| // Copyright 2014 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Utilities for processing transparent channel. |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include "src/dsp/dsp.h" |
| |
| #if defined(WEBP_USE_SSE2) |
| #include <emmintrin.h> |
| |
| //------------------------------------------------------------------------------ |
| |
| static int DispatchAlpha_SSE2(const uint8_t* alpha, int alpha_stride, |
| int width, int height, |
| uint8_t* dst, int dst_stride) { |
| // alpha_and stores an 'and' operation of all the alpha[] values. The final |
| // value is not 0xff if any of the alpha[] is not equal to 0xff. |
| uint32_t alpha_and = 0xff; |
| int i, j; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB |
| const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); |
| __m128i all_alphas = all_0xff; |
| |
| // We must be able to access 3 extra bytes after the last written byte |
| // 'dst[4 * width - 4]', because we don't know if alpha is the first or the |
| // last byte of the quadruplet. |
| const int limit = (width - 1) & ~7; |
| |
| for (j = 0; j < height; ++j) { |
| __m128i* out = (__m128i*)dst; |
| for (i = 0; i < limit; i += 8) { |
| // load 8 alpha bytes |
| const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]); |
| const __m128i a1 = _mm_unpacklo_epi8(a0, zero); |
| const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); |
| const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); |
| // load 8 dst pixels (32 bytes) |
| const __m128i b0_lo = _mm_loadu_si128(out + 0); |
| const __m128i b0_hi = _mm_loadu_si128(out + 1); |
| // mask dst alpha values |
| const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask); |
| const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask); |
| // combine |
| const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo); |
| const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi); |
| // store |
| _mm_storeu_si128(out + 0, b2_lo); |
| _mm_storeu_si128(out + 1, b2_hi); |
| // accumulate eight alpha 'and' in parallel |
| all_alphas = _mm_and_si128(all_alphas, a0); |
| out += 2; |
| } |
| for (; i < width; ++i) { |
| const uint32_t alpha_value = alpha[i]; |
| dst[4 * i] = alpha_value; |
| alpha_and &= alpha_value; |
| } |
| alpha += alpha_stride; |
| dst += dst_stride; |
| } |
| // Combine the eight alpha 'and' into a 8-bit mask. |
| alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); |
| return (alpha_and != 0xff); |
| } |
| |
| static void DispatchAlphaToGreen_SSE2(const uint8_t* alpha, int alpha_stride, |
| int width, int height, |
| uint32_t* dst, int dst_stride) { |
| int i, j; |
| const __m128i zero = _mm_setzero_si128(); |
| const int limit = width & ~15; |
| for (j = 0; j < height; ++j) { |
| for (i = 0; i < limit; i += 16) { // process 16 alpha bytes |
| const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]); |
| const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first! |
| const __m128i b1 = _mm_unpackhi_epi8(zero, a0); |
| const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); |
| const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero); |
| const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); |
| const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero); |
| _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo); |
| _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi); |
| _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo); |
| _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi); |
| } |
| for (; i < width; ++i) dst[i] = alpha[i] << 8; |
| alpha += alpha_stride; |
| dst += dst_stride; |
| } |
| } |
| |
| static int ExtractAlpha_SSE2(const uint8_t* argb, int argb_stride, |
| int width, int height, |
| uint8_t* alpha, int alpha_stride) { |
| // alpha_and stores an 'and' operation of all the alpha[] values. The final |
| // value is not 0xff if any of the alpha[] is not equal to 0xff. |
| uint32_t alpha_and = 0xff; |
| int i, j; |
| const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha |
| const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); |
| __m128i all_alphas = all_0xff; |
| |
| // We must be able to access 3 extra bytes after the last written byte |
| // 'src[4 * width - 4]', because we don't know if alpha is the first or the |
| // last byte of the quadruplet. |
| const int limit = (width - 1) & ~7; |
| |
| for (j = 0; j < height; ++j) { |
| const __m128i* src = (const __m128i*)argb; |
| for (i = 0; i < limit; i += 8) { |
