| // Copyright 2015 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // SSE2 variant of methods for lossless encoder |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include "src/dsp/dsp.h" |
| |
| #if defined(WEBP_USE_SSE2) |
| #include <assert.h> |
| #include <emmintrin.h> |
| #include "src/dsp/lossless.h" |
| #include "src/dsp/common_sse2.h" |
| #include "src/dsp/lossless_common.h" |
| |
| // For sign-extended multiplying constants, pre-shifted by 5: |
| #define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5) |
| |
| //------------------------------------------------------------------------------ |
| // Subtract-Green Transform |
| |
| static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data, |
| int num_pixels) { |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
| const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
| const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
| const __m128i out = _mm_sub_epi8(in, C); |
| _mm_storeu_si128((__m128i*)&argb_data[i], out); |
| } |
| // fallthrough and finish off with plain-C |
| if (i != num_pixels) { |
| VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Color Transform |
| |
| #define MK_CST_16(HI, LO) \ |
| _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) |
| |
| static void TransformColor_SSE2(const VP8LMultipliers* const m, |
| uint32_t* argb_data, int num_pixels) { |
| const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_), |
| CST_5b(m->green_to_blue_)); |
| const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0); |
| const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks |
| const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
| const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
| const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
| const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
| const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0 |
| const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0 |
| const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2 |
| const __m128i H = _mm_add_epi8(G, D); // x dr x db |
| const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db |
| const __m128i out = _mm_sub_epi8(in, I); |
| _mm_storeu_si128((__m128i*)&argb_data[i], out); |
| } |
| // fallthrough and finish off with plain-C |
| if (i != num_pixels) { |
| VP8LTransformColor_C(m, argb_data + i, num_pixels - i); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| #define SPAN 8 |
| static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride, |
| int tile_width, int tile_height, |
| int green_to_blue, int red_to_blue, |
| int histo[]) { |
| const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0); |
| const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue)); |
| const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
| const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask |
| int y; |
| for (y = 0; y < tile_height; ++y) { |
| const uint32_t* const src = argb + y * stride; |
| int i, x; |
| for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
| uint16_t values[SPAN]; |
| const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
| const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
| const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0 |
| const __m128i A1 = _mm_slli_epi16(in1, 8); |
| const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
| const __m128i B1 = _mm_and_si128(in1, mask_g); |
| const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0 |
| const __m128i C1 = _mm_mulhi_epi16(A1, mults_r); |
| const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db |
| const __m128i D1 = _mm_mulhi_epi16(B1, mults_g); |
| const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b' |
| const __m128i E1 = _mm_sub_epi8(in1, D1); |
| const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db |
| const __m128i F1 = _mm_srli_epi32(C1, 16); |
| const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b' |
| const __m128i G1 = _mm_sub_epi8(E1, F1); |
| const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b |
| const __m128i H1 = _mm_and_si128(G1, mask_b); |
| const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b' |
| _mm_storeu_si128((__m128i*)values, I); |
| for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
| } |
| } |
| { |
| const int left_over = tile_width & (SPAN - 1); |
| if (left_over > 0) { |
| VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, |
| left_over, tile_height, |
| green_to_blue, red_to_blue, histo); |
| } |
| } |
| } |
| |
| static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride, |
| int tile_width, int tile_height, |
| int green_to_red, int histo[]) { |
| const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red)); |
| const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
| const __m128i mask = _mm_set1_epi32(0xff); |
