| // Copyright 2011 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // SSE2 version of some decoding functions (idct, loop filtering). |
| // |
| // Author: somnath@google.com (Somnath Banerjee) |
| // cduvivier@google.com (Christian Duvivier) |
| |
| #include "src/dsp/dsp.h" |
| |
| #if defined(WEBP_USE_SSE2) |
| |
| // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C |
| // one it seems => disable it by default. Uncomment the following to enable: |
| #if !defined(USE_TRANSFORM_AC3) |
| #define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE |
| #endif |
| |
| #include <emmintrin.h> |
| #include "src/dsp/common_sse2.h" |
| #include "src/dec/vp8i_dec.h" |
| #include "src/utils/utils.h" |
| |
| //------------------------------------------------------------------------------ |
| // Transforms (Paragraph 14.4) |
| |
| static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) { |
| // This implementation makes use of 16-bit fixed point versions of two |
| // multiply constants: |
| // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
| // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
| // |
| // To be able to use signed 16-bit integers, we use the following trick to |
| // have constants within range: |
| // - Associated constants are obtained by subtracting the 16-bit fixed point |
| // version of one: |
| // k = K - (1 << 16) => K = k + (1 << 16) |
| // K1 = 85267 => k1 = 20091 |
| // K2 = 35468 => k2 = -30068 |
| // - The multiplication of a variable by a constant become the sum of the |
| // variable and the multiplication of that variable by the associated |
| // constant: |
| // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
| const __m128i k1 = _mm_set1_epi16(20091); |
| const __m128i k2 = _mm_set1_epi16(-30068); |
| __m128i T0, T1, T2, T3; |
| |
| // Load and concatenate the transform coefficients (we'll do two transforms |
| // in parallel). In the case of only one transform, the second half of the |
| // vectors will just contain random value we'll never use nor store. |
| __m128i in0, in1, in2, in3; |
| { |
| in0 = _mm_loadl_epi64((const __m128i*)&in[0]); |
| in1 = _mm_loadl_epi64((const __m128i*)&in[4]); |
| in2 = _mm_loadl_epi64((const __m128i*)&in[8]); |
| in3 = _mm_loadl_epi64((const __m128i*)&in[12]); |
| // a00 a10 a20 a30 x x x x |
| // a01 a11 a21 a31 x x x x |
| // a02 a12 a22 a32 x x x x |
| // a03 a13 a23 a33 x x x x |
| if (do_two) { |
| const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); |
| const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); |
| const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); |
| const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); |
| in0 = _mm_unpacklo_epi64(in0, inB0); |
| in1 = _mm_unpacklo_epi64(in1, inB1); |
| in2 = _mm_unpacklo_epi64(in2, inB2); |
| in3 = _mm_unpacklo_epi64(in3, inB3); |
| // a00 a10 a20 a30 b00 b10 b20 b30 |
| // a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 |
| // a03 a13 a23 a33 b03 b13 b23 b33 |
| } |
| } |
| |
| // Vertical pass and subsequent transpose. |
| { |
| // First pass, c and d calculations are longer because of the "trick" |
| // multiplications. |
| const __m128i a = _mm_add_epi16(in0, in2); |
| const __m128i b = _mm_sub_epi16(in0, in2); |
| // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
| const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
| const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
| const __m128i c3 = _mm_sub_epi16(in1, in3); |
| const __m128i c4 = _mm_sub_epi16(c1, c2); |
| const __m128i c = _mm_add_epi16(c3, c4); |
| // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
| const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
| const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
| const __m128i d3 = _mm_add_epi16(in1, in3); |
| const __m128i d4 = _mm_add_epi16(d1, d2); |
| const __m128i d = _mm_add_epi16(d3, d4); |
| |
| // Second pass. |
| const __m128i tmp0 = _mm_add_epi16(a, d); |
| const __m128i tmp1 = _mm_add_epi16(b, c); |
| const __m128i tmp2 = _mm_sub_epi16(b, c); |
| const __m128i tmp3 = _mm_sub_epi16(a, d); |
| |
| // Transpose the two 4x4. |
| VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); |
| } |
| |
| // Horizontal pass and subsequent transpose. |
| { |
| // First pass, c and d calculations are longer because of the "trick" |
| // multiplications. |
| const __m128i four = _mm_set1_epi16(4); |
| const __m128i dc = _mm_add_epi16(T0, four); |
| const __m128i a = _mm_add_epi16(dc, T2); |
| const __m128i b = _mm_sub_epi16(dc, T2); |
| // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
| const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
| const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
| const __m128i c3 = _mm_sub_epi16(T1, T3); |
| const __m128i c4 = _mm_sub_epi16(c1, c2); |
| const __m128i c = _mm_add_epi16(c3, c4); |
| // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
| const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
| const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
| const __m128i d3 = _mm_add_epi16(T1, T3); |
| const __m128i d4 = _mm_add_epi16(d1, d2); |
| const __m128i d = _mm_add_epi16(d3, d4); |
| |
| // Second pass. |
| const __m128i tmp0 = _mm_add_epi16(a, d); |
| const __m128i tmp1 = _mm_add_epi16(b, c); |
| const __m128i tmp2 = _mm_sub_epi16(b, c); |
| const __m128i tmp3 = _mm_sub_epi16(a, d); |
