Import Cobalt 16.136005

Change-Id: I2b9198982828ad841d50902b145910c0aeb689d3
diff --git a/src/third_party/skia/tests/SkNxTest.cpp b/src/third_party/skia/tests/SkNxTest.cpp
new file mode 100644
index 0000000..e3f3cd6
--- /dev/null
+++ b/src/third_party/skia/tests/SkNxTest.cpp
@@ -0,0 +1,360 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "Sk4px.h"
+#include "SkNx.h"
+#include "SkRandom.h"
+#include "Test.h"
+
+template <int N>
+static void test_Nf(skiatest::Reporter* r) {
+
+    auto assert_nearly_eq = [&](float eps, const SkNx<N, float>& v,
+                                float a, float b, float c, float d) {
+        auto close = [=](float a, float b) { return fabsf(a-b) <= eps; };
+        float vals[4];
+        v.store(vals);
+        bool ok = close(vals[0], a) && close(vals[1], b)
+               && close(   v[0], a) && close(   v[1], b);
+        REPORTER_ASSERT(r, ok);
+        if (N == 4) {
+            ok = close(vals[2], c) && close(vals[3], d)
+              && close(   v[2], c) && close(   v[3], d);
+            REPORTER_ASSERT(r, ok);
+        }
+    };
+    auto assert_eq = [&](const SkNx<N, float>& v, float a, float b, float c, float d) {
+        return assert_nearly_eq(0, v, a,b,c,d);
+    };
+
+    float vals[] = {3, 4, 5, 6};
+    SkNx<N,float> a = SkNx<N,float>::Load(vals),
+                  b(a),
+                  c = a;
+    SkNx<N,float> d;
+    d = a;
+
+    assert_eq(a, 3, 4, 5, 6);
+    assert_eq(b, 3, 4, 5, 6);
+    assert_eq(c, 3, 4, 5, 6);
+    assert_eq(d, 3, 4, 5, 6);
+
+    assert_eq(a+b, 6, 8, 10, 12);
+    assert_eq(a*b, 9, 16, 25, 36);
+    assert_eq(a*b-b, 6, 12, 20, 30);
+    assert_eq((a*b).sqrt(), 3, 4, 5, 6);
+    assert_eq(a/b, 1, 1, 1, 1);
+    assert_eq(SkNx<N,float>(0)-a, -3, -4, -5, -6);
+
+    SkNx<N,float> fours(4);
+
+    assert_eq(fours.sqrt(), 2,2,2,2);
+    assert_nearly_eq(0.001f, fours.rsqrt(), 0.5, 0.5, 0.5, 0.5);
+
+    assert_nearly_eq(0.001f, fours.invert(), 0.25, 0.25, 0.25, 0.25);
+
+    assert_eq(SkNx<N,float>::Min(a, fours), 3, 4, 4, 4);
+    assert_eq(SkNx<N,float>::Max(a, fours), 4, 4, 5, 6);
+
+    // Test some comparisons.  This is not exhaustive.
+    REPORTER_ASSERT(r, (a == b).allTrue());
+    REPORTER_ASSERT(r, (a+b == a*b-b).anyTrue());
+    REPORTER_ASSERT(r, !(a+b == a*b-b).allTrue());
+    REPORTER_ASSERT(r, !(a+b == a*b).anyTrue());
+    REPORTER_ASSERT(r, !(a != b).anyTrue());
+    REPORTER_ASSERT(r, (a < fours).anyTrue());
+    REPORTER_ASSERT(r, (a <= fours).anyTrue());
+    REPORTER_ASSERT(r, !(a > fours).allTrue());
+    REPORTER_ASSERT(r, !(a >= fours).allTrue());
+}
+
+DEF_TEST(SkNf, r) {
+    test_Nf<2>(r);
+    test_Nf<4>(r);
+}
+
+template <int N, typename T>
+void test_Ni(skiatest::Reporter* r) {
+    auto assert_eq = [&](const SkNx<N,T>& v, T a, T b, T c, T d, T e, T f, T g, T h) {
+        T vals[8];
+        v.store(vals);
+
+        switch (N) {
