
// [2] GPR 2
// [3] GPR 3
// ...
// [15] GPR 15
// [16] FPR 0
// [17] FPR 2
// [18] FPR 4
// [19] FPR 6
const int kNumRequiredStackFrameSlots = 20;
const int kStackFrameRASlot = 14;
const int kStackFrameSPSlot = 15;
const int kStackFrameExtraParamSlot = 20;
#else
// [0] Back Chain
// [1] Reserved for compiler use
// [2] GPR 2
// [3] GPR 3
// ...
// [15] GPR 15
// [16..17] FPR 0
// [18..19] FPR 2
// [20..21] FPR 4
// [22..23] FPR 6
const int kNumRequiredStackFrameSlots = 24;
const int kStackFrameRASlot = 14;
const int kStackFrameSPSlot = 15;
const int kStackFrameExtraParamSlot = 24;
#endif
// zLinux ABI requires caller frames to include sufficient space for
// callee preserved register save area.
#if V8_TARGET_ARCH_S390X
const int kCalleeRegisterSaveAreaSize = 160;
#elif V8_TARGET_ARCH_S390
const int kCalleeRegisterSaveAreaSize = 96;
#else
const int kCalleeRegisterSaveAreaSize = 0;
#endif
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if V8_TARGET_LITTLE_ENDIAN
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#else
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
static_assert(IS_TRIVIALLY_COPYABLE(Register) &&
sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
// Register aliases
constexpr Register kLithiumScratch = r1; // lithium scratch.
constexpr Register kRootRegister = r10; // Roots array pointer.
constexpr Register cp = r13; // JavaScript context pointer.
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word VFP register.
class DoubleRegister : public RegisterBase<DoubleRegister, kDoubleAfterLast> {
public:
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0, that does not fit in the immediate field of vmov instructions.
// d14: 0.0
// d15: scratch register.
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
private:
friend class RegisterBase;
explicit constexpr DoubleRegister(int code) : RegisterBase(code) {}
};
static_assert(IS_TRIVIALLY_COPYABLE(DoubleRegister) &&
sizeof(DoubleRegister) == sizeof(int),
"DoubleRegister can efficiently be passed by value");
typedef DoubleRegister FloatRegister;
// TODO(john.yan) Define SIMD registers.
typedef DoubleRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
constexpr DoubleRegister kDoubleRegZero = d14;
constexpr DoubleRegister kScratchDoubleReg = d13;
Register ToRegister(int num);
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// -----------------------------------------------------------------------------
// Machine instruction Operands
#if V8_TARGET_ARCH_S390X
constexpr RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64;
#else
constexpr RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32;
#endif
// Class Operand represents a shifter operand in data processing instructions
// defining immediate numbers and masks
typedef uint8_t Length;
struct Mask {
uint8_t mask;
uint8_t value() { return mask; }
static Mask from_value(uint8_t input) {
DCHECK(input <= 0x0F);
Mask m = {input};
return m;
}
};
class Operand BASE_EMBEDDED {
public:
// immediate
INLINE(explicit Operand(intptr_t immediate,
RelocInfo::Mode rmode = kRelocInfo_NONEPTR)
: rmode_(rmode)) {
value_.immediate = immediate;
}
INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); }
INLINE(explicit Operand(const ExternalReference& f)
: rmode_(RelocInfo::EXTERNAL_REFERENCE)) {
value_.immediate = reinterpret_cast<intptr_t>(f.address());
}
explicit Operand(Handle<HeapObject> handle);
INLINE(explicit Operand(Smi* value) : rmode_(kRelocInfo_NONEPTR)) {
value_.immediate = reinterpret_cast<intptr_t>(value);
}
// rm
INLINE(explicit Operand(Register rm));
static Operand EmbeddedNumber(double value); // Smi or HeapNumber
// Return true if this is a register operand.
INLINE(bool is_reg() const) { return rm_.is_valid(); }
bool must_output_reloc_info(const Assembler* assembler) const;
inline intptr_t immediate() const {
DCHECK(!rm_.is_valid());
DCHECK(!is_heap_object_request());
return value_.immediate;
}
HeapObjectRequest heap_object_request() const {
DCHECK(is_heap_object_request());
return value_.heap_object_request;
}
inline void setBits(int n) {
value_.immediate =
(static_cast<uint32_t>(value_.immediate) << (32 - n)) >> (32 - n);
}
Register rm() const { return rm_; }
bool is_heap_object_request() const {
DCHECK_IMPLIES(is_heap_object_request_, !rm_.is_valid());
DCHECK_IMPLIES(is_heap_object_request_,
rmode_ == RelocInfo::EMBEDDED_OBJECT ||
rmode_ == RelocInfo::CODE_TARGET);
return is_heap_object_request_;
}
RelocInfo::Mode rmode() const { return rmode_; }
private:
Register rm_ = no_reg;
union Value {
Value() {}
HeapObjectRequest heap_object_request; // if is_heap_object_request_
intptr_t immediate; // otherwise
} value_; // valid if rm_ == no_reg
bool is_heap_object_request_ = false;
RelocInfo::Mode rmode_;
friend class Assembler;
friend class MacroAssembler;
};
typedef int32_t Disp;
// Class MemOperand represents a memory operand in load and store instructions
// On S390, we have various flavours of memory operands:
// 1) a base register + 16 bit unsigned displacement
// 2) a base register + index register + 16 bit unsigned displacement
// 3) a base register + index register + 20 bit signed displacement
class MemOperand BASE_EMBEDDED {
public:
explicit MemOperand(Register rx, Disp offset = 0);
explicit MemOperand(Register rx, Register rb, Disp offset = 0);
int32_t offset() const { return offset_; }
uint32_t getDisplacement() const { return offset(); }
// Base register
Register rb() const {
DCHECK(baseRegister != no_reg);
return baseRegister;
}
Register getBaseRegister() const { return rb(); }
// Index Register
Register rx() const {
DCHECK(indexRegister != no_reg);
return indexRegister;
}
Register getIndexRegister() const { return rx(); }
private:
Register baseRegister; // base
Register indexRegister; // index
int32_t offset_; // offset
friend class Assembler;
};
class DeferredRelocInfo {
public:
DeferredRelocInfo() {}
DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data)
: position_(position), rmode_(rmode), data_(data) {}
int position() const { return position_; }
RelocInfo::Mode rmode() const { return rmode_; }
intptr_t data() const { return data_; }
private:
int position_;
RelocInfo::Mode rmode_;
intptr_t data_;
};
class Assembler : public AssemblerBase {
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size)
: Assembler(IsolateData(isolate), buffer, buffer_size) {}
Assembler(IsolateData isolate_data, void* buffer, int buffer_size);
virtual ~Assembler() {}
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(Isolate* isolate, CodeDesc* desc);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Links a label at the current pc_offset(). If already bound, returns the
// bound position. If already linked, returns the position of the prior link.
