blob: 109510d349062ce4d4eb4227b642f32fb1941a9c [file] [log] [blame]
// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/cpu_context.h"
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include "base/stl_util.h"
#include "gtest/gtest.h"
#include "test/hex_string.h"
namespace crashpad {
namespace test {
namespace {
enum ExponentValue {
kExponentAllZero = 0,
kExponentAllOne,
kExponentNormal,
};
enum FractionValue {
kFractionAllZero = 0,
kFractionNormal,
};
//! \brief Initializes an x87 register to a known bit pattern.
//!
//! \param[out] st_mm The x87 register to initialize. The reserved portion of
//! the register is always zeroed out.
//! \param[in] exponent_value The bit pattern to use for the exponent. If this
//! is kExponentAllZero, the sign bit will be set to `1`, and if this is
//! kExponentAllOne, the sign bit will be set to `0`. This tests that the
//! implementation doesn’t erroneously consider the sign bit to be part of
//! the exponent. This may also be kExponentNormal, indicating that the
//! exponent shall neither be all zeroes nor all ones.
//! \param[in] j_bit The value to use for the “J bit” (“integer bit”).
//! \param[in] fraction_value If kFractionAllZero, the fraction will be zeroed
//! out. If kFractionNormal, the fraction will not be all zeroes.
void SetX87Register(CPUContextX86::X87Register* st,
ExponentValue exponent_value,
bool j_bit,
FractionValue fraction_value) {
switch (exponent_value) {
case kExponentAllZero:
(*st)[9] = 0x80;
(*st)[8] = 0;
break;
case kExponentAllOne:
(*st)[9] = 0x7f;
(*st)[8] = 0xff;
break;
case kExponentNormal:
(*st)[9] = 0x55;
(*st)[8] = 0x55;
break;
}
uint8_t fraction_pattern = fraction_value == kFractionAllZero ? 0 : 0x55;
memset(st, fraction_pattern, 8);
if (j_bit) {
(*st)[7] |= 0x80;
} else {
(*st)[7] &= ~0x80;
}
}
//! \brief Initializes an x87 register to a known bit pattern.
//!
//! This behaves as SetX87Register() but also clears the reserved portion of the
//! field as used in the `fxsave` format.
void SetX87OrMMXRegister(CPUContextX86::X87OrMMXRegister* st_mm,
ExponentValue exponent_value,
bool j_bit,
FractionValue fraction_value) {
SetX87Register(&st_mm->st, exponent_value, j_bit, fraction_value);
memset(st_mm->st_reserved, 0, sizeof(st_mm->st_reserved));
}
TEST(CPUContextX86, FxsaveToFsave) {
// Establish a somewhat plausible fxsave state. Use nonzero values for
// reserved fields and things that aren’t present in fsave.
CPUContextX86::Fxsave fxsave;
fxsave.fcw = 0x027f; // mask exceptions, 53-bit precision, round to nearest
fxsave.fsw = 1 << 11; // top = 1: logical 0-7 maps to physical 1-7, 0
fxsave.ftw = 0x1f; // physical 5-7 (logical 4-6) empty
fxsave.reserved_1 = 0x5a;
fxsave.fop = 0x1fe; // fsin
fxsave.fpu_ip = 0x76543210;
fxsave.fpu_cs = 0x0007;
fxsave.reserved_2 = 0x5a5a;
fxsave.fpu_dp = 0xfedcba98;
fxsave.fpu_ds = 0x000f;
fxsave.reserved_3 = 0x5a5a;
fxsave.mxcsr = 0x1f80;
fxsave.mxcsr_mask = 0xffff;
SetX87Register(
&fxsave.st_mm[0].st, kExponentNormal, true, kFractionAllZero); // valid
SetX87Register(
&fxsave.st_mm[1].st, kExponentAllZero, false, kFractionAllZero); // zero
SetX87Register(
&fxsave.st_mm[2].st, kExponentAllOne, true, kFractionAllZero); // spec.
SetX87Register(
&fxsave.st_mm[3].st, kExponentAllOne, true, kFractionNormal); // spec.