+          case 8: REPORTER_ASSERT(r, vals[4] == e && vals[5] == f && vals[6] == g && vals[7] == h);
+          case 4: REPORTER_ASSERT(r, vals[2] == c && vals[3] == d);
+          case 2: REPORTER_ASSERT(r, vals[0] == a && vals[1] == b);
+        }
+        switch (N) {
+          case 8: REPORTER_ASSERT(r, v[4] == e && v[5] == f &&
+                                     v[6] == g && v[7] == h);
+          case 4: REPORTER_ASSERT(r, v[2] == c && v[3] == d);
+          case 2: REPORTER_ASSERT(r, v[0] == a && v[1] == b);
+        }
+    };
+
+    T vals[] = { 1,2,3,4,5,6,7,8 };
+    SkNx<N,T> a = SkNx<N,T>::Load(vals),
+              b(a),
+              c = a;
+    SkNx<N,T> d;
+    d = a;
+
+    assert_eq(a, 1,2,3,4,5,6,7,8);
+    assert_eq(b, 1,2,3,4,5,6,7,8);
+    assert_eq(c, 1,2,3,4,5,6,7,8);
+    assert_eq(d, 1,2,3,4,5,6,7,8);
+
+    assert_eq(a+a, 2,4,6,8,10,12,14,16);
+    assert_eq(a*a, 1,4,9,16,25,36,49,64);
+    assert_eq(a*a-a, 0,2,6,12,20,30,42,56);
+
+    assert_eq(a >> 2, 0,0,0,1,1,1,1,2);
+    assert_eq(a << 1, 2,4,6,8,10,12,14,16);
+
+    REPORTER_ASSERT(r, a[1] == 2);
+}
+
+DEF_TEST(SkNx, r) {
+    test_Ni<2, uint16_t>(r);
+    test_Ni<4, uint16_t>(r);
+    test_Ni<8, uint16_t>(r);
+
+    test_Ni<2, int>(r);
+    test_Ni<4, int>(r);
+    test_Ni<8, int>(r);
+}
+
+DEF_TEST(SkNi_min_lt, r) {
+    // Exhaustively check the 8x8 bit space.
+    for (int a = 0; a < (1<<8); a++) {
+    for (int b = 0; b < (1<<8); b++) {
+        Sk16b aw(a), bw(b);
+        REPORTER_ASSERT(r, Sk16b::Min(aw, bw)[0] == SkTMin(a, b));
+        REPORTER_ASSERT(r, !(aw < bw)[0] == !(a < b));
+    }}
+
+    // Exhausting the 16x16 bit space is kind of slow, so only do that in release builds.
+#ifdef SK_DEBUG
+    SkRandom rand;
+    for (int i = 0; i < (1<<16); i++) {
+        uint16_t a = rand.nextU() >> 16,
+                 b = rand.nextU() >> 16;
+        REPORTER_ASSERT(r, Sk16h::Min(Sk16h(a), Sk16h(b))[0] == SkTMin(a, b));
+    }
+#else
+    for (int a = 0; a < (1<<16); a++) {
+    for (int b = 0; b < (1<<16); b++) {
+        REPORTER_ASSERT(r, Sk16h::Min(Sk16h(a), Sk16h(b))[0] == SkTMin(a, b));
+    }}
+#endif
+}
+
+DEF_TEST(SkNi_saturatedAdd, r) {
+    for (int a = 0; a < (1<<8); a++) {
+    for (int b = 0; b < (1<<8); b++) {
+        int exact = a+b;
+        if (exact > 255) { exact = 255; }
+        if (exact <   0) { exact =   0; }
+
+        REPORTER_ASSERT(r, Sk16b(a).saturatedAdd(Sk16b(b))[0] == exact);
+    }
+    }
+}
+
+DEF_TEST(Sk4px_muldiv255round, r) {
+    for (int a = 0; a < (1<<8); a++) {
+    for (int b = 0; b < (1<<8); b++) {
+        int exact = (a*b+127)/255;
+
+        // Duplicate a and b 16x each.
+        auto av = Sk4px::DupAlpha(a),
+             bv = Sk4px::DupAlpha(b);
+
+        // This way should always be exactly correct.
+        int correct = (av * bv).div255()[0];
+        REPORTER_ASSERT(r, correct == exact);
+
+        // We're a bit more flexible on this method: correct for 0 or 255, otherwise off by <=1.