| // load 32 argb bytes |
| const __m128i a0 = _mm_loadu_si128(src + 0); |
| const __m128i a1 = _mm_loadu_si128(src + 1); |
| const __m128i b0 = _mm_and_si128(a0, a_mask); |
| const __m128i b1 = _mm_and_si128(a1, a_mask); |
| const __m128i c0 = _mm_packs_epi32(b0, b1); |
| const __m128i d0 = _mm_packus_epi16(c0, c0); |
| // store |
| _mm_storel_epi64((__m128i*)&alpha[i], d0); |
| // accumulate eight alpha 'and' in parallel |
| all_alphas = _mm_and_si128(all_alphas, d0); |
| src += 2; |
| } |
| for (; i < width; ++i) { |
| const uint32_t alpha_value = argb[4 * i]; |
| alpha[i] = alpha_value; |
| alpha_and &= alpha_value; |
| } |
| argb += argb_stride; |
| alpha += alpha_stride; |
| } |
| // Combine the eight alpha 'and' into a 8-bit mask. |
| alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); |
| return (alpha_and == 0xff); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Non-dither premultiplied modes |
| |
| #define MULTIPLIER(a) ((a) * 0x8081) |
| #define PREMULTIPLY(x, m) (((x) * (m)) >> 23) |
| |
| // We can't use a 'const int' for the SHUFFLE value, because it has to be an |
| // immediate in the _mm_shufflexx_epi16() instruction. We really need a macro. |
| // We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit |
| // value. |
| #define APPLY_ALPHA(RGBX, SHUFFLE) do { \ |
| const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \ |
| const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \ |
| const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \ |
| const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \ |
| const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \ |
| const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \ |
| const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \ |
| const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \ |
| const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \ |
| /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \ |
| const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \ |
| const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \ |
| const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \ |
| const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \ |
| const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \ |
| const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \ |
| const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \ |
| _mm_storeu_si128((__m128i*)&(RGBX), A3); \ |
| } while (0) |
| |
| static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first, |
| int w, int h, int stride) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i kMult = _mm_set1_epi16(0x8081u); |
| const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0); |
| const int kSpan = 4; |
| while (h-- > 0) { |
| uint32_t* const rgbx = (uint32_t*)rgba; |
| int i; |
| if (!alpha_first) { |
| for (i = 0; i + kSpan <= w; i += kSpan) { |
| APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3)); |
| } |
| } else { |
| for (i = 0; i + kSpan <= w; i += kSpan) { |
| APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1)); |
| } |
| } |
| // Finish with left-overs. |
| for (; i < w; ++i) { |
| uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); |
| const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); |
| const uint32_t a = alpha[4 * i]; |
| if (a != 0xff) { |
| const uint32_t mult = MULTIPLIER(a); |
| rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); |
| rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); |
| rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); |
| } |
| } |
| rgba += stride; |
| } |
| } |
| #undef MULTIPLIER |
| #undef PREMULTIPLY |
| |
| //------------------------------------------------------------------------------ |
| // Alpha detection |
| |
| static int HasAlpha8b_SSE2(const uint8_t* src, int length) { |
| const __m128i all_0xff = _mm_set1_epi8(0xff); |
| int i = 0; |
| for (; i + 16 <= length; i += 16) { |
| const __m128i v = _mm_loadu_si128((const __m128i*)(src + i)); |
| const __m128i bits = _mm_cmpeq_epi8(v, all_0xff); |
| const int mask = _mm_movemask_epi8(bits); |
| if (mask != 0xffff) return 1; |
| } |
| for (; i < length; ++i) if (src[i] != 0xff) return 1; |
| return 0; |
| } |
| |
| static int HasAlpha32b_SSE2(const uint8_t* src, int length) { |
| const __m128i alpha_mask = _mm_set1_epi32(0xff); |
| const __m128i all_0xff = _mm_set1_epi8(0xff); |
| int i = 0; |
| // We don't know if we can access the last 3 bytes after the last alpha |