SetX87Register(
&fxsave.st_mm[4].st, kExponentAllZero, false, kFractionAllZero);
SetX87Register(
&fxsave.st_mm[5].st, kExponentAllZero, false, kFractionAllZero);
SetX87Register(
&fxsave.st_mm[6].st, kExponentAllZero, false, kFractionAllZero);
SetX87Register(
&fxsave.st_mm[7].st, kExponentNormal, true, kFractionNormal); // valid
for (size_t index = 0; index < base::size(fxsave.st_mm); ++index) {
memset(&fxsave.st_mm[index].st_reserved,
0x5a,
sizeof(fxsave.st_mm[index].st_reserved));
}
memset(&fxsave.xmm, 0x5a, sizeof(fxsave) - offsetof(decltype(fxsave), xmm));
CPUContextX86::Fsave fsave;
CPUContextX86::FxsaveToFsave(fxsave, &fsave);
// Everything should have come over from fxsave. Reserved fields should be
// zero.
EXPECT_EQ(fsave.fcw, fxsave.fcw);
EXPECT_EQ(fsave.reserved_1, 0);
EXPECT_EQ(fsave.fsw, fxsave.fsw);
EXPECT_EQ(fsave.reserved_2, 0);
EXPECT_EQ(fsave.ftw, 0xfe90); // FxsaveToFsaveTagWord
EXPECT_EQ(fsave.reserved_3, 0);
EXPECT_EQ(fsave.fpu_ip, fxsave.fpu_ip);
EXPECT_EQ(fsave.fpu_cs, fxsave.fpu_cs);
EXPECT_EQ(fsave.fop, fxsave.fop);
EXPECT_EQ(fsave.fpu_dp, fxsave.fpu_dp);
EXPECT_EQ(fsave.fpu_ds, fxsave.fpu_ds);
EXPECT_EQ(fsave.reserved_4, 0);
for (size_t index = 0; index < base::size(fsave.st); ++index) {
EXPECT_EQ(BytesToHexString(fsave.st[index], base::size(fsave.st[index])),
BytesToHexString(fxsave.st_mm[index].st,
base::size(fxsave.st_mm[index].st)))
<< "index " << index;
}
}
TEST(CPUContextX86, FsaveToFxsave) {
// Establish a somewhat plausible fsave state. Use nonzero values for
// reserved fields.
CPUContextX86::Fsave fsave;
fsave.fcw = 0x0300; // unmask exceptions, 64-bit precision, round to nearest
fsave.reserved_1 = 0xa5a5;
fsave.fsw = 2 << 11; // top = 2: logical 0-7 maps to physical 2-7, 0-1
fsave.reserved_2 = 0xa5a5;
fsave.ftw = 0xa9ff; // physical 0-3 (logical 6-7, 0-1) empty; physical 4
// (logical 2) zero; physical 5-7 (logical 3-5) special
fsave.reserved_3 = 0xa5a5;
fsave.fpu_ip = 0x456789ab;
fsave.fpu_cs = 0x1013;
fsave.fop = 0x01ee; // fldz
fsave.fpu_dp = 0x0123cdef;
fsave.fpu_ds = 0x2017;
fsave.reserved_4 = 0xa5a5;
SetX87Register(&fsave.st[0], kExponentAllZero, false, kFractionNormal);
SetX87Register(&fsave.st[1], kExponentAllZero, true, kFractionNormal);
SetX87Register(
&fsave.st[2], kExponentAllZero, false, kFractionAllZero); // zero
SetX87Register(
&fsave.st[3], kExponentAllZero, true, kFractionAllZero); // spec.
SetX87Register(
&fsave.st[4], kExponentAllZero, false, kFractionNormal); // spec.
SetX87Register(
&fsave.st[5], kExponentAllZero, true, kFractionNormal); // spec.
SetX87Register(&fsave.st[6], kExponentAllZero, false, kFractionAllZero);
SetX87Register(&fsave.st[7], kExponentAllZero, true, kFractionAllZero);
CPUContextX86::Fxsave fxsave;
CPUContextX86::FsaveToFxsave(fsave, &fxsave);
// Everything in fsave should have come over from there. Fields not present in
// fsave and reserved fields should be zero.
