| // Copyright 2014 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // SSE2 variant of methods for lossless decoder |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include "src/dsp/dsp.h" |
| |
| #if defined(WEBP_USE_SSE2) |
| |
| #include "src/dsp/common_sse2.h" |
| #include "src/dsp/lossless.h" |
| #include "src/dsp/lossless_common.h" |
| #include <assert.h> |
| #include <emmintrin.h> |
| |
| //------------------------------------------------------------------------------ |
| // Predictor Transform |
| |
| static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0, |
| uint32_t c1, |
| uint32_t c2) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); |
| const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); |
| const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
| const __m128i V1 = _mm_add_epi16(C0, C1); |
| const __m128i V2 = _mm_sub_epi16(V1, C2); |
| const __m128i b = _mm_packus_epi16(V2, V2); |
| const uint32_t output = _mm_cvtsi128_si32(b); |
| return output; |
| } |
| |
| static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0, |
| uint32_t c1, |
| uint32_t c2) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); |
| const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); |
| const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
| const __m128i avg = _mm_add_epi16(C1, C0); |
| const __m128i A0 = _mm_srli_epi16(avg, 1); |
| const __m128i A1 = _mm_sub_epi16(A0, B0); |
| const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); |
| const __m128i A2 = _mm_sub_epi16(A1, BgtA); |
| const __m128i A3 = _mm_srai_epi16(A2, 1); |
| const __m128i A4 = _mm_add_epi16(A0, A3); |
| const __m128i A5 = _mm_packus_epi16(A4, A4); |
| const uint32_t output = _mm_cvtsi128_si32(A5); |
| return output; |
| } |
| |
| static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) { |
| int pa_minus_pb; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i A0 = _mm_cvtsi32_si128(a); |
| const __m128i B0 = _mm_cvtsi32_si128(b); |
| const __m128i C0 = _mm_cvtsi32_si128(c); |
| const __m128i AC0 = _mm_subs_epu8(A0, C0); |
| const __m128i CA0 = _mm_subs_epu8(C0, A0); |
| const __m128i BC0 = _mm_subs_epu8(B0, C0); |
| const __m128i CB0 = _mm_subs_epu8(C0, B0); |
| const __m128i AC = _mm_or_si128(AC0, CA0); |
| const __m128i BC = _mm_or_si128(BC0, CB0); |
| const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| |
| const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| |
| const __m128i diff = _mm_sub_epi16(pb, pa); |
| { |
| int16_t out[8]; |
| _mm_storeu_si128((__m128i*)out, diff); |
| pa_minus_pb = out[0] + out[1] + out[2] + out[3]; |
| } |
| return (pa_minus_pb <= 0) ? a : b; |
| } |
| |
| static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
| const __m128i* const a1, |
| __m128i* const avg) { |
| // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
| const __m128i ones = _mm_set1_epi8(1); |
| const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
| const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
| *avg = _mm_sub_epi8(avg1, one); |
| } |
| |
| static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0, |
| const uint32_t a1, |
| __m128i* const avg) { |
| // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
| const __m128i ones = _mm_set1_epi8(1); |
| const __m128i A0 = _mm_cvtsi32_si128(a0); |
| const __m128i A1 = _mm_cvtsi32_si128(a1); |
| const __m128i avg1 = _mm_avg_epu8(A0, A1); |
| const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); |
| *avg = _mm_sub_epi8(avg1, one); |
| } |
| |
| static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero); |
| const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); |
| const __m128i sum = _mm_add_epi16(A1, A0); |
| return _mm_srli_epi16(sum, 1); |
| } |
| |
| static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) { |
| __m128i output; |
| Average2_uint32_SSE2(a0, a1, &output); |
| return _mm_cvtsi128_si32(output); |
| } |
| |
| static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1, |
| uint32_t a2) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2); |
| const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); |
| const __m128i sum = _mm_add_epi16(avg1, A1); |
| const __m128i avg2 = _mm_srli_epi16(sum, 1); |
| const __m128i A2 = _mm_packus_epi16(avg2, avg2); |
| const uint32_t output = _mm_cvtsi128_si32(A2); |
| return output; |
| } |
| |
| static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1, |
| uint32_t a2, uint32_t a3) { |
| const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1); |
| const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3); |
| const __m128i sum = _mm_add_epi16(avg2, avg1); |
| const __m128i avg3 = _mm_srli_epi16(sum, 1); |
| const __m128i A0 = _mm_packus_epi16(avg3, avg3); |
| const uint32_t output = _mm_cvtsi128_si32(A0); |
| return output; |
| } |
| |
| static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average3_SSE2(left, top[0], top[1]); |
| return pred; |
| } |