| // value 'src[4 * length - 4]' (because we don't know if alpha is the first |
| // or the last byte of the quadruplet). Hence the '-3' protection below. |
| length = length * 4 - 3; // size in bytes |
| for (; i + 64 <= length; i += 64) { |
| const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); |
| const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); |
| const __m128i a2 = _mm_loadu_si128((const __m128i*)(src + i + 32)); |
| const __m128i a3 = _mm_loadu_si128((const __m128i*)(src + i + 48)); |
| const __m128i b0 = _mm_and_si128(a0, alpha_mask); |
| const __m128i b1 = _mm_and_si128(a1, alpha_mask); |
| const __m128i b2 = _mm_and_si128(a2, alpha_mask); |
| const __m128i b3 = _mm_and_si128(a3, alpha_mask); |
| const __m128i c0 = _mm_packs_epi32(b0, b1); |
| const __m128i c1 = _mm_packs_epi32(b2, b3); |
| const __m128i d = _mm_packus_epi16(c0, c1); |
| const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); |
| const int mask = _mm_movemask_epi8(bits); |
| if (mask != 0xffff) return 1; |
| } |
| for (; i + 32 <= length; i += 32) { |
| const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); |
| const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); |
| const __m128i b0 = _mm_and_si128(a0, alpha_mask); |
| const __m128i b1 = _mm_and_si128(a1, alpha_mask); |
| const __m128i c = _mm_packs_epi32(b0, b1); |
| const __m128i d = _mm_packus_epi16(c, c); |
| const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); |
| const int mask = _mm_movemask_epi8(bits); |
| if (mask != 0xffff) return 1; |
| } |
| for (; i <= length; i += 4) if (src[i] != 0xff) return 1; |
| return 0; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Apply alpha value to rows |
| |
| static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) { |
| int x = 0; |
| if (!inverse) { |
| const int kSpan = 2; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i k128 = _mm_set1_epi16(128); |
| const __m128i kMult = _mm_set1_epi16(0x0101); |
| const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0); |
| for (x = 0; x + kSpan <= width; x += kSpan) { |
| // To compute 'result = (int)(a * x / 255. + .5)', we use: |
| // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16 |
| const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]); |
| const __m128i A1 = _mm_unpacklo_epi8(A0, zero); |
| const __m128i A2 = _mm_or_si128(A1, kMask); |
| const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3)); |
| const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3)); |
| // here, A4 = [ff a0 a0 a0][ff a1 a1 a1] |
| const __m128i A5 = _mm_mullo_epi16(A4, A1); |
| const __m128i A6 = _mm_add_epi16(A5, k128); |
| const __m128i A7 = _mm_mulhi_epu16(A6, kMult); |
| const __m128i A10 = _mm_packus_epi16(A7, zero); |
| _mm_storel_epi64((__m128i*)&ptr[x], A10); |
| } |
| } |
| width -= x; |
| if (width > 0) WebPMultARGBRow_C(ptr + x, width, inverse); |
| } |
| |
| static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha, |
| int width, int inverse) { |
| int x = 0; |
| if (!inverse) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i k128 = _mm_set1_epi16(128); |
| const __m128i kMult = _mm_set1_epi16(0x0101); |
| for (x = 0; x + 8 <= width; x += 8) { |
| const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]); |
| const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]); |
| const __m128i v1 = _mm_unpacklo_epi8(v0, zero); |
| const __m128i a1 = _mm_unpacklo_epi8(a0, zero); |
| const __m128i v2 = _mm_mullo_epi16(v1, a1); |
| const __m128i v3 = _mm_add_epi16(v2, k128); |
| const __m128i v4 = _mm_mulhi_epu16(v3, kMult); |
| const __m128i v5 = _mm_packus_epi16(v4, zero); |
| _mm_storel_epi64((__m128i*)&ptr[x], v5); |
| } |
| } |
| width -= x; |
| if (width > 0) WebPMultRow_C(ptr + x, alpha + x, width, inverse); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| extern void WebPInitAlphaProcessingSSE2(void); |
| |
| WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) { |
| WebPMultARGBRow = MultARGBRow_SSE2; |
| WebPMultRow = MultRow_SSE2; |
| WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2; |
| WebPDispatchAlpha = DispatchAlpha_SSE2; |
| WebPDispatchAlphaToGreen = DispatchAlphaToGreen_SSE2; |
| WebPExtractAlpha = ExtractAlpha_SSE2; |
| |
| WebPHasAlpha8b = HasAlpha8b_SSE2; |
| WebPHasAlpha32b = HasAlpha32b_SSE2; |
| } |
| |
| #else // !WEBP_USE_SSE2 |
| |
| WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2) |
| |
| #endif // WEBP_USE_SSE2 |