EXPECT_EQ(fxsave.fcw, fsave.fcw);
EXPECT_EQ(fxsave.fsw, fsave.fsw);
EXPECT_EQ(fxsave.ftw, 0xf0); // FsaveToFxsaveTagWord
EXPECT_EQ(fxsave.reserved_1, 0);
EXPECT_EQ(fxsave.fop, fsave.fop);
EXPECT_EQ(fxsave.fpu_ip, fsave.fpu_ip);
EXPECT_EQ(fxsave.fpu_cs, fsave.fpu_cs);
EXPECT_EQ(fxsave.reserved_2, 0);
EXPECT_EQ(fxsave.fpu_dp, fsave.fpu_dp);
EXPECT_EQ(fxsave.fpu_ds, fsave.fpu_ds);
EXPECT_EQ(fxsave.reserved_3, 0);
EXPECT_EQ(fxsave.mxcsr, 0u);
EXPECT_EQ(fxsave.mxcsr_mask, 0u);
for (size_t index = 0; index < base::size(fxsave.st_mm); ++index) {
EXPECT_EQ(BytesToHexString(fxsave.st_mm[index].st,
base::size(fxsave.st_mm[index].st)),
BytesToHexString(fsave.st[index], base::size(fsave.st[index])))
<< "index " << index;
EXPECT_EQ(BytesToHexString(fxsave.st_mm[index].st_reserved,
base::size(fxsave.st_mm[index].st_reserved)),
std::string(base::size(fxsave.st_mm[index].st_reserved) * 2, '0'))
<< "index " << index;
}
size_t unused_len = sizeof(fxsave) - offsetof(decltype(fxsave), xmm);
EXPECT_EQ(BytesToHexString(fxsave.xmm, unused_len),
std::string(unused_len * 2, '0'));
// Since the fsave format is a subset of the fxsave format, fsave-fxsave-fsave
// should round-trip cleanly.
CPUContextX86::Fsave fsave_2;
CPUContextX86::FxsaveToFsave(fxsave, &fsave_2);
// Clear the reserved fields in the original fsave structure, since they’re
// expected to be clear in the copy.
fsave.reserved_1 = 0;
fsave.reserved_2 = 0;
fsave.reserved_3 = 0;
fsave.reserved_4 = 0;
EXPECT_EQ(memcmp(&fsave, &fsave_2, sizeof(fsave)), 0);
}
TEST(CPUContextX86, FxsaveToFsaveTagWord) {
// The fsave tag word uses bit pattern 00 for valid, 01 for zero, 10 for
// “special”, and 11 for empty. Like the fxsave tag word, it is arranged by
// physical register. The fxsave tag word determines whether a register is
// empty, and analysis of the x87 register content distinguishes between
// valid, zero, and special. In the initializations below, comments show
// whether a register is expected to be considered valid, zero, or special,
// except where the tag word is expected to indicate that it is empty. Each
// combination appears twice: once where the fxsave tag word indicates a
// nonempty register, and once again where it indicates an empty register.
uint16_t fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7
uint8_t fxsave_tag = 0x0f; // physical 4-7 (logical 4-7) empty
CPUContextX86::X87OrMMXRegister st_mm[8];
SetX87OrMMXRegister(
&st_mm[0], kExponentNormal, false, kFractionNormal); // spec.
SetX87OrMMXRegister(
&st_mm[1], kExponentNormal, true, kFractionNormal); // valid
SetX87OrMMXRegister(
&st_mm[2], kExponentNormal, false, kFractionAllZero); // spec.
SetX87OrMMXRegister(
&st_mm[3], kExponentNormal, true, kFractionAllZero); // valid
SetX87OrMMXRegister(&st_mm[4], kExponentNormal, false, kFractionNormal);
SetX87OrMMXRegister(&st_mm[5], kExponentNormal, true, kFractionNormal);
SetX87OrMMXRegister(&st_mm[6], kExponentNormal, false, kFractionAllZero);
SetX87OrMMXRegister(&st_mm[7], kExponentNormal, true, kFractionAllZero);
EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm),
0xff22);
fsw = 2 << 11; // top = 2: logical 0-7 maps to physical 2-7, 0-1
fxsave_tag = 0xf0; // physical 0-3 (logical 6-7, 0-1) empty
SetX87OrMMXRegister(&st_mm[0], kExponentAllZero, false, kFractionNormal);
SetX87OrMMXRegister(&st_mm[1], kExponentAllZero, true, kFractionNormal);
SetX87OrMMXRegister(
&st_mm[2], kExponentAllZero, false, kFractionAllZero); // zero
SetX87OrMMXRegister(
&st_mm[3], kExponentAllZero, true, kFractionAllZero); // spec.