// Otherwise, returns the current pc_offset().
int link(Label* L);
// Determines if Label is bound and near enough so that a single
// branch instruction can be used to reach it.
bool is_near(Label* L, Condition cond);
// Returns the branch offset to the given label from the current code position
// Links the label to the current position if it is still unbound
int branch_offset(Label* L) { return link(L) - pc_offset(); }
// Puts a labels target address at the given position.
// The high 8 bits are set to zero.
void label_at_put(Label* L, int at_offset);
void load_label_offset(Register r1, Label* L);
// Read/Modify the code target address in the branch/call instruction at pc.
// The isolate argument is unused (and may be nullptr) when skipping flushing.
INLINE(static Address target_address_at(Address pc, Address constant_pool));
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
INLINE(static Address target_address_at(Address pc, Code* code));
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Code* code, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
inline static Address target_address_from_return_address(Address pc);
// Given the address of the beginning of a call, return the address
// in the instruction stream that the call will return to.
INLINE(static Address return_address_from_call_start(Address pc));
inline Handle<Object> code_target_object_handle_at(Address pc);
// This sets the branch destination.
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code,
Address target);
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
// Here we are patching the address in the IIHF/IILF instruction pair.
// These values are used in the serialization process and must be zero for
// S390 platform, as Code, Embedded Object or External-reference pointers
// are split across two consecutive instructions and don't exist separately
// in the code, so the serializer should not step forwards in memory after
// a target is resolved and written.
static constexpr int kSpecialTargetSize = 0;
// Number of bytes for instructions used to store pointer sized constant.
#if V8_TARGET_ARCH_S390X
static constexpr int kBytesForPtrConstant = 12; // IIHF + IILF
#else
static constexpr int kBytesForPtrConstant = 6; // IILF
#endif
// Distance between the instruction referring to the address of the call
// target and the return address.
// Offset between call target address and return address
// for BRASL calls
// Patch will be appiled to other FIXED_SEQUENCE call
static constexpr int kCallTargetAddressOffset = 6;
// The length of FIXED_SEQUENCE call
// iihf r8, <address_hi> // <64-bit only>
// iilf r8, <address_lo>
// basr r14, r8
#if V8_TARGET_ARCH_S390X
static constexpr int kCallSequenceLength = 14;
#else
static constexpr int kCallSequenceLength = 8;
#endif
static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) {
return ((cr.code() * CRWIDTH) + crbit);
}
// ---------------------------------------------------------------------------
// Code generation
template <class T, int size, int lo, int hi>
inline T getfield(T value) {
DCHECK(lo < hi);
DCHECK(size > 0);
int mask = hi - lo;
int shift = size * 8 - hi;
uint32_t mask_value = (mask == 32) ? 0xffffffff : (1 << mask) - 1;
return (value & mask_value) << shift;
}
// Declare generic instruction formats by fields
inline void e_format(Opcode opcode) {
emit2bytes(getfield<uint16_t, 2, 0, 16>(opcode));
}
inline void i_format(Opcode opcode, int f1) {
emit2bytes(getfield<uint16_t, 2, 0, 8>(opcode) |
getfield<uint16_t, 2, 8, 16>(f1));
}
inline void ie_format(Opcode opcode, int f1, int f2) {
emit4bytes(getfield<uint32_t, 4, 0, 16>(opcode) |
getfield<uint32_t, 4, 24, 28>(f1) |
getfield<uint32_t, 4, 28, 32>(f2));
}
inline void mii_format(Opcode opcode, int f1, int f2, int f3) {
emit6bytes(
getfield<uint64_t, 6, 0, 8>(opcode) | getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 24>(f2) | getfield<uint64_t, 6, 24, 48>(f3));
}
inline void ri_format(Opcode opcode, int f1, int f2) {
uint32_t op1 = opcode >> 4;
uint32_t op2 = opcode & 0xf;
emit4bytes(
getfield<uint32_t, 4, 0, 8>(op1) | getfield<uint32_t, 4, 8, 12>(f1) |