| |
| int y; |
| for (y = 0; y < tile_height; ++y) { |
| const uint32_t* const src = argb + y * stride; |
| int i, x; |
| for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
| uint16_t values[SPAN]; |
| const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
| const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
| const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
| const __m128i A1 = _mm_and_si128(in1, mask_g); |
| const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r |
| const __m128i B1 = _mm_srli_epi32(in1, 16); |
| const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr |
| const __m128i C1 = _mm_mulhi_epi16(A1, mults_g); |
| const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r' |
| const __m128i E1 = _mm_sub_epi8(B1, C1); |
| const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r' |
| const __m128i F1 = _mm_and_si128(E1, mask); |
| const __m128i I = _mm_packs_epi32(F0, F1); |
| _mm_storeu_si128((__m128i*)values, I); |
| for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
| } |
| } |
| { |
| const int left_over = tile_width & (SPAN - 1); |
| if (left_over > 0) { |
| VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, |
| left_over, tile_height, |
| green_to_red, histo); |
| } |
| } |
| } |
| #undef SPAN |
| #undef MK_CST_16 |
| |
| //------------------------------------------------------------------------------ |
| |
| #define LINE_SIZE 16 // 8 or 16 |
| static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out, |
| int size) { |
| int i; |
| assert(size % LINE_SIZE == 0); |
| for (i = 0; i < size; i += LINE_SIZE) { |
| const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
| const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
| #if (LINE_SIZE == 16) |
| const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
| const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
| #endif |
| const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]); |
| const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]); |
| #if (LINE_SIZE == 16) |
| const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]); |
| const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]); |
| #endif |
| _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
| _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
| #if (LINE_SIZE == 16) |
| _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
| _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
| #endif |
| } |
| } |
| |
| static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) { |
| int i; |
| assert(size % LINE_SIZE == 0); |
| for (i = 0; i < size; i += LINE_SIZE) { |
| const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
| const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
| #if (LINE_SIZE == 16) |
| const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
| const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
| #endif |
| const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]); |
| const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]); |
| #if (LINE_SIZE == 16) |
| const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]); |
| const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]); |
| #endif |
| _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
| _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
| #if (LINE_SIZE == 16) |
| _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
| _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
| #endif |
| } |
| } |
| #undef LINE_SIZE |
| |
| // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But |
| // that's ok since the histogram values are less than 1<<28 (max picture size). |
| static void HistogramAdd_SSE2(const VP8LHistogram* const a, |
| const VP8LHistogram* const b, |
| VP8LHistogram* const out) { |
| int i; |
| const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); |
| assert(a->palette_code_bits_ == b->palette_code_bits_); |
| if (b != out) { |
| AddVector_SSE2(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES); |
| AddVector_SSE2(a->red_, b->red_, out->red_, NUM_LITERAL_CODES); |
| AddVector_SSE2(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES); |
| AddVector_SSE2(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES); |
| } else { |
| AddVectorEq_SSE2(a->literal_, out->literal_, NUM_LITERAL_CODES); |
| AddVectorEq_SSE2(a->red_, out->red_, NUM_LITERAL_CODES); |
| AddVectorEq_SSE2(a->blue_, out->blue_, NUM_LITERAL_CODES); |
| AddVectorEq_SSE2(a->alpha_, out->alpha_, NUM_LITERAL_CODES); |
| } |
| for (i = NUM_LITERAL_CODES; i < literal_size; ++i) { |
| out->literal_[i] = a->literal_[i] + b->literal_[i]; |
| } |
| for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
| out->distance_[i] = a->distance_[i] + b->distance_[i]; |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entropy |
| |