| const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
| const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
| const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
| const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
| |
| // Transpose the two 4x4. |
| VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, |
| &T2, &T3); |
| } |
| |
| // Add inverse transform to 'dst' and store. |
| { |
| const __m128i zero = _mm_setzero_si128(); |
| // Load the reference(s). |
| __m128i dst0, dst1, dst2, dst3; |
| if (do_two) { |
| // Load eight bytes/pixels per line. |
| dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); |
| dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); |
| dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); |
| dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); |
| } else { |
| // Load four bytes/pixels per line. |
| dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); |
| dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); |
| dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); |
| dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); |
| } |
| // Convert to 16b. |
| dst0 = _mm_unpacklo_epi8(dst0, zero); |
| dst1 = _mm_unpacklo_epi8(dst1, zero); |
| dst2 = _mm_unpacklo_epi8(dst2, zero); |
| dst3 = _mm_unpacklo_epi8(dst3, zero); |
| // Add the inverse transform(s). |
| dst0 = _mm_add_epi16(dst0, T0); |
| dst1 = _mm_add_epi16(dst1, T1); |
| dst2 = _mm_add_epi16(dst2, T2); |
| dst3 = _mm_add_epi16(dst3, T3); |
| // Unsigned saturate to 8b. |
| dst0 = _mm_packus_epi16(dst0, dst0); |
| dst1 = _mm_packus_epi16(dst1, dst1); |
| dst2 = _mm_packus_epi16(dst2, dst2); |
| dst3 = _mm_packus_epi16(dst3, dst3); |
| // Store the results. |
| if (do_two) { |
| // Store eight bytes/pixels per line. |
| _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); |
| _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); |
| _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); |
| _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); |
| } else { |
| // Store four bytes/pixels per line. |
| WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); |
| WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); |
| WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); |
| WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); |
| } |
| } |
| } |
| |
| #if (USE_TRANSFORM_AC3 == 1) |
| #define MUL(a, b) (((a) * (b)) >> 16) |
| static void TransformAC3(const int16_t* in, uint8_t* dst) { |
| static const int kC1 = 20091 + (1 << 16); |
| static const int kC2 = 35468; |
| const __m128i A = _mm_set1_epi16(in[0] + 4); |
| const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); |
| const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); |
| const int c1 = MUL(in[1], kC2); |
| const int d1 = MUL(in[1], kC1); |
| const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); |
| const __m128i B = _mm_adds_epi16(A, CD); |
| const __m128i m0 = _mm_adds_epi16(B, d4); |
| const __m128i m1 = _mm_adds_epi16(B, c4); |
| const __m128i m2 = _mm_subs_epi16(B, c4); |
| const __m128i m3 = _mm_subs_epi16(B, d4); |
| const __m128i zero = _mm_setzero_si128(); |
| // Load the source pixels. |
| __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); |
| __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); |
| __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); |
| __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); |
| // Convert to 16b. |
| dst0 = _mm_unpacklo_epi8(dst0, zero); |
| dst1 = _mm_unpacklo_epi8(dst1, zero); |
| dst2 = _mm_unpacklo_epi8(dst2, zero); |
| dst3 = _mm_unpacklo_epi8(dst3, zero); |
| // Add the inverse transform. |
| dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); |
| dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); |
| dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); |
| dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); |
| // Unsigned saturate to 8b. |
| dst0 = _mm_packus_epi16(dst0, dst0); |
| dst1 = _mm_packus_epi16(dst1, dst1); |
| dst2 = _mm_packus_epi16(dst2, dst2); |
| dst3 = _mm_packus_epi16(dst3, dst3); |
| // Store the results. |
| WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); |
| WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); |
| WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); |
| WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); |
| } |
| #undef MUL |
| #endif // USE_TRANSFORM_AC3 |
| |
| //------------------------------------------------------------------------------ |
| // Loop Filter (Paragraph 15) |
| |
| // Compute abs(p - q) = subs(p - q) OR subs(q - p) |
| #define MM_ABS(p, q) _mm_or_si128( \ |
| _mm_subs_epu8((q), (p)), \ |
| _mm_subs_epu8((p), (q))) |
| |
| // Shift each byte of "x" by 3 bits while preserving by the sign bit. |
| static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x); |
| const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x); |
| const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8); |
| const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8); |
| *x = _mm_packs_epi16(lo_1, hi_1); |
| } |
| |
| #define FLIP_SIGN_BIT2(a, b) { \ |
| (a) = _mm_xor_si128(a, sign_bit); \ |
| (b) = _mm_xor_si128(b, sign_bit); \ |
| } |
| |
| #define FLIP_SIGN_BIT4(a, b, c, d) { \ |
| FLIP_SIGN_BIT2(a, b); \ |
| FLIP_SIGN_BIT2(c, d); \ |
| } |
| |
| // input/output is uint8_t |