| static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2_SSE2(left, top[-1]); |
| return pred; |
| } |
| static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2_SSE2(left, top[0]); |
| return pred; |
| } |
| static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2_SSE2(top[-1], top[0]); |
| (void)left; |
| return pred; |
| } |
| static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average2_SSE2(top[0], top[1]); |
| (void)left; |
| return pred; |
| } |
| static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Average4_SSE2(left, top[-1], top[0], top[1]); |
| return pred; |
| } |
| static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = Select_SSE2(top[0], left, top[-1]); |
| return pred; |
| } |
| static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = ClampedAddSubtractFull_SSE2(left, top[0], top[-1]); |
| return pred; |
| } |
| static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) { |
| const uint32_t pred = ClampedAddSubtractHalf_SSE2(left, top[0], top[-1]); |
| return pred; |
| } |
| |
| // Batch versions of those functions. |
| |
| // Predictor0: ARGB_BLACK. |
| static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| const __m128i black = _mm_set1_epi32(ARGB_BLACK); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| const __m128i res = _mm_add_epi8(src, black); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| // Predictor1: left. |
| static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| __m128i prev = _mm_set1_epi32(out[-1]); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| // a | b | c | d |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| // 0 | a | b | c |
| const __m128i shift0 = _mm_slli_si128(src, 4); |
| // a | a + b | b + c | c + d |
| const __m128i sum0 = _mm_add_epi8(src, shift0); |
| // 0 | 0 | a | a + b |
| const __m128i shift1 = _mm_slli_si128(sum0, 8); |
| // a | a + b | a + b + c | a + b + c + d |
| const __m128i sum1 = _mm_add_epi8(sum0, shift1); |
| const __m128i res = _mm_add_epi8(sum1, prev); |
| _mm_storeu_si128((__m128i*)&out[i], res); |
| // replicate prev output on the four lanes |
| prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| |
| // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
| // per 8 bit channel. |
| #define GENERATE_PREDICTOR_1(X, IN) \ |
| static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| int num_pixels, uint32_t* out) { \ |
| int i; \ |
| for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ |
| const __m128i res = _mm_add_epi8(src, other); \ |
| _mm_storeu_si128((__m128i*)&out[i], res); \ |
| } \ |
| if (i != num_pixels) { \ |
| VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| } \ |
| } |
| |
| // Predictor2: Top. |
| GENERATE_PREDICTOR_1(2, upper[i]) |
| // Predictor3: Top-right. |
| GENERATE_PREDICTOR_1(3, upper[i + 1]) |
| // Predictor4: Top-left. |
| GENERATE_PREDICTOR_1(4, upper[i - 1]) |
| #undef GENERATE_PREDICTOR_1 |
| |
| // Due to averages with integers, values cannot be accumulated in parallel for |
| // predictors 5 to 7. |
| GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) |
| GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) |
| GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) |
| |
| #define GENERATE_PREDICTOR_2(X, IN) \ |
| static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| int num_pixels, uint32_t* out) { \ |
| int i; \ |
| for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ |
| const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| __m128i avg, res; \ |
| Average2_m128i(&T, &Tother, &avg); \ |
| res = _mm_add_epi8(avg, src); \ |
| _mm_storeu_si128((__m128i*)&out[i], res); \ |
| } \ |
| if (i != num_pixels) { \ |
| VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| } \ |
| } |
| // Predictor8: average TL T. |
| GENERATE_PREDICTOR_2(8, upper[i - 1]) |
| // Predictor9: average T TR. |
| GENERATE_PREDICTOR_2(9, upper[i + 1]) |
| #undef GENERATE_PREDICTOR_2 |
| |
| // Predictor10: average of (average of (L,TL), average of (T, TR)). |
| #define DO_PRED10(OUT) do { \ |
| __m128i avgLTL, avg; \ |
| Average2_m128i(&L, &TL, &avgLTL); \ |
| Average2_m128i(&avgTTR, &avgLTL, &avg); \ |
| L = _mm_add_epi8(avg, src); \ |
| out[i + (OUT)] = _mm_cvtsi128_si32(L); \ |
| } while (0) |
| |
| #define DO_PRED10_SHIFT do { \ |
| /* Rotate the pre-computed values for the next iteration.*/ \ |
| avgTTR = _mm_srli_si128(avgTTR, 4); \ |
| TL = _mm_srli_si128(TL, 4); \ |
| src = _mm_srli_si128(src, 4); \ |
| } while (0) |
| |
| static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| __m128i L = _mm_cvtsi32_si128(out[-1]); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
| __m128i avgTTR; |
| Average2_m128i(&T, &TR, &avgTTR); |
| DO_PRED10(0); |
| DO_PRED10_SHIFT; |
| DO_PRED10(1); |
| DO_PRED10_SHIFT; |
| DO_PRED10(2); |
| DO_PRED10_SHIFT; |
| DO_PRED10(3); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| #undef DO_PRED10 |
| #undef DO_PRED10_SHIFT |
| |
| // Predictor11: select. |
| #define DO_PRED11(OUT) do { \ |