| // Checks whether the X or Y contribution is worth computing and adding. |
| // Used in loop unrolling. |
| #define ANALYZE_X_OR_Y(x_or_y, j) \ |
| do { \ |
| if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \ |
| } while (0) |
| |
| // Checks whether the X + Y contribution is worth computing and adding. |
| // Used in loop unrolling. |
| #define ANALYZE_XY(j) \ |
| do { \ |
| if (tmp[j] != 0) { \ |
| retval -= VP8LFastSLog2(tmp[j]); \ |
| ANALYZE_X_OR_Y(X, j); \ |
| } \ |
| } while (0) |
| |
| static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) { |
| int i; |
| double retval = 0.; |
| int sumX, sumXY; |
| int32_t tmp[4]; |
| __m128i zero = _mm_setzero_si128(); |
| // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY). |
| __m128i sumXY_128 = zero; |
| __m128i sumX_128 = zero; |
| |
| for (i = 0; i < 256; i += 4) { |
| const __m128i x = _mm_loadu_si128((const __m128i*)(X + i)); |
| const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i)); |
| |
| // Check if any X is non-zero: this actually provides a speedup as X is |
| // usually sparse. |
| if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) { |
| const __m128i xy_128 = _mm_add_epi32(x, y); |
| sumXY_128 = _mm_add_epi32(sumXY_128, xy_128); |
| |
| sumX_128 = _mm_add_epi32(sumX_128, x); |
| |
| // Analyze the different X + Y. |
| _mm_storeu_si128((__m128i*)tmp, xy_128); |
| |
| ANALYZE_XY(0); |
| ANALYZE_XY(1); |
| ANALYZE_XY(2); |
| ANALYZE_XY(3); |
| } else { |
| // X is fully 0, so only deal with Y. |
| sumXY_128 = _mm_add_epi32(sumXY_128, y); |
| |
| ANALYZE_X_OR_Y(Y, 0); |
| ANALYZE_X_OR_Y(Y, 1); |
| ANALYZE_X_OR_Y(Y, 2); |
| ANALYZE_X_OR_Y(Y, 3); |
| } |
| } |
| |
| // Sum up sumX_128 to get sumX. |
| _mm_storeu_si128((__m128i*)tmp, sumX_128); |
| sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
| |
| // Sum up sumXY_128 to get sumXY. |
| _mm_storeu_si128((__m128i*)tmp, sumXY_128); |
| sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
| |
| retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
| return (float)retval; |
| } |
| #undef ANALYZE_X_OR_Y |
| #undef ANALYZE_XY |
| |
| //------------------------------------------------------------------------------ |
| |
| static int VectorMismatch_SSE2(const uint32_t* const array1, |
| const uint32_t* const array2, int length) { |
| int match_len; |
| |
| if (length >= 12) { |
| __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]); |
| __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]); |
| match_len = 0; |
| do { |
| // Loop unrolling and early load both provide a speedup of 10% for the |
| // current function. Also, max_limit can be MAX_LENGTH=4096 at most. |
| const __m128i cmpA = _mm_cmpeq_epi32(A0, A1); |
| const __m128i B0 = |
| _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
| const __m128i B1 = |
| _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
| if (_mm_movemask_epi8(cmpA) != 0xffff) break; |
| match_len += 4; |
| |
| { |
| const __m128i cmpB = _mm_cmpeq_epi32(B0, B1); |
| A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
| A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
| if (_mm_movemask_epi8(cmpB) != 0xffff) break; |
| match_len += 4; |
| } |
| } while (match_len + 12 < length); |
| } else { |
| match_len = 0; |
| // Unroll the potential first two loops. |
| if (length >= 4 && |
| _mm_movemask_epi8(_mm_cmpeq_epi32( |
| _mm_loadu_si128((const __m128i*)&array1[0]), |
| _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) { |
| match_len = 4; |
| if (length >= 8 && |
| _mm_movemask_epi8(_mm_cmpeq_epi32( |
| _mm_loadu_si128((const __m128i*)&array1[4]), |
| _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) { |
| match_len = 8; |
| } |
| } |
| } |
| |
| while (match_len < length && array1[match_len] == array2[match_len]) { |
| ++match_len; |
| } |
| return match_len; |
| } |
| |
| // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. |
| static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits, |
| uint32_t* dst) { |
| int x; |
| assert(xbits >= 0); |
| assert(xbits <= 3); |
| switch (xbits) { |
| case 0: { |
| const __m128i ff = _mm_set1_epi16(0xff00); |
| const __m128i zero = _mm_setzero_si128(); |
| // Store 0xff000000 | (row[x] << 8). |
| for (x = 0; x + 16 <= width; x += 16, dst += 16) { |
| const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| const __m128i in_lo = _mm_unpacklo_epi8(zero, in); |
| const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff); |
| const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff); |
| const __m128i in_hi = _mm_unpackhi_epi8(zero, in); |
| const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff); |
| const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff); |
| _mm_storeu_si128((__m128i*)&dst[0], dst0); |
| _mm_storeu_si128((__m128i*)&dst[4], dst1); |
| _mm_storeu_si128((__m128i*)&dst[8], dst2); |