| static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1, |
| const __m128i* const p0, |
| const __m128i* const q0, |
| const __m128i* const q1, |
| int hev_thresh, __m128i* const not_hev) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i t_1 = MM_ABS(*p1, *p0); |
| const __m128i t_2 = MM_ABS(*q1, *q0); |
| |
| const __m128i h = _mm_set1_epi8(hev_thresh); |
| const __m128i t_max = _mm_max_epu8(t_1, t_2); |
| |
| const __m128i t_max_h = _mm_subs_epu8(t_max, h); |
| *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2 |
| } |
| |
| // input pixels are int8_t |
| static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1, |
| const __m128i* const p0, |
| const __m128i* const q0, |
| const __m128i* const q1, |
| __m128i* const delta) { |
| // beware of addition order, for saturation! |
| const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 |
| const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 |
| const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) |
| const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) |
| const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) |
| *delta = s3; |
| } |
| |
| // input and output are int8_t |
| static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0, |
| __m128i* const q0, |
| const __m128i* const fl) { |
| const __m128i k3 = _mm_set1_epi8(3); |
| const __m128i k4 = _mm_set1_epi8(4); |
| __m128i v3 = _mm_adds_epi8(*fl, k3); |
| __m128i v4 = _mm_adds_epi8(*fl, k4); |
| |
| SignedShift8b_SSE2(&v4); // v4 >> 3 |
| SignedShift8b_SSE2(&v3); // v3 >> 3 |
| *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 |
| *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 |
| } |
| |
| // Updates values of 2 pixels at MB edge during complex filtering. |
| // Update operations: |
| // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] |
| // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). |
| static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi, |
| const __m128i* const a0_lo, |
| const __m128i* const a0_hi) { |
| const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); |
| const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); |
| const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); |
| const __m128i sign_bit = _mm_set1_epi8(0x80); |
| *pi = _mm_adds_epi8(*pi, delta); |
| *qi = _mm_subs_epi8(*qi, delta); |
| FLIP_SIGN_BIT2(*pi, *qi); |
| } |
| |
| // input pixels are uint8_t |
| static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1, |
| const __m128i* const p0, |
| const __m128i* const q0, |
| const __m128i* const q1, |
| int thresh, __m128i* const mask) { |
| const __m128i m_thresh = _mm_set1_epi8(thresh); |
| const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) |
| const __m128i kFE = _mm_set1_epi8(0xFE); |
| const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero |
| const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 |
| |
| const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) |
| const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 |
| const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 |
| |
| const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh |
| *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Edge filtering functions |
| |
| // Applies filter on 2 pixels (p0 and q0) |
| static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0, |
| __m128i* const q0, __m128i* const q1, |
| int thresh) { |
| __m128i a, mask; |
| const __m128i sign_bit = _mm_set1_epi8(0x80); |
| // convert p1/q1 to int8_t (for GetBaseDelta_SSE2) |
| const __m128i p1s = _mm_xor_si128(*p1, sign_bit); |
| const __m128i q1s = _mm_xor_si128(*q1, sign_bit); |
| |
| NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask); |
| |
| FLIP_SIGN_BIT2(*p0, *q0); |
| GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a); |
| a = _mm_and_si128(a, mask); // mask filter values we don't care about |
| DoSimpleFilter_SSE2(p0, q0, &a); |
| FLIP_SIGN_BIT2(*p0, *q0); |
| } |
| |
| // Applies filter on 4 pixels (p1, p0, q0 and q1) |
| static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0, |
| __m128i* const q0, __m128i* const q1, |
| const __m128i* const mask, |
| int hev_thresh) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i sign_bit = _mm_set1_epi8(0x80); |
| const __m128i k64 = _mm_set1_epi8(64); |
| const __m128i k3 = _mm_set1_epi8(3); |
| const __m128i k4 = _mm_set1_epi8(4); |
| __m128i not_hev; |
| __m128i t1, t2, t3; |
| |
| // compute hev mask |
| GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); |
| |
| // convert to signed values |
| FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); |
| |
| t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 |
| t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) |
| t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 |
| t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) |
| t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) |
| t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) |
| t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about |
| |
| t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3 |
| t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4 |
| SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 |
| SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 |
| *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 |
| *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 |