| const __m128i L_lo = _mm_unpacklo_epi32(L, T); \ |
| const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \ |
| const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \ |
| const __m128i mask = _mm_cmpgt_epi32(pb, pa); \ |
| const __m128i A = _mm_and_si128(mask, L); \ |
| const __m128i B = _mm_andnot_si128(mask, T); \ |
| const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \ |
| L = _mm_add_epi8(src, pred); \ |
| out[i + (OUT)] = _mm_cvtsi128_si32(L); \ |
| } while (0) |
| |
| #define DO_PRED11_SHIFT do { \ |
| /* Shift the pre-computed value for the next iteration.*/ \ |
| T = _mm_srli_si128(T, 4); \ |
| TL = _mm_srli_si128(TL, 4); \ |
| src = _mm_srli_si128(src, 4); \ |
| pa = _mm_srli_si128(pa, 4); \ |
| } while (0) |
| |
| static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| __m128i pa; |
| __m128i L = _mm_cvtsi32_si128(out[-1]); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| { |
| // We can unpack with any value on the upper 32 bits, provided it's the |
| // same on both operands (so that their sum of abs diff is zero). Here we |
| // use T. |
| const __m128i T_lo = _mm_unpacklo_epi32(T, T); |
| const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); |
| const __m128i T_hi = _mm_unpackhi_epi32(T, T); |
| const __m128i TL_hi = _mm_unpackhi_epi32(TL, T); |
| const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo); |
| const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi); |
| pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL| |
| } |
| DO_PRED11(0); |
| DO_PRED11_SHIFT; |
| DO_PRED11(1); |
| DO_PRED11_SHIFT; |
| DO_PRED11(2); |
| DO_PRED11_SHIFT; |
| DO_PRED11(3); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| #undef DO_PRED11 |
| #undef DO_PRED11_SHIFT |
| |
| // Predictor12: ClampedAddSubtractFull. |
| #define DO_PRED12(DIFF, LANE, OUT) do { \ |
| const __m128i all = _mm_add_epi16(L, (DIFF)); \ |
| const __m128i alls = _mm_packus_epi16(all, all); \ |
| const __m128i res = _mm_add_epi8(src, alls); \ |
| out[i + (OUT)] = _mm_cvtsi128_si32(res); \ |
| L = _mm_unpacklo_epi8(res, zero); \ |
| } while (0) |
| |
| #define DO_PRED12_SHIFT(DIFF, LANE) do { \ |
| /* Shift the pre-computed value for the next iteration.*/ \ |
| if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ |
| src = _mm_srli_si128(src, 4); \ |
| } while (0) |
| |
| static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, |
| int num_pixels, uint32_t* out) { |
| int i; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i L8 = _mm_cvtsi32_si128(out[-1]); |
| __m128i L = _mm_unpacklo_epi8(L8, zero); |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| // Load 4 pixels at a time. |
| __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
| const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
| const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
| const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
| __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
| __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
| DO_PRED12(diff_lo, 0, 0); |
| DO_PRED12_SHIFT(diff_lo, 0); |
| DO_PRED12(diff_lo, 1, 1); |
| DO_PRED12_SHIFT(diff_lo, 1); |
| DO_PRED12(diff_hi, 0, 2); |
| DO_PRED12_SHIFT(diff_hi, 0); |
| DO_PRED12(diff_hi, 1, 3); |
| } |
| if (i != num_pixels) { |
| VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
| } |
| } |
| #undef DO_PRED12 |
| #undef DO_PRED12_SHIFT |
| |
| // Due to averages with integers, values cannot be accumulated in parallel for |
| // predictors 13. |
| GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) |
| |
| //------------------------------------------------------------------------------ |
| // Subtract-Green Transform |
| |
| static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels, |
| uint32_t* dst) { |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
| const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
| const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
| const __m128i out = _mm_add_epi8(in, C); |
| _mm_storeu_si128((__m128i*)&dst[i], out); |
| } |
| // fallthrough and finish off with plain-C |
| if (i != num_pixels) { |
| VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Color Transform |
| |
| static void TransformColorInverse_SSE2(const VP8LMultipliers* const m, |
| const uint32_t* const src, |
| int num_pixels, uint32_t* dst) { |
| // sign-extended multiplying constants, pre-shifted by 5. |
| #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend |
| #define MK_CST_16(HI, LO) \ |
| _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) |
| const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_)); |
| const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0); |
| #undef MK_CST_16 |
| #undef CST |
| const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks |
| int i; |
| for (i = 0; i + 4 <= num_pixels; i += 4) { |
| const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
| const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