| _mm_storeu_si128((__m128i*)&dst[12], dst3); |
| } |
| break; |
| } |
| case 1: { |
| const __m128i ff = _mm_set1_epi16(0xff00); |
| const __m128i mul = _mm_set1_epi16(0x110); |
| for (x = 0; x + 16 <= width; x += 16, dst += 8) { |
| // 0a0b | (where a/b are 4 bits). |
| const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0 |
| const __m128i pack = _mm_and_si128(tmp, ff); // ab00 |
| const __m128i dst0 = _mm_unpacklo_epi16(pack, ff); |
| const __m128i dst1 = _mm_unpackhi_epi16(pack, ff); |
| _mm_storeu_si128((__m128i*)&dst[0], dst0); |
| _mm_storeu_si128((__m128i*)&dst[4], dst1); |
| } |
| break; |
| } |
| case 2: { |
| const __m128i mask_or = _mm_set1_epi32(0xff000000); |
| const __m128i mul_cst = _mm_set1_epi16(0x0104); |
| const __m128i mask_mul = _mm_set1_epi16(0x0f00); |
| for (x = 0; x + 16 <= width; x += 16, dst += 4) { |
| // 000a000b000c000d | (where a/b/c/d are 2 bits). |
| const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 |
| const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000 |
| const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000 |
| const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000 |
| // Convert to 0xff00**00. |
| const __m128i res = _mm_or_si128(pack, mask_or); |
| _mm_storeu_si128((__m128i*)dst, res); |
| } |
| break; |
| } |
| default: { |
| assert(xbits == 3); |
| for (x = 0; x + 16 <= width; x += 16, dst += 2) { |
| // 0000000a00000000b... | (where a/b are 1 bit). |
| const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| const __m128i shift = _mm_slli_epi64(in, 7); |
| const uint32_t move = _mm_movemask_epi8(shift); |
| dst[0] = 0xff000000 | ((move & 0xff) << 8); |
| dst[1] = 0xff000000 | (move & 0xff00); |
| } |
| break; |
| } |
| } |
| if (x != width) { |
| VP8LBundleColorMap_C(row + x, width - x, xbits, dst); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Batch version of Predictor Transform subtraction |
| |
| static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
| const __m128i* const a1, |
| __m128i* const avg) { |
| // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
| const __m128i ones = _mm_set1_epi8(1); |
| const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
| const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
| *avg = _mm_sub_epi8(avg1, one); |
| } |
| |
| // Predictor0: ARGB_BLACK. |
| static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| const __m128i black = _mm_set1_epi32(ARGB_BLACK); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| const __m128i res = _mm_sub_epi8(src, black); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| #define GENERATE_PREDICTOR_1(X, IN) \ |
| static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| int num_pixels, uint32_t* out) { \ |
| int i; \ |
| for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \ |
| const __m128i res = _mm_sub_epi8(src, pred); \ |
| _mm_storeu_si128((__m128i*)&out[i], res); \ |
| } \ |
| if (i != num_pixels) { \ |
| VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| } \ |
| } |
| |
| GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L |
| GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T |
| GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR |
| GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL |
| #undef GENERATE_PREDICTOR_1 |
| |
| // Predictor5: avg2(avg2(L, TR), T) |
| static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| __m128i avg, pred, res; |
| Average2_m128i(&L, &TR, &avg); |
| Average2_m128i(&avg, &T, &pred); |
| res = _mm_sub_epi8(src, pred); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| #define GENERATE_PREDICTOR_2(X, A, B) \ |
| static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| int num_pixels, uint32_t* out) { \ |
| int i; \ |
| for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \ |
| const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \ |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| __m128i pred, res; \ |
| Average2_m128i(&tA, &tB, &pred); \ |
| res = _mm_sub_epi8(src, pred); \ |
| _mm_storeu_si128((__m128i*)&out[i], res); \ |
| } \ |
| if (i != num_pixels) { \ |
| VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| } \ |
| } |
| |
| GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) |
| GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) |
| GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) |
| GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) |
| #undef GENERATE_PREDICTOR_2 |
| |
| // Predictor10: avg(avg(L,TL), avg(T, TR)). |
| static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
| __m128i avgTTR, avgLTL, avg, res; |
| Average2_m128i(&T, &TR, &avgTTR); |
| Average2_m128i(&L, &TL, &avgLTL); |
| Average2_m128i(&avgTTR, &avgLTL, &avg); |
| res = _mm_sub_epi8(src, avg); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| // Predictor11: select. |