getfield<uint32_t, 4, 12, 16>(op2) | getfield<uint32_t, 4, 16, 32>(f2));
}
inline void rie_1_format(Opcode opcode, int f1, int f2, int f3, int f4) {
uint32_t op1 = opcode >> 8;
uint32_t op2 = opcode & 0xff;
emit6bytes(
getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 32>(f3) |
getfield<uint64_t, 6, 32, 36>(f4) | getfield<uint64_t, 6, 40, 48>(op2));
}
inline void rie_2_format(Opcode opcode, int f1, int f2, int f3, int f4) {
uint32_t op1 = opcode >> 8;
uint32_t op2 = opcode & 0xff;
emit6bytes(
getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 32>(f3) |
getfield<uint64_t, 6, 32, 40>(f4) | getfield<uint64_t, 6, 40, 48>(op2));
}
inline void rie_3_format(Opcode opcode, int f1, int f2, int f3, int f4,
int f5) {
uint32_t op1 = opcode >> 8;
uint32_t op2 = opcode & 0xff;
emit6bytes(
getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 24>(f3) |
getfield<uint64_t, 6, 24, 32>(f4) | getfield<uint64_t, 6, 32, 40>(f5) |
getfield<uint64_t, 6, 40, 48>(op2));
}
#define DECLARE_S390_RIL_AB_INSTRUCTIONS(name, op_name, op_value) \
template <class R1> \
inline void name(R1 r1, const Operand& i2) { \
ril_format(op_name, r1.code(), i2.immediate()); \
}
#define DECLARE_S390_RIL_C_INSTRUCTIONS(name, op_name, op_value) \
inline void name(Condition m1, const Operand& i2) { \
ril_format(op_name, m1, i2.immediate()); \
}
inline void ril_format(Opcode opcode, int f1, int f2) {
uint32_t op1 = opcode >> 4;
uint32_t op2 = opcode & 0xf;
emit6bytes(
getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 16>(op2) | getfield<uint64_t, 6, 16, 48>(f2));
}
S390_RIL_A_OPCODE_LIST(DECLARE_S390_RIL_AB_INSTRUCTIONS)
S390_RIL_B_OPCODE_LIST(DECLARE_S390_RIL_AB_INSTRUCTIONS)
S390_RIL_C_OPCODE_LIST(DECLARE_S390_RIL_C_INSTRUCTIONS)
#undef DECLARE_S390_RIL_AB_INSTRUCTIONS
#undef DECLARE_S390_RIL_C_INSTRUCTIONS
inline void ris_format(Opcode opcode, int f1, int f2, int f3, int f4,
int f5) {
uint32_t op1 = opcode >> 8;
uint32_t op2 = opcode & 0xff;
emit6bytes(
getfield<uint64_t, 6, 0, 8>(op1) | getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 16>(f2) | getfield<uint64_t, 6, 16, 20>(f3) |
getfield<uint64_t, 6, 20, 32>(f4) | getfield<uint64_t, 6, 32, 40>(f5) |
getfield<uint64_t, 6, 40, 48>(op2));
}
#define DECLARE_S390_RR_INSTRUCTIONS(name, op_name, op_value) \
inline void name(Register r1, Register r2) { \
rr_format(op_name, r1.code(), r2.code()); \
} \
inline void name(DoubleRegister r1, DoubleRegister r2) { \
rr_format(op_name, r1.code(), r2.code()); \
} \
inline void name(Condition m1, Register r2) { \
rr_format(op_name, m1, r2.code()); \
}
inline void rr_format(Opcode opcode, int f1, int f2) {
emit2bytes(getfield<uint16_t, 2, 0, 8>(opcode) |
getfield<uint16_t, 2, 8, 12>(f1) |
getfield<uint16_t, 2, 12, 16>(f2));
}
S390_RR_OPCODE_LIST(DECLARE_S390_RR_INSTRUCTIONS)
#undef DECLARE_S390_RR_INSTRUCTIONS
#define DECLARE_S390_RRD_INSTRUCTIONS(name, op_name, op_value) \
template <class R1, class R2, class R3> \
inline void name(R1 r1, R3 r3, R2 r2) { \
rrd_format(op_name, r1.code(), r3.code(), r2.code()); \
}
inline void rrd_format(Opcode opcode, int f1, int f2, int f3) {
emit4bytes(getfield<uint32_t, 4, 0, 16>(opcode) |
getfield<uint32_t, 4, 16, 20>(f1) |
getfield<uint32_t, 4, 24, 28>(f2) |
getfield<uint32_t, 4, 28, 32>(f3));
}
S390_RRD_OPCODE_LIST(DECLARE_S390_RRD_INSTRUCTIONS)
#undef DECLARE_S390_RRD_INSTRUCTIONS
#define DECLARE_S390_RRE_INSTRUCTIONS(name, op_name, op_value) \
template <class R1, class R2> \
inline void name(R1 r1, R2 r2) { \
rre_format(op_name, r1.code(), r2.code()); \
}
inline void rre_format(Opcode opcode, int f1, int f2) {
emit4bytes(getfield<uint32_t, 4, 0, 16>(opcode) |
getfield<uint32_t, 4, 24, 28>(f1) |
getfield<uint32_t, 4, 28, 32>(f2));
}
S390_RRE_OPCODE_LIST(DECLARE_S390_RRE_INSTRUCTIONS)
// Special format
void lzdr(DoubleRegister r1) { rre_format(LZDR, r1.code(), 0); }
#undef DECLARE_S390_RRE_INSTRUCTIONS
inline void rrf_format(Opcode opcode, int f1, int f2, int f3, int f4) {
emit4bytes(
getfield<uint32_t, 4, 0, 16>(opcode) |
getfield<uint32_t, 4, 16, 20>(f1) | getfield<uint32_t, 4, 20, 24>(f2) |
getfield<uint32_t, 4, 24, 28>(f3) | getfield<uint32_t, 4, 28, 32>(f4));
