| // Copyright 2012 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Image transforms and color space conversion methods for lossless decoder. |
| // |
| // Authors: Vikas Arora (vikaas.arora@gmail.com) |
| // Jyrki Alakuijala (jyrki@google.com) |
| // Urvang Joshi (urvang@google.com) |
| |
| #include "src/dsp/dsp.h" |
| |
| #if defined(STARBOARD) |
| #include "starboard/client_porting/poem/assert_poem.h" |
| #include "starboard/client_porting/poem/math_poem.h" |
| #include "starboard/client_porting/poem/stdlib_poem.h" |
| #else |
| #include <assert.h> |
| #include <math.h> |
| #include <stdlib.h> |
| #endif |
| |
| #include "src/dec/vp8li_dec.h" |
| #include "src/utils/endian_inl_utils.h" |
| #include "src/dsp/lossless.h" |
| #include "src/dsp/lossless_common.h" |
| |
| #define MAX_DIFF_COST (1e30f) |
| |
| //------------------------------------------------------------------------------ |
| // Image transforms. |
| |
| static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
| return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); |
| } |
| |
| static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
| return Average2(Average2(a0, a2), a1); |
| } |
| |
| static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
| uint32_t a2, uint32_t a3) { |
| return Average2(Average2(a0, a1), Average2(a2, a3)); |
| } |
| |
| static WEBP_INLINE uint32_t Clip255(uint32_t a) { |
| if (a < 256) { |
| return a; |
| } |
| // return 0, when a is a negative integer. |
| // return 255, when a is positive. |
| return ~a >> 24; |
| } |
| |
| static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { |
| return Clip255(a + b - c); |
| } |
| |
| static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
| uint32_t c2) { |
| const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); |
| const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, |
| (c1 >> 16) & 0xff, |
| (c2 >> 16) & 0xff); |
| const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, |
| (c1 >> 8) & 0xff, |
| (c2 >> 8) & 0xff); |
| const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); |
| return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
| } |
| |
| static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { |
| return Clip255(a + (a - b) / 2); |
| } |
| |
| static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
| uint32_t c2) { |
| const uint32_t ave = Average2(c0, c1); |
| const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); |
| const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); |
| const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); |
| const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); |
| return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
| } |
| |
| // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is |
| // inlined. |
| #if defined(__arm__) && LOCAL_GCC_VERSION <= 0x409 |
| # define LOCAL_INLINE __attribute__ ((noinline)) |
| #else |
| # define LOCAL_INLINE WEBP_INLINE |
| #endif |
| |
| static LOCAL_INLINE int Sub3(int a, int b, int c) { |
| const int pb = b - c; |
| const int pa = a - c; |
| return abs(pb) - abs(pa); |
| } |
| |
| #undef LOCAL_INLINE |
| |
| static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
| const int pa_minus_pb = |
| Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + |
| Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + |
| Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + |
| Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); |
| return (pa_minus_pb <= 0) ? a : b; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Predictors |
| |
| static uint32_t Predictor0_C(uint32_t left, const uint32_t* const top) { |
| (void)top; |
| (void)left; |
| return ARGB_BLACK; |
| } |
| static uint32_t Predictor1_C(uint32_t left, const uint32_t* const top) { |
| (void)top; |
| return left; |
| } |
| static uint32_t Predictor2_C(uint32_t left, const uint32_t* const top) { |
| (void)left; |
| return top[0]; |
| } |
| static uint32_t Predictor3_C(uint32_t left, const uint32_t* const top) { |
| (void)left; |
| return top[1]; |
| } |
| static uint32_t Predictor4_C(uint32_t left, const uint32_t* const top) { |
| (void)left; |
| return top[-1]; |
| } |
| static uint32_t Predictor5_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average3(left, top[0], top[1]); |
