| // Copyright 2015 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // SSE2 variant of alpha filters |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include "src/dsp/dsp.h" |
| |
| #if defined(WEBP_USE_SSE2) |
| |
| #include <assert.h> |
| #include <emmintrin.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| //------------------------------------------------------------------------------ |
| // Helpful macro. |
| |
| # define SANITY_CHECK(in, out) \ |
| assert((in) != NULL); \ |
| assert((out) != NULL); \ |
| assert(width > 0); \ |
| assert(height > 0); \ |
| assert(stride >= width); \ |
| assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \ |
| (void)height; // Silence unused warning. |
| |
| static void PredictLineTop_SSE2(const uint8_t* src, const uint8_t* pred, |
| uint8_t* dst, int length) { |
| int i; |
| const int max_pos = length & ~31; |
| assert(length >= 0); |
| for (i = 0; i < max_pos; i += 32) { |
| const __m128i A0 = _mm_loadu_si128((const __m128i*)&src[i + 0]); |
| const __m128i A1 = _mm_loadu_si128((const __m128i*)&src[i + 16]); |
| const __m128i B0 = _mm_loadu_si128((const __m128i*)&pred[i + 0]); |
| const __m128i B1 = _mm_loadu_si128((const __m128i*)&pred[i + 16]); |
| const __m128i C0 = _mm_sub_epi8(A0, B0); |
| const __m128i C1 = _mm_sub_epi8(A1, B1); |
| _mm_storeu_si128((__m128i*)&dst[i + 0], C0); |
| _mm_storeu_si128((__m128i*)&dst[i + 16], C1); |
| } |
| for (; i < length; ++i) dst[i] = src[i] - pred[i]; |
| } |
| |
| // Special case for left-based prediction (when preds==dst-1 or preds==src-1). |
| static void PredictLineLeft_SSE2(const uint8_t* src, uint8_t* dst, int length) { |
| int i; |
| const int max_pos = length & ~31; |
| assert(length >= 0); |
| for (i = 0; i < max_pos; i += 32) { |
| const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + i + 0 )); |
| const __m128i B0 = _mm_loadu_si128((const __m128i*)(src + i + 0 - 1)); |
| const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + i + 16 )); |
| const __m128i B1 = _mm_loadu_si128((const __m128i*)(src + i + 16 - 1)); |
| const __m128i C0 = _mm_sub_epi8(A0, B0); |
| const __m128i C1 = _mm_sub_epi8(A1, B1); |
| _mm_storeu_si128((__m128i*)(dst + i + 0), C0); |
| _mm_storeu_si128((__m128i*)(dst + i + 16), C1); |
| } |
| for (; i < length; ++i) dst[i] = src[i] - src[i - 1]; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Horizontal filter. |
| |
| static WEBP_INLINE void DoHorizontalFilter_SSE2(const uint8_t* in, |
| int width, int height, |
| int stride, |
| int row, int num_rows, |
| uint8_t* out) { |
| const size_t start_offset = row * stride; |
| const int last_row = row + num_rows; |
| SANITY_CHECK(in, out); |
| in += start_offset; |
| out += start_offset; |
| |
| if (row == 0) { |
| // Leftmost pixel is the same as input for topmost scanline. |
| out[0] = in[0]; |
| PredictLineLeft_SSE2(in + 1, out + 1, width - 1); |
| row = 1; |
| in += stride; |
| out += stride; |
| } |
| |
| // Filter line-by-line. |
| while (row < last_row) { |
| // Leftmost pixel is predicted from above. |
| out[0] = in[0] - in[-stride]; |
| PredictLineLeft_SSE2(in + 1, out + 1, width - 1); |
| ++row; |
| in += stride; |
| out += stride; |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Vertical filter. |
| |
| static WEBP_INLINE void DoVerticalFilter_SSE2(const uint8_t* in, |
| int width, int height, int stride, |
| int row, int num_rows, |
| uint8_t* out) { |
| const size_t start_offset = row * stride; |
| const int last_row = row + num_rows; |
| SANITY_CHECK(in, out); |
| in += start_offset; |
| out += start_offset; |
| |
| if (row == 0) { |
| // Very first top-left pixel is copied. |
| out[0] = in[0]; |
| // Rest of top scan-line is left-predicted. |
| PredictLineLeft_SSE2(in + 1, out + 1, width - 1); |