}
#define DECLARE_S390_RX_INSTRUCTIONS(name, op_name, op_value) \
template <class R1> \
inline void name(R1 r1, Register x2, Register b2, Disp d2) { \
rx_format(op_name, r1.code(), x2.code(), b2.code(), d2); \
} \
template <class R1> \
inline void name(R1 r1, const MemOperand& opnd) { \
name(r1, opnd.getIndexRegister(), \
opnd.getBaseRegister(), opnd.getDisplacement()); \
}
inline void rx_format(Opcode opcode, int f1, int f2, int f3, int f4) {
DCHECK(is_uint8(opcode));
DCHECK(is_uint12(f4));
emit4bytes(getfield<uint32_t, 4, 0, 8>(opcode) |
getfield<uint32_t, 4, 8, 12>(f1) |
getfield<uint32_t, 4, 12, 16>(f2) |
getfield<uint32_t, 4, 16, 20>(f3) |
getfield<uint32_t, 4, 20, 32>(f4));
}
S390_RX_A_OPCODE_LIST(DECLARE_S390_RX_INSTRUCTIONS)
void bc(Condition cond, const MemOperand& opnd) {
bc(cond, opnd.getIndexRegister(),
opnd.getBaseRegister(), opnd.getDisplacement());
}
void bc(Condition cond, Register x2, Register b2, Disp d2) {
rx_format(BC, cond, x2.code(), b2.code(), d2);
}
#undef DECLARE_S390_RX_INSTRUCTIONS
#define DECLARE_S390_RXY_INSTRUCTIONS(name, op_name, op_value) \
template <class R1, class R2> \
inline void name(R1 r1, R2 r2, Register b2, Disp d2) { \
rxy_format(op_name, r1.code(), r2.code(), b2.code(), d2); \
} \
template <class R1> \
inline void name(R1 r1, const MemOperand& opnd) { \
name(r1, opnd.getIndexRegister(), \
opnd.getBaseRegister(), opnd.getDisplacement()); \
}
inline void rxy_format(Opcode opcode, int f1, int f2, int f3, int f4) {
DCHECK(is_uint16(opcode));
DCHECK(is_int20(f4));
emit6bytes(getfield<uint64_t, 6, 0, 8>(opcode >> 8) |
getfield<uint64_t, 6, 8, 12>(f1) |
getfield<uint64_t, 6, 12, 16>(f2) |
getfield<uint64_t, 6, 16, 20>(f3) |
getfield<uint64_t, 6, 20, 32>(f4 & 0x0fff) |
getfield<uint64_t, 6, 32, 40>(f4 >> 12) |
getfield<uint64_t, 6, 40, 48>(opcode & 0x00ff));
}
S390_RXY_A_OPCODE_LIST(DECLARE_S390_RXY_INSTRUCTIONS)
void pfd(Condition cond, const MemOperand& opnd) {
pfd(cond, opnd.getIndexRegister(),
opnd.getBaseRegister(), opnd.getDisplacement());
}
void pfd(Condition cond, Register x2, Register b2, Disp d2) {
rxy_format(PFD, cond, x2.code(), b2.code(), d2);
}
#undef DECLARE_S390_RXY_INSTRUCTIONS
// Helper for unconditional branch to Label with update to save register
void b(Register r, Label* l) {
int32_t halfwords = branch_offset(l) / 2;
brasl(r, Operand(halfwords));
}
// Conditional Branch Instruction - Generates either BRC / BRCL
void branchOnCond(Condition c, int branch_offset, bool is_bound = false);
// Helpers for conditional branch to Label
void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) {
branchOnCond(cond, branch_offset(l),
l->is_bound() || (dist == Label::kNear));
}
void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) {
b(cond, l, Label::kNear);
}
// Helpers for conditional branch to Label
void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); }
void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); }
void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); }
void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); }
void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); }
void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); }
void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); }
void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); }
void bunordered(Label* l, Label::Distance dist = Label::kFar) {
b(unordered, l, dist);
}
void bordered(Label* l, Label::Distance dist = Label::kFar) {
b(ordered, l, dist);
}
// Helpers for conditional indirect branch off register
void b(Condition cond, Register r) { bcr(cond, r); }
void beq(Register r) { b(eq, r); }
void bne(Register r) { b(ne, r); }
void blt(Register r) { b(lt, r); }
void ble(Register r) { b(le, r); }
void bgt(Register r) { b(gt, r); }
void bge(Register r) { b(ge, r); }
void b(Register r) { b(al, r); }
void jmp(Register r) { b(al, r); }
void bunordered(Register r) { b(unordered, r); }
void bordered(Register r) { b(ordered, r); }
// ---------------------------------------------------------------------------
// Code generation
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2 (>= 4).
