blob: c68dd0b2ead619e3a1b75486cf937a6b180179d5 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.
#include "cobalt/media/base/yuv_convert.h"
#include <algorithm>
#include "base/basictypes.h"
#include "base/cpu.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/memory/aligned_memory.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "build/build_config.h"
#include "cobalt/media/base/simd/convert_rgb_to_yuv.h"
#include "cobalt/media/base/simd/convert_yuv_to_rgb.h"
#include "cobalt/media/base/simd/filter_yuv.h"
#include "starboard/memory.h"
#include "starboard/types.h"
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(COMPILER_MSVC)
#include <intrin.h>
#else
#include <mmintrin.h>
#endif
#endif
// Assembly functions are declared without namespace.
extern "C" {
void EmptyRegisterState_MMX();
} // extern "C"
namespace cobalt {
namespace media {
typedef void (*FilterYUVRowsProc)(uint8_t*, const uint8_t*, const uint8_t*, int,
uint8_t);
typedef void (*ConvertRGBToYUVProc)(const uint8_t*, uint8_t*, uint8_t*,
uint8_t*, int, int, int, int, int);
typedef void (*ConvertYUVToRGB32Proc)(const uint8_t*, const uint8_t*,
const uint8_t*, uint8_t*, int, int, int,
int, int, YUVType);
typedef void (*ConvertYUVAToARGBProc)(const uint8_t*, const uint8_t*,
const uint8_t*, const uint8_t*, uint8_t*,
int, int, int, int, int, int, YUVType);
typedef void (*ConvertYUVToRGB32RowProc)(const uint8_t*, const uint8_t*,
const uint8_t*, uint8_t*, ptrdiff_t,
const int16_t*);
typedef void (*ConvertYUVAToARGBRowProc)(const uint8_t*, const uint8_t*,
const uint8_t*, const uint8_t*,
uint8_t*, ptrdiff_t, const int16_t*);
typedef void (*ScaleYUVToRGB32RowProc)(const uint8_t*, const uint8_t*,
const uint8_t*, uint8_t*, ptrdiff_t,
ptrdiff_t, const int16_t*);
static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
static const int kYUVToRGBTableSize = 256 * 4 * 4 * sizeof(int16_t);
// base::AlignedMemory has a private operator new(), so wrap it in a struct so
// that we can put it in a LazyInstance::Leaky.
struct YUVToRGBTableWrapper {
base::AlignedMemory<kYUVToRGBTableSize, 16> table;
};
typedef base::LazyInstance<YUVToRGBTableWrapper>::Leaky YUVToRGBTable;
static YUVToRGBTable g_table_rec601 = LAZY_INSTANCE_INITIALIZER;
static YUVToRGBTable g_table_jpeg = LAZY_INSTANCE_INITIALIZER;
static YUVToRGBTable g_table_rec709 = LAZY_INSTANCE_INITIALIZER;
static const int16_t* g_table_rec601_ptr = NULL;
static const int16_t* g_table_jpeg_ptr = NULL;
static const int16_t* g_table_rec709_ptr = NULL;
// Empty SIMD registers state after using them.
void EmptyRegisterStateStub() {}
#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
void EmptyRegisterStateIntrinsic() { _mm_empty(); }
#endif
typedef void (*EmptyRegisterStateProc)();
static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
// Get the appropriate value to bitshift by for vertical indices.
int GetVerticalShift(YUVType type) {
switch (type) {
case YV16:
return 0;
case YV12:
case YV12J:
case YV12HD:
return 1;
}
NOTREACHED();
return 0;
}
const int16_t* GetLookupTable(YUVType type) {
switch (type) {
case YV12:
case YV16:
return g_table_rec601_ptr;
case YV12J:
return g_table_jpeg_ptr;
case YV12HD:
return g_table_rec709_ptr;
}
NOTREACHED();
return NULL;
}
// Populates a pre-allocated lookup table from a YUV->RGB matrix.
const int16_t* PopulateYUVToRGBTable(const double matrix[3][3], bool full_range,
int16_t* table) {
// We'll have 4 sub-tables that lie contiguous in memory, one for each of Y,
// U, V and A.
const int kNumTables = 4;
// Each table has 256 rows (for all possible 8-bit values).
const int kNumRows = 256;
// Each row has 4 columns, for contributions to each of R, G, B and A.
const int kNumColumns = 4;
// Each element is a fixed-point (10.6) 16-bit signed value.
