| // Copyright 2017 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // distortion calculation |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include <assert.h> |
| #include <stdlib.h> // for abs() |
| |
| #include "src/dsp/dsp.h" |
| |
| #if !defined(WEBP_REDUCE_SIZE) |
| |
| //------------------------------------------------------------------------------ |
| // SSIM / PSNR |
| |
| // hat-shaped filter. Sum of coefficients is equal to 16. |
| static const uint32_t kWeight[2 * VP8_SSIM_KERNEL + 1] = { |
| 1, 2, 3, 4, 3, 2, 1 |
| }; |
| static const uint32_t kWeightSum = 16 * 16; // sum{kWeight}^2 |
| |
| static WEBP_INLINE double SSIMCalculation( |
| const VP8DistoStats* const stats, uint32_t N /*num samples*/) { |
| const uint32_t w2 = N * N; |
| const uint32_t C1 = 20 * w2; |
| const uint32_t C2 = 60 * w2; |
| const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6 |
| const uint64_t xmxm = (uint64_t)stats->xm * stats->xm; |
| const uint64_t ymym = (uint64_t)stats->ym * stats->ym; |
| if (xmxm + ymym >= C3) { |
| const int64_t xmym = (int64_t)stats->xm * stats->ym; |
| const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative |
| const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm; |
| const uint64_t syy = (uint64_t)stats->yym * N - ymym; |
| // we descale by 8 to prevent overflow during the fnum/fden multiply. |
| const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8; |
| const uint64_t den_S = (sxx + syy + C2) >> 8; |
| const uint64_t fnum = (2 * xmym + C1) * num_S; |
| const uint64_t fden = (xmxm + ymym + C1) * den_S; |
| const double r = (double)fnum / fden; |
| assert(r >= 0. && r <= 1.0); |
| return r; |
| } |
| return 1.; // area is too dark to contribute meaningfully |
| } |
| |
| double VP8SSIMFromStats(const VP8DistoStats* const stats) { |
| return SSIMCalculation(stats, kWeightSum); |
| } |
| |
| double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats) { |
| return SSIMCalculation(stats, stats->w); |
| } |
| |
| static double SSIMGetClipped_C(const uint8_t* src1, int stride1, |
| const uint8_t* src2, int stride2, |
| int xo, int yo, int W, int H) { |
| VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; |
| const int ymin = (yo - VP8_SSIM_KERNEL < 0) ? 0 : yo - VP8_SSIM_KERNEL; |
| const int ymax = (yo + VP8_SSIM_KERNEL > H - 1) ? H - 1 |
| : yo + VP8_SSIM_KERNEL; |
| const int xmin = (xo - VP8_SSIM_KERNEL < 0) ? 0 : xo - VP8_SSIM_KERNEL; |
| const int xmax = (xo + VP8_SSIM_KERNEL > W - 1) ? W - 1 |
| : xo + VP8_SSIM_KERNEL; |
| int x, y; |
| src1 += ymin * stride1; |
| src2 += ymin * stride2; |
| for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) { |
| for (x = xmin; x <= xmax; ++x) { |
| const uint32_t w = kWeight[VP8_SSIM_KERNEL + x - xo] |
| * kWeight[VP8_SSIM_KERNEL + y - yo]; |
| const uint32_t s1 = src1[x]; |
| const uint32_t s2 = src2[x]; |
| stats.w += w; |
| stats.xm += w * s1; |
| stats.ym += w * s2; |
| stats.xxm += w * s1 * s1; |
| stats.xym += w * s1 * s2; |
| stats.yym += w * s2 * s2; |
| } |
| } |
| return VP8SSIMFromStatsClipped(&stats); |
| } |
| |
| static double SSIMGet_C(const uint8_t* src1, int stride1, |
| const uint8_t* src2, int stride2) { |
| VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; |
| int x, y; |
| for (y = 0; y <= 2 * VP8_SSIM_KERNEL; ++y, src1 += stride1, src2 += stride2) { |
| for (x = 0; x <= 2 * VP8_SSIM_KERNEL; ++x) { |
| const uint32_t w = kWeight[x] * kWeight[y]; |
| const uint32_t s1 = src1[x]; |
| const uint32_t s2 = src2[x]; |
| stats.xm += w * s1; |
| stats.ym += w * s2; |
| stats.xxm += w * s1 * s1; |
| stats.xym += w * s1 * s2; |
| stats.yym += w * s2 * s2; |
| } |
| } |
| return VP8SSIMFromStats(&stats); |
| } |
| |
| #endif // !defined(WEBP_REDUCE_SIZE) |
| |
| //------------------------------------------------------------------------------ |
| |
| #if !defined(WEBP_DISABLE_STATS) |
| static uint32_t AccumulateSSE_C(const uint8_t* src1, |
| const uint8_t* src2, int len) { |
| int i; |
| uint32_t sse2 = 0; |
| assert(len <= 65535); // to ensure that accumulation fits within uint32_t |
| for (i = 0; i < len; ++i) { |
| const int32_t diff = src1[i] - src2[i]; |
| sse2 += diff * diff; |
| } |
| return sse2; |
| } |
| #endif |
| |
| //------------------------------------------------------------------------------ |
| |
| #if !defined(WEBP_REDUCE_SIZE) |
| VP8SSIMGetFunc VP8SSIMGet; |
| VP8SSIMGetClippedFunc VP8SSIMGetClipped; |
| #endif |
| #if !defined(WEBP_DISABLE_STATS) |
| VP8AccumulateSSEFunc VP8AccumulateSSE; |
| #endif |
| |
| extern void VP8SSIMDspInitSSE2(void); |
| |
| WEBP_DSP_INIT_FUNC(VP8SSIMDspInit) { |
| #if !defined(WEBP_REDUCE_SIZE) |
| VP8SSIMGetClipped = SSIMGetClipped_C; |
| VP8SSIMGet = SSIMGet_C; |
| #endif |
| |
| #if !defined(WEBP_DISABLE_STATS) |
| VP8AccumulateSSE = AccumulateSSE_C; |
| #endif |
| |
| if (VP8GetCPUInfo != NULL) { |
| #if defined(WEBP_USE_SSE2) |
| if (VP8GetCPUInfo(kSSE2)) { |
| VP8SSIMDspInitSSE2(); |
| } |
| #endif |
| } |
| } |