SetX87OrMMXRegister(
&st_mm[4], kExponentAllZero, false, kFractionNormal); // spec.
SetX87OrMMXRegister(
&st_mm[5], kExponentAllZero, true, kFractionNormal); // spec.
SetX87OrMMXRegister(&st_mm[6], kExponentAllZero, false, kFractionAllZero);
SetX87OrMMXRegister(&st_mm[7], kExponentAllZero, true, kFractionAllZero);
EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm),
0xa9ff);
fsw = 5 << 11; // top = 5: logical 0-7 maps to physical 5-7, 0-4
fxsave_tag = 0x5a; // physical 0, 2, 5, and 7 (logical 5, 0, 2, and 3) empty
SetX87OrMMXRegister(&st_mm[0], kExponentAllOne, false, kFractionNormal);
SetX87OrMMXRegister(
&st_mm[1], kExponentAllOne, true, kFractionNormal); // spec.
SetX87OrMMXRegister(&st_mm[2], kExponentAllOne, false, kFractionAllZero);
SetX87OrMMXRegister(&st_mm[3], kExponentAllOne, true, kFractionAllZero);
SetX87OrMMXRegister(
&st_mm[4], kExponentAllOne, false, kFractionNormal); // spec.
SetX87OrMMXRegister(&st_mm[5], kExponentAllOne, true, kFractionNormal);
SetX87OrMMXRegister(
&st_mm[6], kExponentAllOne, false, kFractionAllZero); // spec.
SetX87OrMMXRegister(
&st_mm[7], kExponentAllOne, true, kFractionAllZero); // spec.
EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm),
0xeebb);
// This set set is just a mix of all of the possible tag types in a single
// register file.
fsw = 1 << 11; // top = 1: logical 0-7 maps to physical 1-7, 0
fxsave_tag = 0x1f; // physical 5-7 (logical 4-6) empty
SetX87OrMMXRegister(
&st_mm[0], kExponentNormal, true, kFractionAllZero); // valid
SetX87OrMMXRegister(
&st_mm[1], kExponentAllZero, false, kFractionAllZero); // zero
SetX87OrMMXRegister(
&st_mm[2], kExponentAllOne, true, kFractionAllZero); // spec.
SetX87OrMMXRegister(
&st_mm[3], kExponentAllOne, true, kFractionNormal); // spec.
SetX87OrMMXRegister(&st_mm[4], kExponentAllZero, false, kFractionAllZero);
SetX87OrMMXRegister(&st_mm[5], kExponentAllZero, false, kFractionAllZero);
SetX87OrMMXRegister(&st_mm[6], kExponentAllZero, false, kFractionAllZero);
SetX87OrMMXRegister(
&st_mm[7], kExponentNormal, true, kFractionNormal); // valid
EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm),
0xfe90);
// In this set, everything is valid.
fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7
fxsave_tag = 0xff; // nothing empty
for (size_t index = 0; index < base::size(st_mm); ++index) {
SetX87OrMMXRegister(&st_mm[index], kExponentNormal, true, kFractionAllZero);
}
EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0);
// In this set, everything is empty. The registers shouldn’t be consulted at
// all, so they’re left alone from the previous set.
fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7
fxsave_tag = 0; // everything empty
EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm),
0xffff);
}
TEST(CPUContextX86, FsaveToFxsaveTagWord) {
// The register sets that these x87 tag words might apply to are given in the
// FxsaveToFsaveTagWord test above.
EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xff22), 0x0f);
EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xa9ff), 0xf0);
EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xeebb), 0x5a);
EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xfe90), 0x1f);
EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0x0000), 0xff);
EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xffff), 0x00);
}
} // namespace
} // namespace test
} // namespace crashpad