const int kElementSize = sizeof(int16_t);
// Sanity check that our constants here match the size of the statically
// allocated tables.
static_assert(
kNumTables * kNumRows * kNumColumns * kElementSize == kYUVToRGBTableSize,
"YUV lookup table size doesn't match expectation.");
// Y needs an offset of -16 for color ranges that ignore the lower 16 values,
// U and V get -128 to put them in [-128, 127] from [0, 255].
int offsets[3] = {(full_range ? 0 : -16), -128, -128};
for (int i = 0; i < kNumRows; ++i) {
// Y, U, and V contributions to each of R, G, B and A.
for (int j = 0; j < 3; ++j) {
#if defined(OS_ANDROID)
// Android is RGBA.
table[(j * kNumRows + i) * kNumColumns + 0] =
matrix[j][0] * 64 * (i + offsets[j]) + 0.5;
table[(j * kNumRows + i) * kNumColumns + 1] =
matrix[j][1] * 64 * (i + offsets[j]) + 0.5;
table[(j * kNumRows + i) * kNumColumns + 2] =
matrix[j][2] * 64 * (i + offsets[j]) + 0.5;
#else
// Other platforms are BGRA.
table[(j * kNumRows + i) * kNumColumns + 0] =
matrix[j][2] * 64 * (i + offsets[j]) + 0.5;
table[(j * kNumRows + i) * kNumColumns + 1] =
matrix[j][1] * 64 * (i + offsets[j]) + 0.5;
table[(j * kNumRows + i) * kNumColumns + 2] =
matrix[j][0] * 64 * (i + offsets[j]) + 0.5;
#endif
// Alpha contributions from Y and V are always 0. U is set such that
// all values result in a full '255' alpha value.
table[(j * kNumRows + i) * kNumColumns + 3] = (j == 1) ? 256 * 64 - 1 : 0;
}
// And YUVA alpha is passed through as-is.
for (int k = 0; k < kNumTables; ++k)
table[((kNumTables - 1) * kNumRows + i) * kNumColumns + k] = i;
}
return table;
}
void InitializeCPUSpecificYUVConversions() {
CHECK(!g_filter_yuv_rows_proc_);
CHECK(!g_convert_yuv_to_rgb32_row_proc_);
CHECK(!g_scale_yuv_to_rgb32_row_proc_);
CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
CHECK(!g_convert_rgb32_to_yuv_proc_);
CHECK(!g_convert_rgb24_to_yuv_proc_);
CHECK(!g_convert_yuv_to_rgb32_proc_);
CHECK(!g_convert_yuva_to_argb_proc_);
CHECK(!g_empty_register_state_proc_);
g_filter_yuv_rows_proc_ = FilterYUVRows_C;
g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
g_empty_register_state_proc_ = EmptyRegisterStateStub;
// Assembly code confuses MemorySanitizer. Also not available in iOS builds.
#if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER) && \
!defined(OS_IOS)
g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
#else
g_empty_register_state_proc_ = EmptyRegisterState_MMX;
#endif
g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
#if defined(ARCH_CPU_X86_64)
g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
// Technically this should be in the MMX section, but MSVC will optimize out
// the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
// tests, if that decision can be made at compile time. Since all X64 CPUs
// have SSE2, we can hack around this by making the selection here.
g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
#else
g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
#endif
base::CPU cpu;
if (cpu.has_ssse3()) {
g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
// TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
// See: crbug.com/100462
}
#endif
// Initialize YUV conversion lookup tables.
// SD Rec601 YUV->RGB matrix, see http://www.fourcc.org/fccyvrgb.php
const double kRec601ConvertMatrix[3][3] = {
{1.164, 1.164, 1.164}, {0.0, -0.391, 2.018}, {1.596, -0.813, 0.0},
};
// JPEG table, values from above link.
const double kJPEGConvertMatrix[3][3] = {
{1.0, 1.0, 1.0}, {0.0, -0.34414, 1.772}, {1.402, -0.71414, 0.0},
};
// Rec709 "HD" color space, values from:
// http://www.equasys.de/colorconversion.html
const double kRec709ConvertMatrix[3][3] = {
{1.164, 1.164, 1.164}, {0.0, -0.213, 2.112}, {1.793, -0.533, 0.0},
};
PopulateYUVToRGBTable(kRec601ConvertMatrix, false,
g_table_rec601.Get().table.data_as<int16_t>());
PopulateYUVToRGBTable(kJPEGConvertMatrix, true,
g_table_jpeg.Get().table.data_as<int16_t>());
PopulateYUVToRGBTable(kRec709ConvertMatrix, false,
g_table_rec709.Get().table.data_as<int16_t>());
g_table_rec601_ptr = g_table_rec601.Get().table.data_as<int16_t>();
g_table_rec709_ptr = g_table_rec709.Get().table.data_as<int16_t>();
g_table_jpeg_ptr = g_table_jpeg.Get().table.data_as<int16_t>();
}
// Empty SIMD registers state after using them.