| const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
| const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
| const __m128i E = _mm_add_epi8(in, D); // x r' x b' |
| const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 |
| const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 |
| const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 |
| const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 |
| const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' |
| const __m128i out = _mm_or_si128(J, A); |
| _mm_storeu_si128((__m128i*)&dst[i], out); |
| } |
| // Fall-back to C-version for left-overs. |
| if (i != num_pixels) { |
| VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Color-space conversion functions |
| |
| static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels, |
| uint8_t* dst) { |
| const __m128i* in = (const __m128i*)src; |
| __m128i* out = (__m128i*)dst; |
| |
| while (num_pixels >= 32) { |
| // Load the BGRA buffers. |
| __m128i in0 = _mm_loadu_si128(in + 0); |
| __m128i in1 = _mm_loadu_si128(in + 1); |
| __m128i in2 = _mm_loadu_si128(in + 2); |
| __m128i in3 = _mm_loadu_si128(in + 3); |
| __m128i in4 = _mm_loadu_si128(in + 4); |
| __m128i in5 = _mm_loadu_si128(in + 5); |
| __m128i in6 = _mm_loadu_si128(in + 6); |
| __m128i in7 = _mm_loadu_si128(in + 7); |
| VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3); |
| VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7); |
| // At this points, in1/in5 contains red only, in2/in6 green only ... |
| // Pack the colors in 24b RGB. |
| VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7); |
| _mm_storeu_si128(out + 0, in1); |
| _mm_storeu_si128(out + 1, in5); |
| _mm_storeu_si128(out + 2, in2); |
| _mm_storeu_si128(out + 3, in6); |
| _mm_storeu_si128(out + 4, in3); |
| _mm_storeu_si128(out + 5, in7); |
| in += 8; |
| out += 6; |
| num_pixels -= 32; |
| } |
| // left-overs |
| if (num_pixels > 0) { |
| VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| } |
| } |
| |
| static void ConvertBGRAToRGBA_SSE2(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ffu); |
| const __m128i* in = (const __m128i*)src; |
| __m128i* out = (__m128i*)dst; |
| while (num_pixels >= 8) { |
| const __m128i A1 = _mm_loadu_si128(in++); |
| const __m128i A2 = _mm_loadu_si128(in++); |
| const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0 |
| const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0 |
| const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A |
| const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A |
| const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1)); |
| const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1)); |
| const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1)); |
| const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1)); |
| const __m128i F1 = _mm_or_si128(E1, C1); |
| const __m128i F2 = _mm_or_si128(E2, C2); |
| _mm_storeu_si128(out++, F1); |
| _mm_storeu_si128(out++, F2); |
| num_pixels -= 8; |
| } |
| // left-overs |
| if (num_pixels > 0) { |
| VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| } |
| } |
| |
| static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const __m128i mask_0x0f = _mm_set1_epi8(0x0f); |
| const __m128i mask_0xf0 = _mm_set1_epi8(0xf0); |
| const __m128i* in = (const __m128i*)src; |
| __m128i* out = (__m128i*)dst; |
| while (num_pixels >= 8) { |
| const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
| const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
| const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
| const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
| const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
| const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
| const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
| const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
| const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
| const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
| const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- |
| const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 |
| const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- |
| const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 |
| const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 |
| #if (WEBP_SWAP_16BIT_CSP == 1) |
| const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 |
| #else |
| const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 |
| #endif |
| _mm_storeu_si128(out++, rgba); |
| num_pixels -= 8; |
| } |
| // left-overs |
| if (num_pixels > 0) { |
| VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| } |
| } |
| |
| static void ConvertBGRAToRGB565_SSE2(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const __m128i mask_0xe0 = _mm_set1_epi8(0xe0); |
| const __m128i mask_0xf8 = _mm_set1_epi8(0xf8); |
| const __m128i mask_0x07 = _mm_set1_epi8(0x07); |
| const __m128i* in = (const __m128i*)src; |