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
void breakpoint(bool do_print) {
if (do_print) {
PrintF("DebugBreak is inserted to %p\n", static_cast<void*>(pc_));
}
#if V8_HOST_ARCH_64_BIT
int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak);
int32_t hi_32 = static_cast<int64_t>(value) >> 32;
int32_t lo_32 = static_cast<int32_t>(value);
iihf(r1, Operand(hi_32));
iilf(r1, Operand(lo_32));
#else
iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak)));
#endif
basr(r14, r1);
}
void call(Handle<Code> target, RelocInfo::Mode rmode);
void call(CodeStub* stub);
void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond);
// S390 instruction generation
#define I_FORM(name) void name(const Operand& i)
#define RR_FORM(name) void name(Register r1, Register r2)
#define RR2_FORM(name) void name(Condition m1, Register r2)
#define RI1_FORM(name) void name(Register r, const Operand& i)
#define RI2_FORM(name) void name(Condition m, const Operand& i)
#define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i)
#define RIE_F_FORM(name) \
void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \
const Operand& i5)
#define RXE_FORM(name) \
void name(Register r1, const MemOperand& opnd); \
void name(Register r1, Register b2, Register x2, Disp d2)
#define RXF_FORM(name) \
void name(Register r1, Register r3, const MemOperand& opnd); \
void name(Register r1, Register r3, Register b2, Register x2, Disp d2)
#define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i)
#define RIS_FORM(name) \
void name(Register r1, Condition m3, Register b4, Disp d4, \
const Operand& i2); \
void name(Register r1, const Operand& i2, Condition m3, \
const MemOperand& opnd)
#define SI_FORM(name) \
void name(const MemOperand& opnd, const Operand& i); \
void name(const Operand& i2, Register b1, Disp d1)
#define SIL_FORM(name) \
void name(Register b1, Disp d1, const Operand& i2); \
void name(const MemOperand& opnd, const Operand& i2)
#define RRF1_FORM(name) void name(Register r1, Register r2, Register r3)
#define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2)
#define RRF3_FORM(name) \
void name(Register r3, Condition m4, Register r1, Register r2)
#define RS1_FORM(name) \
void name(Register r1, Register r3, const MemOperand& opnd); \
void name(Register r1, Register r3, Register b2, Disp d2)
#define RS2_FORM(name) \
void name(Register r1, Condition m3, const MemOperand& opnd); \
void name(Register r1, Condition m3, Register b2, Disp d2)
#define RSE_FORM(name) \
void name(Register r1, Register r3, const MemOperand& opnd); \
void name(Register r1, Register r3, Register b2, Disp d2)
#define RSL_FORM(name) \
void name(Length l, Register b2, Disp d2); \
void name(const MemOperand& opnd)
#define RSY1_FORM(name) \
void name(Register r1, Register r3, Register b2, Disp d2); \
void name(Register r1, Register r3, const MemOperand& opnd)
#define RSY2_FORM(name) \
void name(Register r1, Condition m3, Register b2, Disp d2); \
void name(Register r1, Condition m3, const MemOperand& opnd)
#define RRS_FORM(name) \
void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \
void name(Register r1, Register r2, Condition m3, const MemOperand& opnd)
#define S_FORM(name) \
void name(Register b2, Disp d2); \
void name(const MemOperand& opnd)
#define SIY_FORM(name) \
void name(const Operand& i2, Register b1, Disp d1); \
void name(const MemOperand& opnd, const Operand& i)
#define SS1_FORM(name) \
void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \
void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length)
#define SS2_FORM(name) \
void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \
Length length2); \
void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2)
#define SS3_FORM(name) \
void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \
void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2, \
Length l1)
#define SS4_FORM(name) \
void name(const MemOperand& opnd1, const MemOperand& opnd2); \
void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \
Disp d2)
#define SS5_FORM(name) \
void name(const MemOperand& opnd1, const MemOperand& opnd2); \
void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \
Disp d4)
#define SSE_FORM(name) \
void name(Register b1, Disp d1, Register b2, Disp d2); \
void name(const MemOperand& opnd1, const MemOperand& opnd2)
#define SSF_FORM(name) \
void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \
void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2)
#define DECLARE_VRR_A_INSTRUCTIONS(name, opcode_name, opcode_value) \
void name(DoubleRegister v1, DoubleRegister v2, Condition m5, Condition m4, \
Condition m3) { \
uint64_t code = (static_cast<uint64_t>(opcode_value & 0xFF00)) * B32 | \
(static_cast<uint64_t>(v1.code())) * B36 | \
(static_cast<uint64_t>(v2.code())) * B32 | \
(static_cast<uint64_t>(m5 & 0xF)) * B20 | \
(static_cast<uint64_t>(m4 & 0xF)) * B16 | \
(static_cast<uint64_t>(m3 & 0xF)) * B12 | \
(static_cast<uint64_t>(opcode_value & 0x00FF)); \
emit6bytes(code); \
}
S390_VRR_A_OPCODE_LIST(DECLARE_VRR_A_INSTRUCTIONS)
#undef DECLARE_VRR_A_INSTRUCTIONS
#define DECLARE_VRR_C_INSTRUCTIONS(name, opcode_name, opcode_value) \
void name(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3, \
Condition m6, Condition m5, Condition m4) { \
uint64_t code = (static_cast<uint64_t>(opcode_value & 0xFF00)) * B32 | \
(static_cast<uint64_t>(v1.code())) * B36 | \
(static_cast<uint64_t>(v2.code())) * B32 | \
(static_cast<uint64_t>(v3.code())) * B28 | \
(static_cast<uint64_t>(m6 & 0xF)) * B20 | \
(static_cast<uint64_t>(m5 & 0xF)) * B16 | \