void EmptyRegisterState() { g_empty_register_state_proc_(); }
// 16.16 fixed point arithmetic
const int kFractionBits = 16;
const int kFractionMax = 1 << kFractionBits;
const int kFractionMask = ((1 << kFractionBits) - 1);
// Scale a frame of YUV to 32 bit ARGB.
void ScaleYUVToRGB32(const uint8_t* y_buf, const uint8_t* u_buf,
const uint8_t* v_buf, uint8_t* rgb_buf, int source_width,
int source_height, int width, int height, int y_pitch,
int uv_pitch, int rgb_pitch, YUVType yuv_type,
Rotate view_rotate, ScaleFilter filter) {
// Handle zero sized sources and destinations.
if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
(yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
width == 0 || height == 0)
return;
const int16_t* lookup_table = GetLookupTable(yuv_type);
// 4096 allows 3 buffers to fit in 12k.
// Helps performance on CPU with 16K L1 cache.
// Large enough for 3830x2160 and 30" displays which are 2560x1600.
const int kFilterBufferSize = 4096;
// Disable filtering if the screen is too big (to avoid buffer overflows).
// This should never happen to regular users: they don't have monitors
// wider than 4096 pixels.
// TODO(fbarchard): Allow rotated videos to filter.
if (source_width > kFilterBufferSize || view_rotate) filter = FILTER_NONE;
unsigned int y_shift = GetVerticalShift(yuv_type);
// Diagram showing origin and direction of source sampling.
// ->0 4<-
// 7 3
//
// 6 5
// ->1 2<-
// Rotations that start at right side of image.
if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
(view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
y_buf += source_width - 1;
u_buf += source_width / 2 - 1;
v_buf += source_width / 2 - 1;
source_width = -source_width;
}
// Rotations that start at bottom of image.
if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
(view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
y_buf += (source_height - 1) * y_pitch;
u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
source_height = -source_height;
}
int source_dx = source_width * kFractionMax / width;
if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
int tmp = height;
height = width;
width = tmp;
tmp = source_height;
source_height = source_width;
source_width = tmp;
int source_dy = source_height * kFractionMax / height;
source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
if (view_rotate == ROTATE_90) {
y_pitch = -1;
uv_pitch = -1;
source_height = -source_height;
} else {
y_pitch = 1;
uv_pitch = 1;
}
}
// Need padding because FilterRows() will write 1 to 16 extra pixels
// after the end for SSE2 version.
uint8_t yuvbuf[16 + kFilterBufferSize * 3 + 16];
uint8_t* ybuf = reinterpret_cast<uint8_t*>(
reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
uint8_t* ubuf = ybuf + kFilterBufferSize;
uint8_t* vbuf = ubuf + kFilterBufferSize;
// TODO(fbarchard): Fixed point math is off by 1 on negatives.
// We take a y-coordinate in [0,1] space in the source image space, and
// transform to a y-coordinate in [0,1] space in the destination image space.
// Note that the coordinate endpoints lie on pixel boundaries, not on pixel
// centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
// 0.75. The formula is as follows (in fixed-point arithmetic):
// y_dst = dst_height * ((y_src + 0.5) / src_height)
// dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
// Implement this here as an accumulator + delta, to avoid expensive math
// in the loop.
int source_y_subpixel_accum =
((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
// TODO(fbarchard): Split this into separate function for better efficiency.
for (int y = 0; y < height; ++y) {
uint8_t* dest_pixel = rgb_buf + y * rgb_pitch;
int source_y_subpixel = source_y_subpixel_accum;
source_y_subpixel_accum += source_y_subpixel_delta;
if (source_y_subpixel < 0)
source_y_subpixel = 0;
else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
source_y_subpixel = (source_height - 1) << kFractionBits;
const uint8_t* y_ptr = NULL;
const uint8_t* u_ptr = NULL;
const uint8_t* v_ptr = NULL;
// Apply vertical filtering if necessary.