| __m128i* out = (__m128i*)dst; |
| while (num_pixels >= 8) { |
| const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
| const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
| const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
| const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
| const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
| const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
| const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
| const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
| const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
| const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
| const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 |
| const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); |
| const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) |
| const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); |
| const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) |
| const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 |
| const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx |
| const __m128i b1 = _mm_srli_epi16(b0, 3); |
| const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx |
| #if (WEBP_SWAP_16BIT_CSP == 1) |
| const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 |
| #else |
| const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 |
| #endif |
| _mm_storeu_si128(out++, rgba); |
| num_pixels -= 8; |
| } |
| // left-overs |
| if (num_pixels > 0) { |
| VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| } |
| } |
| |
| static void ConvertBGRAToBGR_SSE2(const uint32_t* src, |
| int num_pixels, uint8_t* dst) { |
| const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); |
| const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); |
| const __m128i* in = (const __m128i*)src; |
| const uint8_t* const end = dst + num_pixels * 3; |
| // the last storel_epi64 below writes 8 bytes starting at offset 18 |
| while (dst + 26 <= end) { |
| const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
| const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
| const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 |
| const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 |
| const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 |
| const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 |
| const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 |
| const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 |
| const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 |
| const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 |
| const __m128i c2 = _mm_srli_si128(c0, 8); |
| const __m128i c6 = _mm_srli_si128(c4, 8); |
| _mm_storel_epi64((__m128i*)(dst + 0), c0); |
| _mm_storel_epi64((__m128i*)(dst + 6), c2); |
| _mm_storel_epi64((__m128i*)(dst + 12), c4); |
| _mm_storel_epi64((__m128i*)(dst + 18), c6); |
| dst += 24; |
| num_pixels -= 8; |
| } |
| // left-overs |
| if (num_pixels > 0) { |
| VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| extern void VP8LDspInitSSE2(void); |
| |
| WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { |
| VP8LPredictors[5] = Predictor5_SSE2; |
| VP8LPredictors[6] = Predictor6_SSE2; |
| VP8LPredictors[7] = Predictor7_SSE2; |
| VP8LPredictors[8] = Predictor8_SSE2; |
| VP8LPredictors[9] = Predictor9_SSE2; |
| VP8LPredictors[10] = Predictor10_SSE2; |
| VP8LPredictors[11] = Predictor11_SSE2; |
| VP8LPredictors[12] = Predictor12_SSE2; |
| VP8LPredictors[13] = Predictor13_SSE2; |
| |
| VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; |
| VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; |
| VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; |
| VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; |
| VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; |
| VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; |
| VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; |
| VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; |
| VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; |
| VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; |
| VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; |
| VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; |
| VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; |
| VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; |
| |
| VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2; |
| VP8LTransformColorInverse = TransformColorInverse_SSE2; |
| |
| VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2; |
| VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2; |
| VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2; |
| VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2; |
| VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2; |
| } |
| |
| #else // !WEBP_USE_SSE2 |
| |
| WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) |
| |
| #endif // WEBP_USE_SSE2 |