| FLIP_SIGN_BIT2(*p0, *q0); |
| |
| // this is equivalent to signed (a + 1) >> 1 calculation |
| t2 = _mm_add_epi8(t3, sign_bit); |
| t3 = _mm_avg_epu8(t2, zero); |
| t3 = _mm_sub_epi8(t3, k64); |
| |
| t3 = _mm_and_si128(not_hev, t3); // if !hev |
| *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 |
| *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 |
| FLIP_SIGN_BIT2(*p1, *q1); |
| } |
| |
| // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) |
| static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1, |
| __m128i* const p0, __m128i* const q0, |
| __m128i* const q1, __m128i* const q2, |
| const __m128i* const mask, |
| int hev_thresh) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i sign_bit = _mm_set1_epi8(0x80); |
| __m128i a, not_hev; |
| |
| // compute hev mask |
| GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); |
| |
| FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); |
| FLIP_SIGN_BIT2(*p2, *q2); |
| GetBaseDelta_SSE2(p1, p0, q0, q1, &a); |
| |
| { // do simple filter on pixels with hev |
| const __m128i m = _mm_andnot_si128(not_hev, *mask); |
| const __m128i f = _mm_and_si128(a, m); |
| DoSimpleFilter_SSE2(p0, q0, &f); |
| } |
| |
| { // do strong filter on pixels with not hev |
| const __m128i k9 = _mm_set1_epi16(0x0900); |
| const __m128i k63 = _mm_set1_epi16(63); |
| |
| const __m128i m = _mm_and_si128(not_hev, *mask); |
| const __m128i f = _mm_and_si128(a, m); |
| |
| const __m128i f_lo = _mm_unpacklo_epi8(zero, f); |
| const __m128i f_hi = _mm_unpackhi_epi8(zero, f); |
| |
| const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 |
| const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 |
| |
| const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 |
| const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 |
| |
| const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 |
| const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 |
| |
| const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 |
| const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 |
| |
| Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi); |
| Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi); |
| Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi); |
| } |
| } |
| |
| // reads 8 rows across a vertical edge. |
| static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride, |
| __m128i* const p, __m128i* const q) { |
| // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00 |
| // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10 |
| const __m128i A0 = _mm_set_epi32( |
| WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]), |
| WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride])); |
| const __m128i A1 = _mm_set_epi32( |
| WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]), |
| WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride])); |
| |
| // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 |
| // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 |
| const __m128i B0 = _mm_unpacklo_epi8(A0, A1); |
| const __m128i B1 = _mm_unpackhi_epi8(A0, A1); |
| |
| // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 |
| // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 |
| const __m128i C0 = _mm_unpacklo_epi16(B0, B1); |
| const __m128i C1 = _mm_unpackhi_epi16(B0, B1); |
| |
| // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 |
| // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 |
| *p = _mm_unpacklo_epi32(C0, C1); |
| *q = _mm_unpackhi_epi32(C0, C1); |
| } |
| |
| static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0, |
| const uint8_t* const r8, |
| int stride, |
| __m128i* const p1, __m128i* const p0, |
| __m128i* const q0, __m128i* const q1) { |
| // Assume the pixels around the edge (|) are numbered as follows |
| // 00 01 | 02 03 |
| // 10 11 | 12 13 |
| // ... | ... |
| // e0 e1 | e2 e3 |
| // f0 f1 | f2 f3 |
| // |
| // r0 is pointing to the 0th row (00) |
| // r8 is pointing to the 8th row (80) |
| |
| // Load |
| // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 |
| // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 |
| // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 |
| // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 |
| Load8x4_SSE2(r0, stride, p1, q0); |
| Load8x4_SSE2(r8, stride, p0, q1); |
| |
| { |
| // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 |
| // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 |
| // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 |
| // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 |
| const __m128i t1 = *p1; |
| const __m128i t2 = *q0; |
| *p1 = _mm_unpacklo_epi64(t1, *p0); |
| *p0 = _mm_unpackhi_epi64(t1, *p0); |
| *q0 = _mm_unpacklo_epi64(t2, *q1); |
| *q1 = _mm_unpackhi_epi64(t2, *q1); |
| } |
| } |
| |
| static WEBP_INLINE void Store4x4_SSE2(__m128i* const x, |
| uint8_t* dst, int stride) { |
| int i; |
| for (i = 0; i < 4; ++i, dst += stride) { |
| WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x)); |
| *x = _mm_srli_si128(*x, 4); |
| } |
| } |
| |
| // Transpose back and store |
| static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1, |
| const __m128i* const p0, |
| const __m128i* const q0, |
| const __m128i* const q1, |
| uint8_t* r0, uint8_t* r8, |
| int stride) { |
| __m128i t1, p1_s, p0_s, q0_s, q1_s; |
| |
| // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 |
| // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 |
| t1 = *p0; |
| p0_s = _mm_unpacklo_epi8(*p1, t1); |
| p1_s = _mm_unpackhi_epi8(*p1, t1); |
| |
| // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 |
| // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 |
| t1 = *q0; |
| q0_s = _mm_unpacklo_epi8(t1, *q1); |
| q1_s = _mm_unpackhi_epi8(t1, *q1); |
| |
| // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 |
| // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 |
| t1 = p0_s; |
| p0_s = _mm_unpacklo_epi16(t1, q0_s); |
| q0_s = _mm_unpackhi_epi16(t1, q0_s); |
| |
| // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 |
| // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 |
| t1 = p1_s; |
| p1_s = _mm_unpacklo_epi16(t1, q1_s); |
| q1_s = _mm_unpackhi_epi16(t1, q1_s); |
| |
| Store4x4_SSE2(&p0_s, r0, stride); |
| r0 += 4 * stride; |
| Store4x4_SSE2(&q0_s, r0, stride); |
| |
| Store4x4_SSE2(&p1_s, r8, stride); |
| r8 += 4 * stride; |
| Store4x4_SSE2(&q1_s, r8, stride); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Simple In-loop filtering (Paragraph 15.2) |
| |
| static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) { |
| // Load |
| __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); |
| __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); |
| __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); |
| __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); |
| |
| DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); |
| |
| // Store |
| _mm_storeu_si128((__m128i*)&p[-stride], p0); |
| _mm_storeu_si128((__m128i*)&p[0], q0); |
| } |
| |
| static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) { |
| __m128i p1, p0, q0, q1; |
| |
| p -= 2; // beginning of p1 |
| |
| Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); |
| DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); |
| Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); |
| } |
| |
| static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) { |
| int k; |
| for (k = 3; k > 0; --k) { |
| p += 4 * stride; |
| SimpleVFilter16_SSE2(p, stride, thresh); |
| } |
| } |
| |
| static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) { |
| int k; |
| for (k = 3; k > 0; --k) { |
| p += 4; |
| SimpleHFilter16_SSE2(p, stride, thresh); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Complex In-loop filtering (Paragraph 15.3) |
| |
| #define MAX_DIFF1(p3, p2, p1, p0, m) do { \ |
| (m) = MM_ABS(p1, p0); \ |
| (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ |
| (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ |
| } while (0) |
| |
| #define MAX_DIFF2(p3, p2, p1, p0, m) do { \ |
| (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \ |
| (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ |
| (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ |
| } while (0) |
| |
| #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ |
| (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \ |
| (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \ |
| (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \ |
| (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \ |
| } |
| |
| #define LOADUV_H_EDGE(p, u, v, stride) do { \ |
| const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ |
| const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ |
| (p) = _mm_unpacklo_epi64(U, V); \ |
| } while (0) |
| |
| #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ |
| LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \ |
| LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \ |
| LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \ |
| LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \ |
| } |
| |
| #define STOREUV(p, u, v, stride) { \ |
| _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \ |
| (p) = _mm_srli_si128(p, 8); \ |
| _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \ |
| } |
| |
| static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1, |
| const __m128i* const p0, |
| const __m128i* const q0, |
| const __m128i* const q1, |
| int thresh, int ithresh, |
| __m128i* const mask) { |
| const __m128i it = _mm_set1_epi8(ithresh); |
| const __m128i diff = _mm_subs_epu8(*mask, it); |
| const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); |
| __m128i filter_mask; |
| NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask); |
| *mask = _mm_and_si128(thresh_mask, filter_mask); |
| } |
| |
| // on macroblock edges |
| static void VFilter16_SSE2(uint8_t* p, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| __m128i t1; |
| __m128i mask; |
| __m128i p2, p1, p0, q0, q1, q2; |
| |
| // Load p3, p2, p1, p0 |
| LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); |
| MAX_DIFF1(t1, p2, p1, p0, mask); |
| |
| // Load q0, q1, q2, q3 |
| LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); |
| MAX_DIFF2(t1, q2, q1, q0, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| |
| // Store |
| _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); |
| _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); |
| _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); |
| _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); |
| _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); |
| _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); |
| } |
| |