| return pred; |
| } |
| static uint32_t Predictor6_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2(left, top[-1]); |
| return pred; |
| } |
| static uint32_t Predictor7_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2(left, top[0]); |
| return pred; |
| } |
| static uint32_t Predictor8_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2(top[-1], top[0]); |
| (void)left; |
| return pred; |
| } |
| static uint32_t Predictor9_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2(top[0], top[1]); |
| (void)left; |
| return pred; |
| } |
| static uint32_t Predictor10_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average4(left, top[-1], top[0], top[1]); |
| return pred; |
| } |
| static uint32_t Predictor11_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Select(top[0], left, top[-1]); |
| return pred; |
| } |
| static uint32_t Predictor12_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
| return pred; |
| } |
| static uint32_t Predictor13_C(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
| return pred; |
| } |
| |
| GENERATE_PREDICTOR_ADD(Predictor0_C, PredictorAdd0_C) |
| static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| uint32_t left = out[-1]; |
| for (i = 0; i < num_pixels; ++i) { |
| out[i] = left = VP8LAddPixels(in[i], left); |
| } |
| (void)upper; |
| } |
| GENERATE_PREDICTOR_ADD(Predictor2_C, PredictorAdd2_C) |
| GENERATE_PREDICTOR_ADD(Predictor3_C, PredictorAdd3_C) |
| GENERATE_PREDICTOR_ADD(Predictor4_C, PredictorAdd4_C) |
| GENERATE_PREDICTOR_ADD(Predictor5_C, PredictorAdd5_C) |
| GENERATE_PREDICTOR_ADD(Predictor6_C, PredictorAdd6_C) |
| GENERATE_PREDICTOR_ADD(Predictor7_C, PredictorAdd7_C) |
| GENERATE_PREDICTOR_ADD(Predictor8_C, PredictorAdd8_C) |
| GENERATE_PREDICTOR_ADD(Predictor9_C, PredictorAdd9_C) |
| GENERATE_PREDICTOR_ADD(Predictor10_C, PredictorAdd10_C) |
| GENERATE_PREDICTOR_ADD(Predictor11_C, PredictorAdd11_C) |
| GENERATE_PREDICTOR_ADD(Predictor12_C, PredictorAdd12_C) |
| GENERATE_PREDICTOR_ADD(Predictor13_C, PredictorAdd13_C) |
| |
| //------------------------------------------------------------------------------ |
| |
| // Inverse prediction. |
| static void PredictorInverseTransform_C(const VP8LTransform* const transform, |
| int y_start, int y_end, |
| const uint32_t* in, uint32_t* out) { |
| const int width = transform->xsize_; |
| if (y_start == 0) { // First Row follows the L (mode=1) mode. |
| PredictorAdd0_C(in, NULL, 1, out); |
| PredictorAdd1_C(in + 1, NULL, width - 1, out + 1); |
| in += width; |
| out += width; |
| ++y_start; |
| } |
| |
| { |
| int y = y_start; |
| const int tile_width = 1 << transform->bits_; |
| const int mask = tile_width - 1; |
| const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
| const uint32_t* pred_mode_base = |
| transform->data_ + (y >> transform->bits_) * tiles_per_row; |
| |
| while (y < y_end) { |
| const uint32_t* pred_mode_src = pred_mode_base; |
| int x = 1; |
| // First pixel follows the T (mode=2) mode. |
| PredictorAdd2_C(in, out - width, 1, out); |
| // .. the rest: |
| while (x < width) { |
| const VP8LPredictorAddSubFunc pred_func = |
| VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; |
| int x_end = (x & ~mask) + tile_width; |
| if (x_end > width) x_end = width; |
| pred_func(in + x, out + x - width, x_end - x, out + x); |
| x = x_end; |
| } |
| in += width; |
| out += width; |
| ++y; |
| if ((y & mask) == 0) { // Use the same mask, since tiles are squares. |
| pred_mode_base += tiles_per_row; |
| } |
| } |
| } |
| } |
| |
| // Add green to blue and red channels (i.e. perform the inverse transform of |
| // 'subtract green'). |
| void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, |
| uint32_t* dst) { |
| int i; |
| for (i = 0; i < num_pixels; ++i) { |
| const uint32_t argb = src[i]; |
| const uint32_t green = ((argb >> 8) & 0xff); |
| uint32_t red_blue = (argb & 0x00ff00ffu); |
| red_blue += (green << 16) | green; |
| red_blue &= 0x00ff00ffu; |
| dst[i] = (argb & 0xff00ff00u) | red_blue; |
| } |
| } |
| |
| static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, |
| int8_t color) { |
| return ((int)color_pred * color) >> 5; |
| } |
| |
| static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
| VP8LMultipliers* const m) { |