+        int fast = av.approxMulDiv255(bv)[0];
+        REPORTER_ASSERT(r, fast-exact >= -1 && fast-exact <= 1);
+        if (a == 0 || a == 255 || b == 0 || b == 255) {
+            REPORTER_ASSERT(r, fast == exact);
+        }
+    }
+    }
+}
+
+DEF_TEST(Sk4px_widening, r) {
+    SkPMColor colors[] = {
+        SkPreMultiplyColor(0xff00ff00),
+        SkPreMultiplyColor(0x40008000),
+        SkPreMultiplyColor(0x7f020406),
+        SkPreMultiplyColor(0x00000000),
+    };
+    auto packed = Sk4px::Load4(colors);
+
+    auto wideLo = packed.widenLo(),
+         wideHi = packed.widenHi(),
+         wideLoHi    = packed.widenLoHi(),
+         wideLoHiAlt = wideLo + wideHi;
+    REPORTER_ASSERT(r, 0 == memcmp(&wideLoHi, &wideLoHiAlt, sizeof(wideLoHi)));
+}
+
+DEF_TEST(SkNx_abs, r) {
+    auto fs = Sk4f(0.0f, -0.0f, 2.0f, -4.0f).abs();
+    REPORTER_ASSERT(r, fs[0] == 0.0f);
+    REPORTER_ASSERT(r, fs[1] == 0.0f);
+    REPORTER_ASSERT(r, fs[2] == 2.0f);
+    REPORTER_ASSERT(r, fs[3] == 4.0f);
+}
+
+DEF_TEST(Sk4i_abs, r) {
+    auto is = Sk4i(0, -1, 2, -2147483647).abs();
+    REPORTER_ASSERT(r, is[0] == 0);
+    REPORTER_ASSERT(r, is[1] == 1);
+    REPORTER_ASSERT(r, is[2] == 2);
+    REPORTER_ASSERT(r, is[3] == 2147483647);
+}
+
+DEF_TEST(Sk4i_minmax, r) {
+    auto a = Sk4i(0, 2, 4, 6);
+    auto b = Sk4i(1, 1, 3, 7);
+    auto min = Sk4i::Min(a, b);
+    auto max = Sk4i::Max(a, b);
+    for(int i = 0; i < 4; ++i) {
+        REPORTER_ASSERT(r, min[i] == SkTMin(a[i], b[i]));
+        REPORTER_ASSERT(r, max[i] == SkTMax(a[i], b[i]));
+    }
+}
+
+DEF_TEST(SkNx_floor, r) {
+    auto fs = Sk4f(0.4f, -0.4f, 0.6f, -0.6f).floor();
+    REPORTER_ASSERT(r, fs[0] ==  0.0f);
+    REPORTER_ASSERT(r, fs[1] == -1.0f);
+    REPORTER_ASSERT(r, fs[2] ==  0.0f);
+    REPORTER_ASSERT(r, fs[3] == -1.0f);
+}
+
+DEF_TEST(SkNx_shuffle, r) {
+    Sk4f f4(0,10,20,30);
+
+    Sk2f f2 = SkNx_shuffle<2,1>(f4);
+    REPORTER_ASSERT(r, f2[0] == 20);
+    REPORTER_ASSERT(r, f2[1] == 10);
+
+    f4 = SkNx_shuffle<0,1,1,0>(f2);
+    REPORTER_ASSERT(r, f4[0] == 20);
+    REPORTER_ASSERT(r, f4[1] == 10);
+    REPORTER_ASSERT(r, f4[2] == 10);
+    REPORTER_ASSERT(r, f4[3] == 20);
+}
+
+DEF_TEST(SkNx_int_float, r) {
+    Sk4f f(-2.3f, 1.0f, 0.45f, 0.6f);
+
+    Sk4i i = SkNx_cast<int>(f);
+    REPORTER_ASSERT(r, i[0] == -2);
+    REPORTER_ASSERT(r, i[1] ==  1);
+    REPORTER_ASSERT(r, i[2] ==  0);
+    REPORTER_ASSERT(r, i[3] ==  0);
+
+    f = SkNx_cast<float>(i);
+    REPORTER_ASSERT(r, f[0] == -2.0f);
+    REPORTER_ASSERT(r, f[1] ==  1.0f);
+    REPORTER_ASSERT(r, f[2] ==  0.0f);
+    REPORTER_ASSERT(r, f[3] ==  0.0f);
+}
+
+#include "SkRandom.h"
+
+DEF_TEST(SkNx_u16_float, r) {
+    {
+        // u16 --> float
+        auto h4 = Sk4h(15, 17, 257, 65535);
+        auto f4 = SkNx_cast<float>(h4);