| static void HFilter16_SSE2(uint8_t* p, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| __m128i mask; |
| __m128i p3, p2, p1, p0, q0, q1, q2, q3; |
| |
| uint8_t* const b = p - 4; |
| Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); |
| MAX_DIFF1(p3, p2, p1, p0, mask); |
| |
| Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); |
| MAX_DIFF2(q3, q2, q1, q0, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| |
| Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); |
| Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); |
| } |
| |
| // on three inner edges |
| static void VFilter16i_SSE2(uint8_t* p, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| int k; |
| __m128i p3, p2, p1, p0; // loop invariants |
| |
| LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue |
| |
| for (k = 3; k > 0; --k) { |
| __m128i mask, tmp1, tmp2; |
| uint8_t* const b = p + 2 * stride; // beginning of p1 |
| p += 4 * stride; |
| |
| MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask |
| LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); |
| MAX_DIFF2(p3, p2, tmp1, tmp2, mask); |
| |
| // p3 and p2 are not just temporary variables here: they will be |
| // re-used for next span. And q2/q3 will become p1/p0 accordingly. |
| ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); |
| DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); |
| |
| // Store |
| _mm_storeu_si128((__m128i*)&b[0 * stride], p1); |
| _mm_storeu_si128((__m128i*)&b[1 * stride], p0); |
| _mm_storeu_si128((__m128i*)&b[2 * stride], p3); |
| _mm_storeu_si128((__m128i*)&b[3 * stride], p2); |
| |
| // rotate samples |
| p1 = tmp1; |
| p0 = tmp2; |
| } |
| } |
| |
| static void HFilter16i_SSE2(uint8_t* p, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| int k; |
| __m128i p3, p2, p1, p0; // loop invariants |
| |
| Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue |
| |
| for (k = 3; k > 0; --k) { |
| __m128i mask, tmp1, tmp2; |
| uint8_t* const b = p + 2; // beginning of p1 |
| |
| p += 4; // beginning of q0 (and next span) |
| |
| MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask |
| Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); |
| MAX_DIFF2(p3, p2, tmp1, tmp2, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); |
| DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); |
| |
| Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); |
| |
| // rotate samples |
| p1 = tmp1; |
| p0 = tmp2; |
| } |
| } |
| |
| // 8-pixels wide variant, for chroma filtering |
| static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| __m128i mask; |
| __m128i t1, p2, p1, p0, q0, q1, q2; |
| |
| // Load p3, p2, p1, p0 |
| LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); |
| MAX_DIFF1(t1, p2, p1, p0, mask); |
| |
| // Load q0, q1, q2, q3 |
| LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); |
| MAX_DIFF2(t1, q2, q1, q0, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| |
| // Store |
| STOREUV(p2, u, v, -3 * stride); |
| STOREUV(p1, u, v, -2 * stride); |
| STOREUV(p0, u, v, -1 * stride); |
| STOREUV(q0, u, v, 0 * stride); |
| STOREUV(q1, u, v, 1 * stride); |
| STOREUV(q2, u, v, 2 * stride); |
| } |
| |
| static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| __m128i mask; |
| __m128i p3, p2, p1, p0, q0, q1, q2, q3; |
| |
| uint8_t* const tu = u - 4; |
| uint8_t* const tv = v - 4; |
| Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0); |
| MAX_DIFF1(p3, p2, p1, p0, mask); |
| |
| Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3); |
| MAX_DIFF2(q3, q2, q1, q0, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); |
| |
| Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride); |
| Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride); |
| } |
| |
| static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| __m128i mask; |
| __m128i t1, t2, p1, p0, q0, q1; |
| |
| // Load p3, p2, p1, p0 |
| LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); |
| MAX_DIFF1(t2, t1, p1, p0, mask); |
| |
| u += 4 * stride; |
| v += 4 * stride; |
| |
| // Load q0, q1, q2, q3 |
| LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); |
| MAX_DIFF2(t2, t1, q1, q0, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); |
| |
| // Store |
| STOREUV(p1, u, v, -2 * stride); |
| STOREUV(p0, u, v, -1 * stride); |
| STOREUV(q0, u, v, 0 * stride); |
| STOREUV(q1, u, v, 1 * stride); |
| } |
| |
| static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, |
| int thresh, int ithresh, int hev_thresh) { |
| __m128i mask; |
| __m128i t1, t2, p1, p0, q0, q1; |
| Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 |
| MAX_DIFF1(t2, t1, p1, p0, mask); |
| |
| u += 4; // beginning of q0 |
| v += 4; |
| Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 |
| MAX_DIFF2(t2, t1, q1, q0, mask); |
| |
| ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); |
| DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); |
| |
| u -= 2; // beginning of p1 |
| v -= 2; |
| Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // 4x4 predictions |
| |
| #define DST(x, y) dst[(x) + (y) * BPS] |
| #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
| |
| // We use the following 8b-arithmetic tricks: |
| // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
| // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
| // and: |
| // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
| // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
| // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
| |
| static void VE4_SSE2(uint8_t* dst) { // vertical |
| const __m128i one = _mm_set1_epi8(1); |
| const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); |
| const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
| const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
| const __m128i b = _mm_subs_epu8(a, lsb); |
| const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
| const uint32_t vals = _mm_cvtsi128_si32(avg); |
| int i; |
| for (i = 0; i < 4; ++i) { |
| WebPUint32ToMem(dst + i * BPS, vals); |
| } |
| } |
| |
| static void LD4_SSE2(uint8_t* dst) { // Down-Left |
| const __m128i one = _mm_set1_epi8(1); |
| const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); |
| const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3); |
| const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
| const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
| const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
| WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| } |
| |
| static void VR4_SSE2(uint8_t* dst) { // Vertical-Right |
| const __m128i one = _mm_set1_epi8(1); |
| const int I = dst[-1 + 0 * BPS]; |
| const int J = dst[-1 + 1 * BPS]; |
| const int K = dst[-1 + 2 * BPS]; |
| const int X = dst[-1 - BPS]; |
| const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); |
| const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
| const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
| const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
| const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); |
| const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
| const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
| const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
| WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
| WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
| WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
| WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
| |
| // these two are hard to implement in SSE2, so we keep the C-version: |
| DST(0, 2) = AVG3(J, I, X); |
| DST(0, 3) = AVG3(K, J, I); |
| } |
| |
| static void VL4_SSE2(uint8_t* dst) { // Vertical-Left |
| const __m128i one = _mm_set1_epi8(1); |
| const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); |
| const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
| const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
| const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
| const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
| const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
| const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
| const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
| const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
| const __m128i abbc = _mm_or_si128(ab, bc); |
| const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
| const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
| const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
| WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
| WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
| WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
| WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
| |
| // these two are hard to get and irregular |
| DST(3, 2) = (extra_out >> 0) & 0xff; |
| DST(3, 3) = (extra_out >> 8) & 0xff; |
| } |
| |
| static void RD4_SSE2(uint8_t* dst) { // Down-right |
| const __m128i one = _mm_set1_epi8(1); |
| const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); |
| const __m128i ____XABCD = _mm_slli_si128(XABCD, 4); |
| const uint32_t I = dst[-1 + 0 * BPS]; |
| const uint32_t J = dst[-1 + 1 * BPS]; |
| const uint32_t K = dst[-1 + 2 * BPS]; |
| const uint32_t L = dst[-1 + 3 * BPS]; |
| const __m128i LKJI_____ = |
| _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24)); |
| const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD); |
| const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
| const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
| const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
| const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
| const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
| WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| } |
| |
| #undef DST |
| #undef AVG3 |
| |
| //------------------------------------------------------------------------------ |
| // Luma 16x16 |
| |
| static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) { |
| const uint8_t* top = dst - BPS; |
| const __m128i zero = _mm_setzero_si128(); |
| int y; |
| if (size == 4) { |
| const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); |
| const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| for (y = 0; y < 4; ++y, dst += BPS) { |
| const int val = dst[-1] - top[-1]; |
| const __m128i base = _mm_set1_epi16(val); |
| const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); |
| } |
| } else if (size == 8) { |
| const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| for (y = 0; y < 8; ++y, dst += BPS) { |
| const int val = dst[-1] - top[-1]; |
| const __m128i base = _mm_set1_epi16(val); |
| const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| _mm_storel_epi64((__m128i*)dst, out); |
| } |
| } else { |