| static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B, |
| __m128i* const out) { |
| // We can unpack with any value on the upper 32 bits, provided it's the same |
| // on both operands (to that their sum of abs diff is zero). Here we use *A. |
| const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); |
| const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); |
| const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); |
| const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); |
| const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); |
| const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); |
| *out = _mm_packs_epi32(s_lo, s_hi); |
| } |
| |
| static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| __m128i pa, pb; |
| GetSumAbsDiff32_SSE2(&T, &TL, &pa); // pa = sum |T-TL| |
| GetSumAbsDiff32_SSE2(&L, &TL, &pb); // pb = sum |L-TL| |
| { |
| const __m128i mask = _mm_cmpgt_epi32(pb, pa); |
| const __m128i A = _mm_and_si128(mask, L); |
| const __m128i B = _mm_andnot_si128(mask, T); |
| const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T |
| const __m128i res = _mm_sub_epi8(src, pred); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| } |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| // Predictor12: ClampedSubSubtractFull. |
| static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| const __m128i zero = _mm_setzero_si128(); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
| const __m128i L_hi = _mm_unpackhi_epi8(L, zero); |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
| const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
| const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
| const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
| const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
| const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
| const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo); |
| const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi); |
| const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi); |
| const __m128i res = _mm_sub_epi8(src, pred); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| // Predictors13: ClampedAddSubtractHalf |
| static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| const __m128i zero = _mm_setzero_si128(); |
| for (i = 0; i + 2 <= num_pixels; i += 2) { |
| // we can only process two pixels at a time |
| const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]); |
| const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]); |
| const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]); |
| const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]); |
| const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
| const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
| const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
| const __m128i sum = _mm_add_epi16(T_lo, L_lo); |
| const __m128i avg = _mm_srli_epi16(sum, 1); |
| const __m128i A1 = _mm_sub_epi16(avg, TL_lo); |
| const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg); |
| const __m128i A2 = _mm_sub_epi16(A1, bit_fix); |
| const __m128i A3 = _mm_srai_epi16(A2, 1); |
| const __m128i A4 = _mm_add_epi16(avg, A3); |
| const __m128i pred = _mm_packus_epi16(A4, A4); |
| const __m128i res = _mm_sub_epi8(src, pred); |
| _mm_storel_epi64((__m128i*)&out[i], res); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| extern void VP8LEncDspInitSSE2(void); |
| |
| WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) { |
| VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2; |
| VP8LTransformColor = TransformColor_SSE2; |
| VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2; |
| VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2; |
| VP8LHistogramAdd = HistogramAdd_SSE2; |
| VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2; |
| VP8LVectorMismatch = VectorMismatch_SSE2; |
| VP8LBundleColorMap = BundleColorMap_SSE2; |
| |
| VP8LPredictorsSub[0] = PredictorSub0_SSE2; |
| VP8LPredictorsSub[1] = PredictorSub1_SSE2; |
| VP8LPredictorsSub[2] = PredictorSub2_SSE2; |
| VP8LPredictorsSub[3] = PredictorSub3_SSE2; |
| VP8LPredictorsSub[4] = PredictorSub4_SSE2; |
| VP8LPredictorsSub[5] = PredictorSub5_SSE2; |
| VP8LPredictorsSub[6] = PredictorSub6_SSE2; |
| VP8LPredictorsSub[7] = PredictorSub7_SSE2; |
| VP8LPredictorsSub[8] = PredictorSub8_SSE2; |
| VP8LPredictorsSub[9] = PredictorSub9_SSE2; |
| VP8LPredictorsSub[10] = PredictorSub10_SSE2; |
| VP8LPredictorsSub[11] = PredictorSub11_SSE2; |
| VP8LPredictorsSub[12] = PredictorSub12_SSE2; |
| VP8LPredictorsSub[13] = PredictorSub13_SSE2; |
| VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels |
| VP8LPredictorsSub[15] = PredictorSub0_SSE2; |
| } |
| |
| #else // !WEBP_USE_SSE2 |
| |
| WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2) |
| |
| #endif // WEBP_USE_SSE2 |