| m->green_to_red_ = (color_code >> 0) & 0xff; |
| m->green_to_blue_ = (color_code >> 8) & 0xff; |
| m->red_to_blue_ = (color_code >> 16) & 0xff; |
| } |
| |
| void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, |
| const uint32_t* src, int num_pixels, |
| uint32_t* dst) { |
| int i; |
| for (i = 0; i < num_pixels; ++i) { |
| const uint32_t argb = src[i]; |
| const uint32_t green = argb >> 8; |
| const uint32_t red = argb >> 16; |
| int new_red = red & 0xff; |
| int new_blue = argb & 0xff; |
| new_red += ColorTransformDelta(m->green_to_red_, green); |
| new_red &= 0xff; |
| new_blue += ColorTransformDelta(m->green_to_blue_, green); |
| new_blue += ColorTransformDelta(m->red_to_blue_, new_red); |
| new_blue &= 0xff; |
| dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
| } |
| } |
| |
| // Color space inverse transform. |
| static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform, |
| int y_start, int y_end, |
| const uint32_t* src, uint32_t* dst) { |
| const int width = transform->xsize_; |
| const int tile_width = 1 << transform->bits_; |
| const int mask = tile_width - 1; |
| const int safe_width = width & ~mask; |
| const int remaining_width = width - safe_width; |
| const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
| int y = y_start; |
| const uint32_t* pred_row = |
| transform->data_ + (y >> transform->bits_) * tiles_per_row; |
| |
| while (y < y_end) { |
| const uint32_t* pred = pred_row; |
| VP8LMultipliers m = { 0, 0, 0 }; |
| const uint32_t* const src_safe_end = src + safe_width; |
| const uint32_t* const src_end = src + width; |
| while (src < src_safe_end) { |
| ColorCodeToMultipliers(*pred++, &m); |
| VP8LTransformColorInverse(&m, src, tile_width, dst); |
| src += tile_width; |
| dst += tile_width; |
| } |
| if (src < src_end) { // Left-overs using C-version. |
| ColorCodeToMultipliers(*pred++, &m); |
| VP8LTransformColorInverse(&m, src, remaining_width, dst); |
| src += remaining_width; |
| dst += remaining_width; |
| } |
| ++y; |
| if ((y & mask) == 0) pred_row += tiles_per_row; |
| } |
| } |
| |
| // Separate out pixels packed together using pixel-bundling. |
| // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). |
| #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ |
| GET_INDEX, GET_VALUE) \ |
| static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ |
| TYPE* dst, int y_start, int y_end, int width) { \ |
| int y; \ |
| for (y = y_start; y < y_end; ++y) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ |
| } \ |
| } \ |
| } \ |
| STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ |
| int y_start, int y_end, const TYPE* src, \ |
| TYPE* dst) { \ |
| int y; \ |
| const int bits_per_pixel = 8 >> transform->bits_; \ |
| const int width = transform->xsize_; \ |
| const uint32_t* const color_map = transform->data_; \ |
| if (bits_per_pixel < 8) { \ |
| const int pixels_per_byte = 1 << transform->bits_; \ |
| const int count_mask = pixels_per_byte - 1; \ |
| const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ |
| for (y = y_start; y < y_end; ++y) { \ |
| uint32_t packed_pixels = 0; \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| /* We need to load fresh 'packed_pixels' once every */ \ |
| /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ |
| /* is a power of 2, so can just use a mask for that, instead of */ \ |
| /* decrementing a counter. */ \ |
| if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ |
| *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ |
| packed_pixels >>= bits_per_pixel; \ |
| } \ |
| } \ |
| } else { \ |
| VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ |
| } \ |
| } |
| |
| COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static, |
| uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue) |
| COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, , |
| uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue) |
| |
| #undef COLOR_INDEX_INVERSE |
| |
| void VP8LInverseTransform(const VP8LTransform* const transform, |
| int row_start, int row_end, |
| const uint32_t* const in, uint32_t* const out) { |
| const int width = transform->xsize_; |
| assert(row_start < row_end); |
| assert(row_end <= transform->ysize_); |
| switch (transform->type_) { |
| case SUBTRACT_GREEN: |
| VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); |