| const __m128i top_values = _mm_loadu_si128((const __m128i*)top); |
| const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
| const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
| for (y = 0; y < 16; ++y, dst += BPS) { |
| const int val = dst[-1] - top[-1]; |
| const __m128i base = _mm_set1_epi16(val); |
| const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
| const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
| const __m128i out = _mm_packus_epi16(out_0, out_1); |
| _mm_storeu_si128((__m128i*)dst, out); |
| } |
| } |
| } |
| |
| static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); } |
| static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); } |
| static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); } |
| |
| static void VE16_SSE2(uint8_t* dst) { |
| const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); |
| int j; |
| for (j = 0; j < 16; ++j) { |
| _mm_storeu_si128((__m128i*)(dst + j * BPS), top); |
| } |
| } |
| |
| static void HE16_SSE2(uint8_t* dst) { // horizontal |
| int j; |
| for (j = 16; j > 0; --j) { |
| const __m128i values = _mm_set1_epi8(dst[-1]); |
| _mm_storeu_si128((__m128i*)dst, values); |
| dst += BPS; |
| } |
| } |
| |
| static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { |
| int j; |
| const __m128i values = _mm_set1_epi8(v); |
| for (j = 0; j < 16; ++j) { |
| _mm_storeu_si128((__m128i*)(dst + j * BPS), values); |
| } |
| } |
| |
| static void DC16_SSE2(uint8_t* dst) { // DC |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); |
| const __m128i sad8x2 = _mm_sad_epu8(top, zero); |
| // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| int left = 0; |
| int j; |
| for (j = 0; j < 16; ++j) { |
| left += dst[-1 + j * BPS]; |
| } |
| { |
| const int DC = _mm_cvtsi128_si32(sum) + left + 16; |
| Put16_SSE2(DC >> 5, dst); |
| } |
| } |
| |
| static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable |
| int DC = 8; |
| int j; |
| for (j = 0; j < 16; ++j) { |
| DC += dst[-1 + j * BPS]; |
| } |
| Put16_SSE2(DC >> 4, dst); |
| } |
| |
| static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); |
| const __m128i sad8x2 = _mm_sad_epu8(top, zero); |
| // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| const int DC = _mm_cvtsi128_si32(sum) + 8; |
| Put16_SSE2(DC >> 4, dst); |
| } |
| |
| static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples |
| Put16_SSE2(0x80, dst); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Chroma |
| |
| static void VE8uv_SSE2(uint8_t* dst) { // vertical |
| int j; |
| const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); |
| for (j = 0; j < 8; ++j) { |
| _mm_storel_epi64((__m128i*)(dst + j * BPS), top); |
| } |
| } |
| |
| // helper for chroma-DC predictions |
| static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { |
| int j; |
| const __m128i values = _mm_set1_epi8(v); |
| for (j = 0; j < 8; ++j) { |
| _mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
| } |
| } |
| |
| static void DC8uv_SSE2(uint8_t* dst) { // DC |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); |
| const __m128i sum = _mm_sad_epu8(top, zero); |
| int left = 0; |
| int j; |
| for (j = 0; j < 8; ++j) { |
| left += dst[-1 + j * BPS]; |
| } |
| { |
| const int DC = _mm_cvtsi128_si32(sum) + left + 8; |
| Put8x8uv_SSE2(DC >> 4, dst); |
| } |
| } |
| |
| static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); |
| const __m128i sum = _mm_sad_epu8(top, zero); |
| const int DC = _mm_cvtsi128_si32(sum) + 4; |
| Put8x8uv_SSE2(DC >> 3, dst); |
| } |
| |
| static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples |
| int dc0 = 4; |
| int i; |
| for (i = 0; i < 8; ++i) { |
| dc0 += dst[-1 + i * BPS]; |
| } |
| Put8x8uv_SSE2(dc0 >> 3, dst); |
| } |
| |
| static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing |
| Put8x8uv_SSE2(0x80, dst); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| extern void VP8DspInitSSE2(void); |
| |
| WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) { |
| VP8Transform = Transform_SSE2; |
| #if (USE_TRANSFORM_AC3 == 1) |
| VP8TransformAC3 = TransformAC3_SSE2; |
| #endif |
| |
| VP8VFilter16 = VFilter16_SSE2; |
| VP8HFilter16 = HFilter16_SSE2; |
| VP8VFilter8 = VFilter8_SSE2; |
| VP8HFilter8 = HFilter8_SSE2; |
| VP8VFilter16i = VFilter16i_SSE2; |
| VP8HFilter16i = HFilter16i_SSE2; |
| VP8VFilter8i = VFilter8i_SSE2; |
| VP8HFilter8i = HFilter8i_SSE2; |
| |
| VP8SimpleVFilter16 = SimpleVFilter16_SSE2; |
| VP8SimpleHFilter16 = SimpleHFilter16_SSE2; |
| VP8SimpleVFilter16i = SimpleVFilter16i_SSE2; |
| VP8SimpleHFilter16i = SimpleHFilter16i_SSE2; |
| |
| VP8PredLuma4[1] = TM4_SSE2; |
| VP8PredLuma4[2] = VE4_SSE2; |
| VP8PredLuma4[4] = RD4_SSE2; |
| VP8PredLuma4[5] = VR4_SSE2; |
| VP8PredLuma4[6] = LD4_SSE2; |
| VP8PredLuma4[7] = VL4_SSE2; |
| |
| VP8PredLuma16[0] = DC16_SSE2; |
| VP8PredLuma16[1] = TM16_SSE2; |
| VP8PredLuma16[2] = VE16_SSE2; |
| VP8PredLuma16[3] = HE16_SSE2; |
| VP8PredLuma16[4] = DC16NoTop_SSE2; |
| VP8PredLuma16[5] = DC16NoLeft_SSE2; |
| VP8PredLuma16[6] = DC16NoTopLeft_SSE2; |
| |
| VP8PredChroma8[0] = DC8uv_SSE2; |
| VP8PredChroma8[1] = TM8uv_SSE2; |
| VP8PredChroma8[2] = VE8uv_SSE2; |
| VP8PredChroma8[4] = DC8uvNoTop_SSE2; |
| VP8PredChroma8[5] = DC8uvNoLeft_SSE2; |
| VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2; |
| } |
| |
| #else // !WEBP_USE_SSE2 |
| |
| WEBP_DSP_INIT_STUB(VP8DspInitSSE2) |
| |
| #endif // WEBP_USE_SSE2 |