blob: 4e3d8161b8d2da4f34cedd7fa7dc654b7fd2e03b [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_GLOBAL_HANDLES_H_
#define V8_GLOBAL_HANDLES_H_
#include <type_traits>
#include <vector>
#include "include/v8.h"
#include "include/v8-profiler.h"
#include "src/handles.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
class HeapStats;
class RootVisitor;
// Structure for tracking global handles.
// A single list keeps all the allocated global handles.
// Destroyed handles stay in the list but is added to the free list.
// At GC the destroyed global handles are removed from the free list
// and deallocated.
enum WeaknessType {
// Embedder gets a handle to the dying object.
FINALIZER_WEAK,
// In the following cases, the embedder gets the parameter they passed in
// earlier, and 0 or 2 first embedder fields. Note that the internal
// fields must contain aligned non-V8 pointers. Getting pointers to V8
// objects through this interface would be GC unsafe so in that case the
// embedder gets a null pointer instead.
PHANTOM_WEAK,
PHANTOM_WEAK_2_EMBEDDER_FIELDS,
// The handle is automatically reset by the garbage collector when
// the object is no longer reachable.
PHANTOM_WEAK_RESET_HANDLE
};
class GlobalHandles {
public:
~GlobalHandles();
// Creates a new global handle that is alive until Destroy is called.
Handle<Object> Create(Object* value);
template <typename T>
Handle<T> Create(T* value) {
static_assert(std::is_base_of<Object, T>::value, "static type violation");
// The compiler should only pick this method if T is not Object.
static_assert(!std::is_same<Object, T>::value, "compiler error");
return Handle<T>::cast(Create(static_cast<Object*>(value)));
}
// Copy a global handle
static Handle<Object> CopyGlobal(Object** location);
// Destroy a global handle.
static void Destroy(Object** location);
// Make the global handle weak and set the callback parameter for the
// handle. When the garbage collector recognizes that only weak global
// handles point to an object the callback function is invoked (for each
// handle) with the handle and corresponding parameter as arguments. By
// default the handle still contains a pointer to the object that is being
// collected. For this reason the object is not collected until the next
// GC. For a phantom weak handle the handle is cleared (set to a Smi)
// before the callback is invoked, but the handle can still be identified
// in the callback by using the location() of the handle.
static void MakeWeak(Object** location, void* parameter,
WeakCallbackInfo<void>::Callback weak_callback,
v8::WeakCallbackType type);
static void MakeWeak(Object*** location_addr);
void RecordStats(HeapStats* stats);
// Returns the current number of handles to global objects.
int global_handles_count() const {
return number_of_global_handles_;
}
size_t NumberOfPhantomHandleResets() {
return number_of_phantom_handle_resets_;
}
void ResetNumberOfPhantomHandleResets() {
number_of_phantom_handle_resets_ = 0;
}
size_t NumberOfNewSpaceNodes() { return new_space_nodes_.size(); }
// Clear the weakness of a global handle.
static void* ClearWeakness(Object** location);
// Mark the reference to this object independent.
static void MarkIndependent(Object** location);
static bool IsIndependent(Object** location);
// Tells whether global handle is near death.
static bool IsNearDeath(Object** location);
// Tells whether global handle is weak.
static bool IsWeak(Object** location);
// Process pending weak handles.
// Returns the number of freed nodes.
int PostGarbageCollectionProcessing(
GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags);
// Iterates over all strong handles.
void IterateStrongRoots(RootVisitor* v);
// Iterates over all handles.
void IterateAllRoots(RootVisitor* v);
void IterateAllNewSpaceRoots(RootVisitor* v);
void IterateNewSpaceRoots(RootVisitor* v, size_t start, size_t end);
// Iterates over all handles that have embedder-assigned class ID.
void IterateAllRootsWithClassIds(v8::PersistentHandleVisitor* v);
// Iterates over all handles in the new space that have embedder-assigned
// class ID.
void IterateAllRootsInNewSpaceWithClassIds(v8::PersistentHandleVisitor* v);
// Iterate over all handles in the new space that are weak, unmodified
// and have class IDs
void IterateWeakRootsInNewSpaceWithClassIds(v8::PersistentHandleVisitor* v);
// Iterates over all weak roots in heap.
void IterateWeakRoots(RootVisitor* v);
// Find all weak handles satisfying the callback predicate, mark
// them as pending.
void IdentifyWeakHandles(WeakSlotCallback f);
// NOTE: Five ...NewSpace... functions below are used during
// scavenge collections and iterate over sets of handles that are
// guaranteed to contain all handles holding new space objects (but
// may also include old space objects).
// Iterates over strong and dependent handles. See the note above.
void IterateNewSpaceStrongAndDependentRoots(RootVisitor* v);
// Iterates over strong and dependent handles. See the note above.
// Also marks unmodified nodes in the same iteration.
void IterateNewSpaceStrongAndDependentRootsAndIdentifyUnmodified(
RootVisitor* v, size_t start, size_t end);
// Finds weak independent or unmodified handles satisfying
// the callback predicate and marks them as pending. See the note above.
void MarkNewSpaceWeakUnmodifiedObjectsPending(
WeakSlotCallbackWithHeap is_unscavenged);
// Iterates over weak independent or unmodified handles.