| row = 1; |
| in += stride; |
| out += stride; |
| } |
| |
| // Filter line-by-line. |
| while (row < last_row) { |
| PredictLineTop_SSE2(in, in - stride, out, width); |
| ++row; |
| in += stride; |
| out += stride; |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Gradient filter. |
| |
| static WEBP_INLINE int GradientPredictor_SSE2(uint8_t a, uint8_t b, uint8_t c) { |
| const int g = a + b - c; |
| return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit |
| } |
| |
| static void GradientPredictDirect_SSE2(const uint8_t* const row, |
| const uint8_t* const top, |
| uint8_t* const out, int length) { |
| const int max_pos = length & ~7; |
| int i; |
| const __m128i zero = _mm_setzero_si128(); |
| for (i = 0; i < max_pos; i += 8) { |
| const __m128i A0 = _mm_loadl_epi64((const __m128i*)&row[i - 1]); |
| const __m128i B0 = _mm_loadl_epi64((const __m128i*)&top[i]); |
| const __m128i C0 = _mm_loadl_epi64((const __m128i*)&top[i - 1]); |
| const __m128i D = _mm_loadl_epi64((const __m128i*)&row[i]); |
| const __m128i A1 = _mm_unpacklo_epi8(A0, zero); |
| const __m128i B1 = _mm_unpacklo_epi8(B0, zero); |
| const __m128i C1 = _mm_unpacklo_epi8(C0, zero); |
| const __m128i E = _mm_add_epi16(A1, B1); |
| const __m128i F = _mm_sub_epi16(E, C1); |
| const __m128i G = _mm_packus_epi16(F, zero); |
| const __m128i H = _mm_sub_epi8(D, G); |
| _mm_storel_epi64((__m128i*)(out + i), H); |
| } |
| for (; i < length; ++i) { |
| out[i] = row[i] - GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]); |
| } |
| } |
| |
| static WEBP_INLINE void DoGradientFilter_SSE2(const uint8_t* in, |
| int width, int height, int stride, |
| int row, int num_rows, |
| uint8_t* out) { |
| const size_t start_offset = row * stride; |
| const int last_row = row + num_rows; |
| SANITY_CHECK(in, out); |
| in += start_offset; |
| out += start_offset; |
| |
| // left prediction for top scan-line |
| if (row == 0) { |
| out[0] = in[0]; |
| PredictLineLeft_SSE2(in + 1, out + 1, width - 1); |
| row = 1; |
| in += stride; |
| out += stride; |
| } |
| |
| // Filter line-by-line. |
| while (row < last_row) { |
| out[0] = in[0] - in[-stride]; |
| GradientPredictDirect_SSE2(in + 1, in + 1 - stride, out + 1, width - 1); |
| ++row; |
| in += stride; |
| out += stride; |
| } |
| } |
| |
| #undef SANITY_CHECK |
| |
| //------------------------------------------------------------------------------ |
| |
| static void HorizontalFilter_SSE2(const uint8_t* data, int width, int height, |
| int stride, uint8_t* filtered_data) { |
| DoHorizontalFilter_SSE2(data, width, height, stride, 0, height, |
| filtered_data); |
| } |
| |
| static void VerticalFilter_SSE2(const uint8_t* data, int width, int height, |
| int stride, uint8_t* filtered_data) { |
| DoVerticalFilter_SSE2(data, width, height, stride, 0, height, filtered_data); |
| } |
| |
| static void GradientFilter_SSE2(const uint8_t* data, int width, int height, |
| int stride, uint8_t* filtered_data) { |
| DoGradientFilter_SSE2(data, width, height, stride, 0, height, filtered_data); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Inverse transforms |
| |
| static void HorizontalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in, |
| uint8_t* out, int width) { |
| int i; |
| __m128i last; |
| out[0] = in[0] + (prev == NULL ? 0 : prev[0]); |
| if (width <= 1) return; |
| last = _mm_set_epi32(0, 0, 0, out[0]); |
| for (i = 1; i + 8 <= width; i += 8) { |
| const __m128i A0 = _mm_loadl_epi64((const __m128i*)(in + i)); |
| const __m128i A1 = _mm_add_epi8(A0, last); |
| const __m128i A2 = _mm_slli_si128(A1, 1); |
| const __m128i A3 = _mm_add_epi8(A1, A2); |
| const __m128i A4 = _mm_slli_si128(A3, 2); |
| const __m128i A5 = _mm_add_epi8(A3, A4); |