(static_cast<uint64_t>(m4 & 0xF)) * B12 | \
(static_cast<uint64_t>(opcode_value & 0x00FF)); \
emit6bytes(code); \
}
S390_VRR_C_OPCODE_LIST(DECLARE_VRR_C_INSTRUCTIONS)
#undef DECLARE_VRR_C_INSTRUCTIONS
// Single Element format
void vfa(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) {
vfa(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8),
static_cast<Condition>(3));
}
void vfs(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) {
vfs(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8),
static_cast<Condition>(3));
}
void vfm(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) {
vfm(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8),
static_cast<Condition>(3));
}
void vfd(DoubleRegister v1, DoubleRegister v2, DoubleRegister v3) {
vfd(v1, v2, v3, static_cast<Condition>(0), static_cast<Condition>(8),
static_cast<Condition>(3));
}
// S390 instruction sets
RXE_FORM(ddb);
SS1_FORM(ed);
RRF2_FORM(fidbr);
RI1_FORM(iihh);
RI1_FORM(iihl);
RI1_FORM(iilh);
RI1_FORM(iill);
RSY1_FORM(loc);
RXE_FORM(mdb);
SS4_FORM(mvck);
SSF_FORM(mvcos);
SS4_FORM(mvcs);
SS1_FORM(mvn);
SS1_FORM(nc);
SI_FORM(ni);
RI1_FORM(nilh);
RI1_FORM(nill);
RI1_FORM(oill);
RXE_FORM(sdb);
RS1_FORM(srdl);
RI1_FORM(tmll);
SS1_FORM(tr);
S_FORM(ts);
// Load Address Instructions
void larl(Register r, Label* l);
// Load Instructions
void lhi(Register r, const Operand& imm);
void lghi(Register r, const Operand& imm);
// Load Multiple Instructions
void lm(Register r1, Register r2, const MemOperand& src);
void lmy(Register r1, Register r2, const MemOperand& src);
void lmg(Register r1, Register r2, const MemOperand& src);
// Load On Condition Instructions
void locr(Condition m3, Register r1, Register r2);
void locgr(Condition m3, Register r1, Register r2);
void loc(Condition m3, Register r1, const MemOperand& src);
void locg(Condition m3, Register r1, const MemOperand& src);
// Store Instructions
// Store Multiple Instructions
void stm(Register r1, Register r2, const MemOperand& src);
void stmy(Register r1, Register r2, const MemOperand& src);
void stmg(Register r1, Register r2, const MemOperand& src);
// Compare Instructions
void chi(Register r, const Operand& opnd);
void cghi(Register r, const Operand& opnd);
// Compare Logical Instructions
void cli(const MemOperand& mem, const Operand& imm);
void cliy(const MemOperand& mem, const Operand& imm);
void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length);
// Compare and Swap Instructions
void cs(Register r1, Register r2, const MemOperand& src);
void csy(Register r1, Register r2, const MemOperand& src);
void csg(Register r1, Register r2, const MemOperand& src);
// Test Under Mask Instructions
void tm(const MemOperand& mem, const Operand& imm);
void tmy(const MemOperand& mem, const Operand& imm);
// Rotate Instructions
void rll(Register r1, Register r3, Register opnd);
void rll(Register r1, Register r3, const Operand& opnd);
void rll(Register r1, Register r3, Register r2, const Operand& opnd);
void rllg(Register r1, Register r3, const Operand& opnd);
void rllg(Register r1, Register r3, const Register opnd);
void rllg(Register r1, Register r3, Register r2, const Operand& opnd);
// Shift Instructions (32)
void sll(Register r1, Register opnd);
void sll(Register r1, const Operand& opnd);
void sllk(Register r1, Register r3, Register opnd);
void sllk(Register r1, Register r3, const Operand& opnd);
void srl(Register r1, Register opnd);
void srl(Register r1, const Operand& opnd);
void srlk(Register r1, Register r3, Register opnd);
void srlk(Register r1, Register r3, const Operand& opnd);
void sra(Register r1, Register opnd);
void sra(Register r1, const Operand& opnd);
void srak(Register r1, Register r3, Register opnd);
void srak(Register r1, Register r3, const Operand& opnd);
void sla(Register r1, Register opnd);
void sla(Register r1, const Operand& opnd);
void slak(Register r1, Register r3, Register opnd);
void slak(Register r1, Register r3, const Operand& opnd);
// Shift Instructions (64)
void sllg(Register r1, Register r3, const Operand& opnd);
void sllg(Register r1, Register r3, const Register opnd);
void srlg(Register r1, Register r3, const Operand& opnd);
void srlg(Register r1, Register r3, const Register opnd);
void srag(Register r1, Register r3, const Operand& opnd);
void srag(Register r1, Register r3, const Register opnd);
void srda(Register r1, const Operand& opnd);
void srdl(Register r1, const Operand& opnd);
void slag(Register r1, Register r3, const Operand& opnd);
void slag(Register r1, Register r3, const Register opnd);
void sldl(Register r1, Register b2, const Operand& opnd);
void srdl(Register r1, Register b2, const Operand& opnd);
void srda(Register r1, Register b2, const Operand& opnd);
// Rotate and Insert Selected Bits
void risbg(Register dst, Register src, const Operand& startBit,
const Operand& endBit, const Operand& shiftAmt,
bool zeroBits = true);
void risbgn(Register dst, Register src, const Operand& startBit,
const Operand& endBit, const Operand& shiftAmt,
bool zeroBits = true);
// Move Character (Mem to Mem)
void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length);
// Branch Instructions
void bras(Register r, const Operand& opnd);
void brc(Condition c, const Operand& opnd);
void brct(Register r1, const Operand& opnd);
void brctg(Register r1, const Operand& opnd);
// 32-bit Add Instructions
void ahi(Register r1, const Operand& opnd);
void ahik(Register r1, Register r3, const Operand& opnd);
void ark(Register r1, Register r2, Register r3);
void asi(const MemOperand&, const Operand&);
// 64-bit Add Instructions