// See the note above.
void IterateNewSpaceWeakUnmodifiedRoots(RootVisitor* v);
// Identify unmodified objects that are in weak state and marks them
// unmodified
void IdentifyWeakUnmodifiedObjects(WeakSlotCallback is_unmodified);
// Tear down the global handle structure.
void TearDown();
Isolate* isolate() { return isolate_; }
#ifdef DEBUG
void PrintStats();
void Print();
#endif // DEBUG
private:
// Internal node structures.
class Node;
class NodeBlock;
class NodeIterator;
class PendingPhantomCallback;
class PendingPhantomCallbacksSecondPassTask;
explicit GlobalHandles(Isolate* isolate);
// Helpers for PostGarbageCollectionProcessing.
static void InvokeSecondPassPhantomCallbacks(
std::vector<PendingPhantomCallback>* callbacks, Isolate* isolate);
int PostScavengeProcessing(int initial_post_gc_processing_count);
int PostMarkSweepProcessing(int initial_post_gc_processing_count);
int DispatchPendingPhantomCallbacks(bool synchronous_second_pass);
void UpdateListOfNewSpaceNodes();
void ApplyPersistentHandleVisitor(v8::PersistentHandleVisitor* visitor,
Node* node);
Isolate* isolate_;
// Field always containing the number of handles to global objects.
int number_of_global_handles_;
// List of all allocated node blocks.
NodeBlock* first_block_;
// List of node blocks with used nodes.
NodeBlock* first_used_block_;
// Free list of nodes.
Node* first_free_;
// Contains all nodes holding new space objects. Note: when the list
// is accessed, some of the objects may have been promoted already.
std::vector<Node*> new_space_nodes_;
int post_gc_processing_count_;
size_t number_of_phantom_handle_resets_;
std::vector<PendingPhantomCallback> pending_phantom_callbacks_;
friend class Isolate;
DISALLOW_COPY_AND_ASSIGN(GlobalHandles);
};
class GlobalHandles::PendingPhantomCallback {
public:
typedef v8::WeakCallbackInfo<void> Data;
PendingPhantomCallback(
Node* node, Data::Callback callback, void* parameter,
void* embedder_fields[v8::kEmbedderFieldsInWeakCallback])
: node_(node), callback_(callback), parameter_(parameter) {
for (int i = 0; i < v8::kEmbedderFieldsInWeakCallback; ++i) {
embedder_fields_[i] = embedder_fields[i];
}
}
void Invoke(Isolate* isolate);
Node* node() { return node_; }
Data::Callback callback() { return callback_; }
private:
Node* node_;
Data::Callback callback_;
void* parameter_;
void* embedder_fields_[v8::kEmbedderFieldsInWeakCallback];
};
class EternalHandles {
public:
enum SingletonHandle {
DATE_CACHE_VERSION,
NUMBER_OF_SINGLETON_HANDLES
};
EternalHandles();
~EternalHandles();
int NumberOfHandles() { return size_; }
// Create an EternalHandle, overwriting the index.
void Create(Isolate* isolate, Object* object, int* index);
// Grab the handle for an existing EternalHandle.
inline Handle<Object> Get(int index) {
return Handle<Object>(GetLocation(index));
}
// Grab the handle for an existing SingletonHandle.
inline Handle<Object> GetSingleton(SingletonHandle singleton) {
DCHECK(Exists(singleton));
return Get(singleton_handles_[singleton]);
}
// Checks whether a SingletonHandle has been assigned.
inline bool Exists(SingletonHandle singleton) {
return singleton_handles_[singleton] != kInvalidIndex;
}
// Assign a SingletonHandle to an empty slot and returns the handle.
Handle<Object> CreateSingleton(Isolate* isolate,
Object* object,
SingletonHandle singleton) {
Create(isolate, object, &singleton_handles_[singleton]);
return Get(singleton_handles_[singleton]);
}
// Iterates over all handles.
void IterateAllRoots(RootVisitor* visitor);
// Iterates over all handles which might be in new space.
void IterateNewSpaceRoots(RootVisitor* visitor);
// Rebuilds new space list.
void PostGarbageCollectionProcessing(Heap* heap);
private:
static const int kInvalidIndex = -1;
static const int kShift = 8;
static const int kSize = 1 << kShift;
static const int kMask = 0xff;
// Gets the slot for an index
inline Object** GetLocation(int index) {
DCHECK(index >= 0 && index < size_);
return &blocks_[index >> kShift][index & kMask];
}
int size_;
std::vector<Object**> blocks_;
std::vector<int> new_space_indices_;
int singleton_handles_[NUMBER_OF_SINGLETON_HANDLES];
DISALLOW_COPY_AND_ASSIGN(EternalHandles);
};
} // namespace internal
} // namespace v8
#endif // V8_GLOBAL_HANDLES_H_