// TODO(fbarchard): Remove memcpy when not necessary.
if (filter & media::FILTER_BILINEAR_V) {
int source_y = source_y_subpixel >> kFractionBits;
y_ptr = y_buf + source_y * y_pitch;
u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
// Vertical scaler uses 16.8 fixed point.
uint8_t source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
if (source_y_fraction != 0) {
g_filter_yuv_rows_proc_(ybuf, y_ptr, y_ptr + y_pitch, source_width,
source_y_fraction);
} else {
SbMemoryCopy(ybuf, y_ptr, source_width);
}
y_ptr = ybuf;
ybuf[source_width] = ybuf[source_width - 1];
int uv_source_width = (source_width + 1) / 2;
uint8_t source_uv_fraction;
// For formats with half-height UV planes, each even-numbered pixel row
// should not interpolate, since the next row to interpolate from should
// be a duplicate of the current row.
if (y_shift && (source_y & 0x1) == 0)
source_uv_fraction = 0;
else
source_uv_fraction = source_y_fraction;
if (source_uv_fraction != 0) {
g_filter_yuv_rows_proc_(ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width,
source_uv_fraction);
g_filter_yuv_rows_proc_(vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width,
source_uv_fraction);
} else {
SbMemoryCopy(ubuf, u_ptr, uv_source_width);
SbMemoryCopy(vbuf, v_ptr, uv_source_width);
}
u_ptr = ubuf;
v_ptr = vbuf;
ubuf[uv_source_width] = ubuf[uv_source_width - 1];
vbuf[uv_source_width] = vbuf[uv_source_width - 1];
} else {
// Offset by 1/2 pixel for center sampling.
int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
y_ptr = y_buf + source_y * y_pitch;
u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
}
if (source_dx == kFractionMax) { // Not scaled
g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width,
lookup_table);
} else {
if (filter & FILTER_BILINEAR_H) {
g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel,
width, source_dx, lookup_table);
} else {
g_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width,
source_dx, lookup_table);
}
}
}
g_empty_register_state_proc_();
}
// Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
void ScaleYUVToRGB32WithRect(const uint8_t* y_buf, const uint8_t* u_buf,
const uint8_t* v_buf, uint8_t* rgb_buf,
int source_width, int source_height,
int dest_width, int dest_height,
int dest_rect_left, int dest_rect_top,
int dest_rect_right, int dest_rect_bottom,
int y_pitch, int uv_pitch, int rgb_pitch) {
// This routine doesn't currently support up-scaling.
CHECK_LE(dest_width, source_width);
CHECK_LE(dest_height, source_height);
// Sanity-check the destination rectangle.
DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
DCHECK(dest_rect_right > dest_rect_left);
DCHECK(dest_rect_bottom > dest_rect_top);
const int16_t* lookup_table = GetLookupTable(YV12);
// Fixed-point value of vertical and horizontal scale down factor.
// Values are in the format 16.16.
int y_step = kFractionMax * source_height / dest_height;
int x_step = kFractionMax * source_width / dest_width;
// Determine the coordinates of the rectangle in 16.16 coords.
// NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
// If we're down-scaling by more than a factor of two, we start with a 50%
// fraction to avoid degenerating to point-sampling - we should really just
// fix the fraction at 50% for all pixels in that case.
int source_left = dest_rect_left * x_step;
int source_right = (dest_rect_right - 1) * x_step;
if (x_step < kFractionMax * 2) {
source_left += ((x_step - kFractionMax) / 2);
source_right += ((x_step - kFractionMax) / 2);
} else {
source_left += kFractionMax / 2;
source_right += kFractionMax / 2;
}
int source_top = dest_rect_top * y_step;
if (y_step < kFractionMax * 2) {
source_top += ((y_step - kFractionMax) / 2);
} else {
source_top += kFractionMax / 2;
}
// Determine the parts of the Y, U and V buffers to interpolate.
int source_y_left = source_left >> kFractionBits;
int source_y_right =
std::min((source_right >> kFractionBits) + 2, source_width + 1);
int source_uv_left = source_y_left / 2;
int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
(source_width + 1) / 2);
int source_y_width = source_y_right - source_y_left;
int source_uv_width = source_uv_right - source_uv_left;
// Determine number of pixels in each output row.
int dest_rect_width = dest_rect_right - dest_rect_left;
// Intermediate buffer for vertical interpolation.
// 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
// and is bigger than most users will generally need.