+        REPORTER_ASSERT(r, f4[0] == 15.0f);
+        REPORTER_ASSERT(r, f4[1] == 17.0f);
+        REPORTER_ASSERT(r, f4[2] == 257.0f);
+        REPORTER_ASSERT(r, f4[3] == 65535.0f);
+    }
+    {
+        // float -> u16
+        auto f4 = Sk4f(15, 17, 257, 65535);
+        auto h4 = SkNx_cast<uint16_t>(f4);
+        REPORTER_ASSERT(r, h4[0] == 15);
+        REPORTER_ASSERT(r, h4[1] == 17);
+        REPORTER_ASSERT(r, h4[2] == 257);
+        REPORTER_ASSERT(r, h4[3] == 65535);
+    }
+
+    // starting with any u16 value, we should be able to have a perfect round-trip in/out of floats
+    //
+    SkRandom rand;
+    for (int i = 0; i < 10000; ++i) {
+        const uint16_t s16[4] {
+            (uint16_t)rand.nextU16(), (uint16_t)rand.nextU16(),
+            (uint16_t)rand.nextU16(), (uint16_t)rand.nextU16(),
+        };
+        auto u4_0 = Sk4h::Load(s16);
+        auto f4 = SkNx_cast<float>(u4_0);
+        auto u4_1 = SkNx_cast<uint16_t>(f4);
+        uint16_t d16[4];
+        u4_1.store(d16);
+        REPORTER_ASSERT(r, !memcmp(s16, d16, sizeof(s16)));
+    }
+}
+
+// The SSE2 implementation of SkNx_cast<uint16_t>(Sk4i) is non-trivial, so worth a test.
+DEF_TEST(SkNx_int_u16, r) {
+    // These are pretty hard to get wrong.
+    for (int i = 0; i <= 0x7fff; i++) {
+        uint16_t expected = (uint16_t)i;
+        uint16_t actual = SkNx_cast<uint16_t>(Sk4i(i))[0];
+
+        REPORTER_ASSERT(r, expected == actual);
+    }
+
+    // A naive implementation with _mm_packs_epi32 would succeed up to 0x7fff but fail here:
+    for (int i = 0x8000; (1) && i <= 0xffff; i++) {
+        uint16_t expected = (uint16_t)i;
+        uint16_t actual = SkNx_cast<uint16_t>(Sk4i(i))[0];
+
+        REPORTER_ASSERT(r, expected == actual);
+    }
+}
+
+DEF_TEST(SkNx_4fLoad4Store4, r) {
+    float src[] = {
+         0.0f,  1.0f,  2.0f,  3.0f,
+         4.0f,  5.0f,  6.0f,  7.0f,
+         8.0f,  9.0f, 10.0f, 11.0f,
+        12.0f, 13.0f, 14.0f, 15.0f
+    };
+
+    Sk4f a, b, c, d;
+    Sk4f::Load4(src, &a, &b, &c, &d);
+    REPORTER_ASSERT(r,  0.0f == a[0]);
+    REPORTER_ASSERT(r,  4.0f == a[1]);
+    REPORTER_ASSERT(r,  8.0f == a[2]);
+    REPORTER_ASSERT(r, 12.0f == a[3]);
+    REPORTER_ASSERT(r,  1.0f == b[0]);
+    REPORTER_ASSERT(r,  5.0f == b[1]);
+    REPORTER_ASSERT(r,  9.0f == b[2]);
+    REPORTER_ASSERT(r, 13.0f == b[3]);
+    REPORTER_ASSERT(r,  2.0f == c[0]);
+    REPORTER_ASSERT(r,  6.0f == c[1]);
+    REPORTER_ASSERT(r, 10.0f == c[2]);
+    REPORTER_ASSERT(r, 14.0f == c[3]);
+    REPORTER_ASSERT(r,  3.0f == d[0]);
+    REPORTER_ASSERT(r,  7.0f == d[1]);
+    REPORTER_ASSERT(r, 11.0f == d[2]);
+    REPORTER_ASSERT(r, 15.0f == d[3]);
+
+    float dst[16];
+    Sk4f::Store4(dst, a, b, c, d);
+    REPORTER_ASSERT(r, 0 == memcmp(dst, src, 16 * sizeof(float)));
+}