| break; |
| case PREDICTOR_TRANSFORM: |
| PredictorInverseTransform_C(transform, row_start, row_end, in, out); |
| if (row_end != transform->ysize_) { |
| // The last predicted row in this iteration will be the top-pred row |
| // for the first row in next iteration. |
| memcpy(out - width, out + (row_end - row_start - 1) * width, |
| width * sizeof(*out)); |
| } |
| break; |
| case CROSS_COLOR_TRANSFORM: |
| ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out); |
| break; |
| case COLOR_INDEXING_TRANSFORM: |
| if (in == out && transform->bits_ > 0) { |
| // Move packed pixels to the end of unpacked region, so that unpacking |
| // can occur seamlessly. |
| // Also, note that this is the only transform that applies on |
| // the effective width of VP8LSubSampleSize(xsize_, bits_). All other |
| // transforms work on effective width of xsize_. |
| const int out_stride = (row_end - row_start) * width; |
| const int in_stride = (row_end - row_start) * |
| VP8LSubSampleSize(transform->xsize_, transform->bits_); |
| uint32_t* const src = out + out_stride - in_stride; |
| memmove(src, out, in_stride * sizeof(*src)); |
| ColorIndexInverseTransform_C(transform, row_start, row_end, src, out); |
| } else { |
| ColorIndexInverseTransform_C(transform, row_start, row_end, in, out); |
| } |
| break; |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Color space conversion. |
| |
| static int is_big_endian(void) { |
| static const union { |
| uint16_t w; |
| uint8_t b[2]; |
| } tmp = { 1 }; |
| return (tmp.b[0] != 1); |
| } |
| |
| void VP8LConvertBGRAToRGB_C(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const uint32_t* const src_end = src + num_pixels; |
| while (src < src_end) { |
| const uint32_t argb = *src++; |
| *dst++ = (argb >> 16) & 0xff; |
| *dst++ = (argb >> 8) & 0xff; |
| *dst++ = (argb >> 0) & 0xff; |
| } |
| } |
| |
| void VP8LConvertBGRAToRGBA_C(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const uint32_t* const src_end = src + num_pixels; |
| while (src < src_end) { |
| const uint32_t argb = *src++; |
| *dst++ = (argb >> 16) & 0xff; |
| *dst++ = (argb >> 8) & 0xff; |
| *dst++ = (argb >> 0) & 0xff; |
| *dst++ = (argb >> 24) & 0xff; |
| } |
| } |
| |
| void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const uint32_t* const src_end = src + num_pixels; |
| while (src < src_end) { |
| const uint32_t argb = *src++; |
| const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
| const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
| #if (WEBP_SWAP_16BIT_CSP == 1) |
| *dst++ = ba; |
| *dst++ = rg; |
| #else |
| *dst++ = rg; |
| *dst++ = ba; |
| #endif |
| } |
| } |
| |
| void VP8LConvertBGRAToRGB565_C(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const uint32_t* const src_end = src + num_pixels; |
| while (src < src_end) { |
| const uint32_t argb = *src++; |
| const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
| const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
| #if (WEBP_SWAP_16BIT_CSP == 1) |
| *dst++ = gb; |
| *dst++ = rg; |
| #else |
| *dst++ = rg; |
| *dst++ = gb; |
| #endif |
| } |
| } |
| |
| void VP8LConvertBGRAToBGR_C(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const uint32_t* const src_end = src + num_pixels; |
| while (src < src_end) { |
| const uint32_t argb = *src++; |
| *dst++ = (argb >> 0) & 0xff; |
| *dst++ = (argb >> 8) & 0xff; |
| *dst++ = (argb >> 16) & 0xff; |
| } |
| } |
| |
| static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
| int swap_on_big_endian) { |
| if (is_big_endian() == swap_on_big_endian) { |
| const uint32_t* const src_end = src + num_pixels; |
| while (src < src_end) { |
| const uint32_t argb = *src++; |
| WebPUint32ToMem(dst, BSwap32(argb)); |
| dst += sizeof(argb); |
| } |
| } else { |
| memcpy(dst, src, num_pixels * sizeof(*src)); |
| } |
| } |
| |
| void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, |
| WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { |
| switch (out_colorspace) { |
| case MODE_RGB: |
| VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); |
| break; |
| case MODE_RGBA: |
| VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
| break; |
| case MODE_rgbA: |
| VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
| WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