void aghi(Register r1, const Operand& opnd);
void aghik(Register r1, Register r3, const Operand& opnd);
void agrk(Register r1, Register r2, Register r3);
void agsi(const MemOperand&, const Operand&);
// 32-bit Add Logical Instructions
void alrk(Register r1, Register r2, Register r3);
// 64-bit Add Logical Instructions
void algrk(Register r1, Register r2, Register r3);
// 32-bit Subtract Instructions
void srk(Register r1, Register r2, Register r3);
// 64-bit Subtract Instructions
void sgrk(Register r1, Register r2, Register r3);
// 32-bit Subtract Logical Instructions
void slrk(Register r1, Register r2, Register r3);
// 64-bit Subtract Logical Instructions
void slgrk(Register r1, Register r2, Register r3);
// 32-bit Multiply Instructions
void mhi(Register r1, const Operand& opnd);
void msrkc(Register r1, Register r2, Register r3);
void msgrkc(Register r1, Register r2, Register r3);
// 64-bit Multiply Instructions
void mghi(Register r1, const Operand& opnd);
// Bitwise Instructions (AND / OR / XOR)
void nrk(Register r1, Register r2, Register r3);
void ngrk(Register r1, Register r2, Register r3);
void ork(Register r1, Register r2, Register r3);
void ogrk(Register r1, Register r2, Register r3);
void xrk(Register r1, Register r2, Register r3);
void xgrk(Register r1, Register r2, Register r3);
void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length);
// Floating <-> Fixed Point Conversion Instructions
void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg,
Register fixReg);
void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg,
Register fixReg);
void celgbr(Condition m3, Condition m4, DoubleRegister fltReg,
Register fixReg);
void celfbr(Condition m3, Condition m4, DoubleRegister fltReg,
Register fixReg);
void clfdbr(Condition m3, Condition m4, Register fixReg,
DoubleRegister fltReg);
void clfebr(Condition m3, Condition m4, Register fixReg,
DoubleRegister fltReg);
void clgdbr(Condition m3, Condition m4, Register fixReg,
DoubleRegister fltReg);
void clgebr(Condition m3, Condition m4, Register fixReg,
DoubleRegister fltReg);
void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg);
void cgebr(Condition m, Register fixReg, DoubleRegister fltReg);
void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg);
void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg);
void cefbr(Condition m3, DoubleRegister fltReg, Register fixReg);
// Floating Point Compare Instructions
void cdb(DoubleRegister r1, const MemOperand& opnd);
void ceb(DoubleRegister r1, const MemOperand& opnd);
// Floating Point Arithmetic Instructions
void adb(DoubleRegister r1, const MemOperand& opnd);
void aeb(DoubleRegister r1, const MemOperand& opnd);
void sdb(DoubleRegister r1, const MemOperand& opnd);
void seb(DoubleRegister r1, const MemOperand& opnd);
void mdb(DoubleRegister r1, const MemOperand& opnd);
void meeb(DoubleRegister r1, const MemOperand& opnd);
void ddb(DoubleRegister r1, const MemOperand& opnd);
void deb(DoubleRegister r1, const MemOperand& opnd);
void sqdb(DoubleRegister r1, const MemOperand& opnd);
void ldeb(DoubleRegister r1, const MemOperand& opnd);
enum FIDBRA_MASK3 {
FIDBRA_CURRENT_ROUNDING_MODE = 0,
FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1,
// ...
FIDBRA_ROUND_TOWARD_0 = 5,
FIDBRA_ROUND_TOWARD_POS_INF = 6,
FIDBRA_ROUND_TOWARD_NEG_INF = 7
};
void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3);
void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3);
// Move integer
void mvhi(const MemOperand& opnd1, const Operand& i2);
void mvghi(const MemOperand& opnd1, const Operand& i2);
// Exception-generating instructions and debugging support
void stop(const char* msg, Condition cond = al,
int32_t code = kDefaultStopCode, CRegister cr = cr7);
void bkpt(uint32_t imm16); // v5 and above
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
NON_MARKING_NOP = 0,
GROUP_ENDING_NOP,
DEBUG_BREAK_NOP,
// IC markers.
PROPERTY_ACCESS_INLINED,
PROPERTY_ACCESS_INLINED_CONTEXT,
PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
// Helper values.
LAST_CODE_MARKER,
FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
};
void nop(int type = 0); // 0 is the default non-marking type.
void dumy(int r1, int x2, int b2, int d2);
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg);
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
int id);
// Writes a single byte or word of data in the code stream. Used
// for inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data);
void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
// No embedded constant pool support.
UNREACHABLE();
}
// Read/patch instructions
SixByteInstr instr_at(int pos) {
return Instruction::InstructionBits(buffer_ + pos);
}
template <typename T>
void instr_at_put(int pos, T instr) {
Instruction::SetInstructionBits<T>(buffer_ + pos, instr);
}
// Decodes instruction at pos, and returns its length
int32_t instr_length_at(int pos) {
return Instruction::InstructionLength(buffer_ + pos);
}
static SixByteInstr instr_at(byte* pc) {
return Instruction::InstructionBits(pc);
}
static Condition GetCondition(Instr instr);
static bool IsBranch(Instr instr);
#if V8_TARGET_ARCH_S390X
static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2);
#else
static bool Is32BitLoadIntoIP(SixByteInstr instr);
#endif
static bool IsCmpRegister(Instr instr);
static bool IsCmpImmediate(Instr instr);
static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP);
// The code currently calls CheckBuffer() too often. This has the side
// effect of randomly growing the buffer in the middle of multi-instruction
// sequences.