| const __m128i A6 = _mm_slli_si128(A5, 4); |
| const __m128i A7 = _mm_add_epi8(A5, A6); |
| _mm_storel_epi64((__m128i*)(out + i), A7); |
| last = _mm_srli_epi64(A7, 56); |
| } |
| for (; i < width; ++i) out[i] = in[i] + out[i - 1]; |
| } |
| |
| static void VerticalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in, |
| uint8_t* out, int width) { |
| if (prev == NULL) { |
| HorizontalUnfilter_SSE2(NULL, in, out, width); |
| } else { |
| int i; |
| const int max_pos = width & ~31; |
| assert(width >= 0); |
| for (i = 0; i < max_pos; i += 32) { |
| const __m128i A0 = _mm_loadu_si128((const __m128i*)&in[i + 0]); |
| const __m128i A1 = _mm_loadu_si128((const __m128i*)&in[i + 16]); |
| const __m128i B0 = _mm_loadu_si128((const __m128i*)&prev[i + 0]); |
| const __m128i B1 = _mm_loadu_si128((const __m128i*)&prev[i + 16]); |
| const __m128i C0 = _mm_add_epi8(A0, B0); |
| const __m128i C1 = _mm_add_epi8(A1, B1); |
| _mm_storeu_si128((__m128i*)&out[i + 0], C0); |
| _mm_storeu_si128((__m128i*)&out[i + 16], C1); |
| } |
| for (; i < width; ++i) out[i] = in[i] + prev[i]; |
| } |
| } |
| |
| static void GradientPredictInverse_SSE2(const uint8_t* const in, |
| const uint8_t* const top, |
| uint8_t* const row, int length) { |
| if (length > 0) { |
| int i; |
| const int max_pos = length & ~7; |
| const __m128i zero = _mm_setzero_si128(); |
| __m128i A = _mm_set_epi32(0, 0, 0, row[-1]); // left sample |
| for (i = 0; i < max_pos; i += 8) { |
| const __m128i tmp0 = _mm_loadl_epi64((const __m128i*)&top[i]); |
| const __m128i tmp1 = _mm_loadl_epi64((const __m128i*)&top[i - 1]); |
| const __m128i B = _mm_unpacklo_epi8(tmp0, zero); |
| const __m128i C = _mm_unpacklo_epi8(tmp1, zero); |
| const __m128i D = _mm_loadl_epi64((const __m128i*)&in[i]); // base input |
| const __m128i E = _mm_sub_epi16(B, C); // unclipped gradient basis B - C |
| __m128i out = zero; // accumulator for output |
| __m128i mask_hi = _mm_set_epi32(0, 0, 0, 0xff); |
| int k = 8; |
| while (1) { |
| const __m128i tmp3 = _mm_add_epi16(A, E); // delta = A + B - C |
| const __m128i tmp4 = _mm_packus_epi16(tmp3, zero); // saturate delta |
| const __m128i tmp5 = _mm_add_epi8(tmp4, D); // add to in[] |
| A = _mm_and_si128(tmp5, mask_hi); // 1-complement clip |
| out = _mm_or_si128(out, A); // accumulate output |
| if (--k == 0) break; |
| A = _mm_slli_si128(A, 1); // rotate left sample |
| mask_hi = _mm_slli_si128(mask_hi, 1); // rotate mask |
| A = _mm_unpacklo_epi8(A, zero); // convert 8b->16b |
| } |
| A = _mm_srli_si128(A, 7); // prepare left sample for next iteration |
| _mm_storel_epi64((__m128i*)&row[i], out); |
| } |
| for (; i < length; ++i) { |
| row[i] = in[i] + GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]); |
| } |
| } |
| } |
| |
| static void GradientUnfilter_SSE2(const uint8_t* prev, const uint8_t* in, |
| uint8_t* out, int width) { |
| if (prev == NULL) { |
| HorizontalUnfilter_SSE2(NULL, in, out, width); |
| } else { |
| out[0] = in[0] + prev[0]; // predict from above |
| GradientPredictInverse_SSE2(in + 1, prev + 1, out + 1, width - 1); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| extern void VP8FiltersInitSSE2(void); |
| |
| WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitSSE2(void) { |
| WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_SSE2; |
| WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_SSE2; |
| WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_SSE2; |
| |
| WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_SSE2; |
| WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_SSE2; |
| WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_SSE2; |
| } |
| |
| #else // !WEBP_USE_SSE2 |
| |
| WEBP_DSP_INIT_STUB(VP8FiltersInitSSE2) |
| |
| #endif // WEBP_USE_SSE2 |