// The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
// FilterYUVRowsProcs have alignment requirements, and the SSE version can
// write up to 16 bytes past the end of the buffer.
const int kFilterBufferSize = 4096;
const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
uint8_t yuv_temp[16 + kFilterBufferSize * 3 + 16];
// memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
if (RunningOnValgrind()) SbMemorySet(yuv_temp, 0, sizeof(yuv_temp));
uint8_t* y_temp = reinterpret_cast<uint8_t*>(
reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
uint8_t* u_temp = y_temp + kFilterBufferSize;
uint8_t* v_temp = u_temp + kFilterBufferSize;
// Move to the top-left pixel of output.
rgb_buf += dest_rect_top * rgb_pitch;
rgb_buf += dest_rect_left * 4;
// For each destination row perform interpolation and color space
// conversion to produce the output.
for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
// Round the fixed-point y position to get the current row.
int source_row = source_top >> kFractionBits;
int source_uv_row = source_row / 2;
DCHECK(source_row < source_height);
// Locate the first row for each plane for interpolation.
const uint8_t* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
const uint8_t* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
const uint8_t* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
const uint8_t* y1_ptr = NULL;
const uint8_t* u1_ptr = NULL;
const uint8_t* v1_ptr = NULL;
// Locate the second row for interpolation, being careful not to overrun.
if (source_row + 1 >= source_height) {
y1_ptr = y0_ptr;
} else {
y1_ptr = y0_ptr + y_pitch;
}
if (source_uv_row + 1 >= (source_height + 1) / 2) {
u1_ptr = u0_ptr;
v1_ptr = v0_ptr;
} else {
u1_ptr = u0_ptr + uv_pitch;
v1_ptr = v0_ptr + uv_pitch;
}
if (!kAvoidUsingOptimizedFilter) {
// Vertical scaler uses 16.8 fixed point.
uint8_t fraction = (source_top & kFractionMask) >> 8;
g_filter_yuv_rows_proc_(y_temp + source_y_left, y0_ptr, y1_ptr,
source_y_width, fraction);
g_filter_yuv_rows_proc_(u_temp + source_uv_left, u0_ptr, u1_ptr,
source_uv_width, fraction);
g_filter_yuv_rows_proc_(v_temp + source_uv_left, v0_ptr, v1_ptr,
source_uv_width, fraction);
// Perform horizontal interpolation and color space conversion.
// TODO(hclam): Use the MMX version after more testing.
LinearScaleYUVToRGB32RowWithRange_C(y_temp, u_temp, v_temp, rgb_buf,
dest_rect_width, source_left, x_step,
lookup_table);
} else {
// If the frame is too large then we linear scale a single row.
LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, u0_ptr, v0_ptr, rgb_buf,
dest_rect_width, source_left, x_step,
lookup_table);
}
// Advance vertically in the source and destination image.
source_top += y_step;
rgb_buf += rgb_pitch;
}
g_empty_register_state_proc_();
}
void ConvertRGB32ToYUV(const uint8_t* rgbframe, uint8_t* yplane,
uint8_t* uplane, uint8_t* vplane, int width, int height,
int rgbstride, int ystride, int uvstride) {
g_convert_rgb32_to_yuv_proc_(rgbframe, yplane, uplane, vplane, width, height,
rgbstride, ystride, uvstride);
}
void ConvertRGB24ToYUV(const uint8_t* rgbframe, uint8_t* yplane,
uint8_t* uplane, uint8_t* vplane, int width, int height,
int rgbstride, int ystride, int uvstride) {
g_convert_rgb24_to_yuv_proc_(rgbframe, yplane, uplane, vplane, width, height,
rgbstride, ystride, uvstride);
}
void ConvertYUVToRGB32(const uint8_t* yplane, const uint8_t* uplane,
const uint8_t* vplane, uint8_t* rgbframe, int width,
int height, int ystride, int uvstride, int rgbstride,
YUVType yuv_type) {
g_convert_yuv_to_rgb32_proc_(yplane, uplane, vplane, rgbframe, width, height,
ystride, uvstride, rgbstride, yuv_type);
}
void ConvertYUVAToARGB(const uint8_t* yplane, const uint8_t* uplane,
const uint8_t* vplane, const uint8_t* aplane,
uint8_t* rgbframe, int width, int height, int ystride,
int uvstride, int astride, int rgbstride,
YUVType yuv_type) {
g_convert_yuva_to_argb_proc_(yplane, uplane, vplane, aplane, rgbframe, width,
height, ystride, uvstride, astride, rgbstride,
yuv_type);
}
} // namespace media
} // namespace cobalt