| break; |
| case MODE_BGR: |
| VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); |
| break; |
| case MODE_BGRA: |
| CopyOrSwap(in_data, num_pixels, rgba, 1); |
| break; |
| case MODE_bgrA: |
| CopyOrSwap(in_data, num_pixels, rgba, 1); |
| WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
| break; |
| case MODE_ARGB: |
| CopyOrSwap(in_data, num_pixels, rgba, 0); |
| break; |
| case MODE_Argb: |
| CopyOrSwap(in_data, num_pixels, rgba, 0); |
| WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); |
| break; |
| case MODE_RGBA_4444: |
| VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
| break; |
| case MODE_rgbA_4444: |
| VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
| WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); |
| break; |
| case MODE_RGB_565: |
| VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); |
| break; |
| default: |
| assert(0); // Code flow should not reach here. |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; |
| VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; |
| VP8LPredictorFunc VP8LPredictors[16]; |
| |
| // exposed plain-C implementations |
| VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; |
| VP8LPredictorFunc VP8LPredictors_C[16]; |
| |
| VP8LTransformColorInverseFunc VP8LTransformColorInverse; |
| |
| VP8LConvertFunc VP8LConvertBGRAToRGB; |
| VP8LConvertFunc VP8LConvertBGRAToRGBA; |
| VP8LConvertFunc VP8LConvertBGRAToRGBA4444; |
| VP8LConvertFunc VP8LConvertBGRAToRGB565; |
| VP8LConvertFunc VP8LConvertBGRAToBGR; |
| |
| VP8LMapARGBFunc VP8LMapColor32b; |
| VP8LMapAlphaFunc VP8LMapColor8b; |
| |
| extern void VP8LDspInitSSE2(void); |
| extern void VP8LDspInitNEON(void); |
| extern void VP8LDspInitMIPSdspR2(void); |
| extern void VP8LDspInitMSA(void); |
| |
| #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ |
| (OUT)[0] = IN##0_C; \ |
| (OUT)[1] = IN##1_C; \ |
| (OUT)[2] = IN##2_C; \ |
| (OUT)[3] = IN##3_C; \ |
| (OUT)[4] = IN##4_C; \ |
| (OUT)[5] = IN##5_C; \ |
| (OUT)[6] = IN##6_C; \ |
| (OUT)[7] = IN##7_C; \ |
| (OUT)[8] = IN##8_C; \ |
| (OUT)[9] = IN##9_C; \ |
| (OUT)[10] = IN##10_C; \ |
| (OUT)[11] = IN##11_C; \ |
| (OUT)[12] = IN##12_C; \ |
| (OUT)[13] = IN##13_C; \ |
| (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \ |
| (OUT)[15] = IN##0_C; \ |
| } while (0); |
| |
| WEBP_DSP_INIT_FUNC(VP8LDspInit) { |
| COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) |
| COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) |
| COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) |
| COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) |
| |
| #if !WEBP_NEON_OMIT_C_CODE |
| VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; |
| |
| VP8LTransformColorInverse = VP8LTransformColorInverse_C; |
| |
| VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; |
| VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; |
| VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; |
| #endif |
| |
| VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; |
| VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; |
| |
| VP8LMapColor32b = MapARGB_C; |
| VP8LMapColor8b = MapAlpha_C; |
| |
| // If defined, use CPUInfo() to overwrite some pointers with faster versions. |
| if (VP8GetCPUInfo != NULL) { |
| #if defined(WEBP_USE_SSE2) |
| if (VP8GetCPUInfo(kSSE2)) { |
| VP8LDspInitSSE2(); |
| } |
| #endif |
| #if defined(WEBP_USE_MIPS_DSP_R2) |
| if (VP8GetCPUInfo(kMIPSdspR2)) { |
| VP8LDspInitMIPSdspR2(); |
| } |
| #endif |
| #if defined(WEBP_USE_MSA) |
| if (VP8GetCPUInfo(kMSA)) { |
| VP8LDspInitMSA(); |
| } |
| #endif |
| } |
| |
| #if defined(WEBP_USE_NEON) |
| if (WEBP_NEON_OMIT_C_CODE || |
| (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { |
| VP8LDspInitNEON(); |
| } |
| #endif |
| |
| assert(VP8LAddGreenToBlueAndRed != NULL); |
| assert(VP8LTransformColorInverse != NULL); |
| assert(VP8LConvertBGRAToRGBA != NULL); |
| assert(VP8LConvertBGRAToRGB != NULL); |
| assert(VP8LConvertBGRAToBGR != NULL); |
| assert(VP8LConvertBGRAToRGBA4444 != NULL); |
| assert(VP8LConvertBGRAToRGB565 != NULL); |
| assert(VP8LMapColor32b != NULL); |
| assert(VP8LMapColor8b != NULL); |
| } |
| #undef COPY_PREDICTOR_ARRAY |
| |
| //------------------------------------------------------------------------------ |