//
// This function allows outside callers to check and grow the buffer
void EnsureSpaceFor(int space_needed);
void EmitRelocations();
void emit_label_addr(Label* label);
public:
byte* buffer_pos() const { return buffer_; }
void RequestHeapObject(HeapObjectRequest request);
protected:
int buffer_space() const { return reloc_info_writer.pos() - pc_; }
// Decode instruction(s) at pos and return backchain to previous
// label reference or kEndOfChain.
int target_at(int pos);
// Patch instruction(s) at pos to target target_pos (e.g. branch)
void target_at_put(int pos, int target_pos, bool* is_branch = nullptr);
// Record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
private:
// Avoid overflows for displacements etc.
static const int kMaximalBufferSize = 512 * MB;
// Code generation
// The relocation writer's position is at least kGap bytes below the end of
// the generated instructions. This is so that multi-instruction sequences do
// not have to check for overflow. The same is true for writes of large
// relocation info entries.
static constexpr int kGap = 32;
// Relocation info generation
// Each relocation is encoded as a variable size value
static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
RelocInfoWriter reloc_info_writer;
std::vector<DeferredRelocInfo> relocations_;
// The bound position, before this we cannot do instruction elimination.
int last_bound_pos_;
// Code emission
void CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void GrowBuffer(int needed = 0);
inline void TrackBranch();
inline void UntrackBranch();
inline int32_t emit_code_target(
Handle<Code> target, RelocInfo::Mode rmode);
// Helper to emit the binary encoding of a 2 byte instruction
void emit2bytes(uint16_t x) {
CheckBuffer();
#if V8_TARGET_LITTLE_ENDIAN
// We need to emit instructions in big endian format as disassembler /
// simulator require the first byte of the instruction in order to decode
// the instruction length. Swap the bytes.
x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
#endif
*reinterpret_cast<uint16_t*>(pc_) = x;
pc_ += 2;
}
// Helper to emit the binary encoding of a 4 byte instruction
void emit4bytes(uint32_t x) {
CheckBuffer();
#if V8_TARGET_LITTLE_ENDIAN
// We need to emit instructions in big endian format as disassembler /
// simulator require the first byte of the instruction in order to decode
// the instruction length. Swap the bytes.
x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
#endif
*reinterpret_cast<uint32_t*>(pc_) = x;
pc_ += 4;
}
// Helper to emit the binary encoding of a 6 byte instruction
void emit6bytes(uint64_t x) {
CheckBuffer();
#if V8_TARGET_LITTLE_ENDIAN
// We need to emit instructions in big endian format as disassembler /
// simulator require the first byte of the instruction in order to decode
// the instruction length. Swap the bytes.
x = (static_cast<uint64_t>(x & 0xFF) << 40) |
(static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
(static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
(static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
(static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
(static_cast<uint64_t>((x >> 40) & 0xFF));
x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
#else
// We need to pad two bytes of zeros in order to get the 6-bytes
// stored from low address.
x = x << 16;
x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
#endif
// It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
// space left over.
*reinterpret_cast<uint64_t*>(pc_) = x;
pc_ += 6;
}
// Helpers to emit binary encoding for various instruction formats.
inline void rr2_form(uint8_t op, Condition m1, Register r2);
inline void ri_form(Opcode op, Register r1, const Operand& i2);
inline void ri_form(Opcode op, Condition m1, const Operand& i2);
inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2);
inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3,
const Operand& i4, const Operand& i5);
inline void ris_form(Opcode op, Register r1, Condition m3, Register b4,
Disp d4, const Operand& i2);
inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3);
inline void rrf1_form(uint32_t x);
inline void rrf2_form(uint32_t x);
inline void rrf3_form(uint32_t x);
inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1,
Register r2);
inline void rrs_form(Opcode op, Register r1, Register r2, Register b4,
Disp d4, Condition m3);
inline void rs_form(Opcode op, Register r1, Condition m3, Register b2,
const Disp d2);
inline void rs_form(Opcode op, Register r1, Register r3, Register b2,
const Disp d2);
inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2);
inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2);
inline void rsy_form(Opcode op, Register r1, Register r3, Register b2,
const Disp d2);
inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2,
const Disp d2);
inline void rxe_form(Opcode op, Register r1, Register x2, Register b2,
Disp d2);
inline void rxf_form(Opcode op, Register r1, Register r3, Register b2,
Register x2, Disp d2);
inline void s_form(Opcode op, Register b1, Disp d2);
inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1);
inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1);
inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2);
inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2,
Disp d2);
inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1,
Register b2, Disp d2);
inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1,
Disp d1, Register b2, Disp d2);
inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1,
Register b2, Disp d2);
inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2);
inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1,
Register b2, Disp d2);
// Labels
void print(Label* L);
int max_reach_from(int pos);
void bind_to(Label* L, int pos);
void next(Label* L);
// The following functions help with avoiding allocations of embedded heap
// objects during the code assembly phase. {RequestHeapObject} records the
// need for a future heap number allocation or code stub generation. After
// code assembly, {AllocateAndInstallRequestedHeapObjects} will allocate these
// objects and place them where they are expected (determined by the pc offset
// associated with each request). That is, for each request, it will patch the
// dummy heap object handle that we emitted during code assembly with the
// actual heap object handle.
void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
std::forward_list<HeapObjectRequest> heap_object_requests_;
friend class RegExpMacroAssemblerS390;
friend class RelocInfo;
friend class CodePatcher;
std::vector<Handle<Code>> code_targets_;
friend class EnsureSpace;
};
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
};
} // namespace internal
} // namespace v8
#endif // V8_S390_ASSEMBLER_S390_H_