blob: 7b97bf84cebd19ef10948d99a861c4a2c089beb5 [file] [log] [blame]
//===-------------------------- CompactUnwinder.hpp -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// Does runtime stack unwinding using compact unwind encodings.
//
//===----------------------------------------------------------------------===//
#ifndef __COMPACT_UNWINDER_HPP__
#define __COMPACT_UNWINDER_HPP__
#include <stdint.h>
#include <stdlib.h>
#include <libunwind.h>
#include <mach-o/compact_unwind_encoding.h>
#include "Registers.hpp"
#define EXTRACT_BITS(value, mask) \
((value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask))) - 1))
namespace libunwind {
#if defined(_LIBUNWIND_TARGET_I386)
/// CompactUnwinder_x86 uses a compact unwind info to virtually "step" (aka
/// unwind) by modifying a Registers_x86 register set
template <typename A>
class CompactUnwinder_x86 {
public:
static int stepWithCompactEncoding(compact_unwind_encoding_t info,
uint32_t functionStart, A &addressSpace,
Registers_x86 &registers);
private:
typename A::pint_t pint_t;
static void frameUnwind(A &addressSpace, Registers_x86 &registers);
static void framelessUnwind(A &addressSpace,
typename A::pint_t returnAddressLocation,
Registers_x86 &registers);
static int
stepWithCompactEncodingEBPFrame(compact_unwind_encoding_t compactEncoding,
uint32_t functionStart, A &addressSpace,
Registers_x86 &registers);
static int stepWithCompactEncodingFrameless(
compact_unwind_encoding_t compactEncoding, uint32_t functionStart,
A &addressSpace, Registers_x86 &registers, bool indirectStackSize);
};
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncoding(
compact_unwind_encoding_t compactEncoding, uint32_t functionStart,
A &addressSpace, Registers_x86 &registers) {
switch (compactEncoding & UNWIND_X86_MODE_MASK) {
case UNWIND_X86_MODE_EBP_FRAME:
return stepWithCompactEncodingEBPFrame(compactEncoding, functionStart,
addressSpace, registers);
case UNWIND_X86_MODE_STACK_IMMD:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart,
addressSpace, registers, false);
case UNWIND_X86_MODE_STACK_IND:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart,
addressSpace, registers, true);
}
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncodingEBPFrame(
compact_unwind_encoding_t compactEncoding, uint32_t functionStart,
A &addressSpace, Registers_x86 &registers) {
uint32_t savedRegistersOffset =
EXTRACT_BITS(compactEncoding, UNWIND_X86_EBP_FRAME_OFFSET);
uint32_t savedRegistersLocations =
EXTRACT_BITS(compactEncoding, UNWIND_X86_EBP_FRAME_REGISTERS);
uint32_t savedRegisters = registers.getEBP() - 4 * savedRegistersOffset;
for (int i = 0; i < 5; ++i) {
switch (savedRegistersLocations & 0x7) {
case UNWIND_X86_REG_NONE:
// no register saved in this slot
break;
case UNWIND_X86_REG_EBX:
registers.setEBX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ECX:
registers.setECX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDX:
registers.setEDX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDI:
registers.setEDI(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ESI:
registers.setESI(addressSpace.get32(savedRegisters));
break;
default:
(void)functionStart;
_LIBUNWIND_DEBUG_LOG("bad register for EBP frame, encoding=%08X for "
"function starting at 0x%X",
compactEncoding, functionStart);
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
savedRegisters += 4;
savedRegistersLocations = (savedRegistersLocations >> 3);
}
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
}
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncodingFrameless(
compact_unwind_encoding_t encoding, uint32_t functionStart,
A &addressSpace, Registers_x86 &registers, bool indirectStackSize) {
uint32_t stackSizeEncoded =
EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
uint32_t stackAdjust =
EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST);
uint32_t regCount =
EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT);
uint32_t permutation =
EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION);
uint32_t stackSize = stackSizeEncoded * 4;
if (indirectStackSize) {
// stack size is encoded in subl $xxx,%esp instruction
uint32_t subl = addressSpace.get32(functionStart + stackSizeEncoded);
stackSize = subl + 4 * stackAdjust;
}
// decompress permutation
uint32_t permunreg[6];
switch (regCount) {
case 6:
permunreg[0] = permutation / 120;
permutation -= (permunreg[0] * 120);
permunreg[1] = permutation / 24;
permutation -= (permunreg[1] * 24);
permunreg[2] = permutation / 6;
permutation -= (permunreg[2] * 6);
permunreg[3] = permutation / 2;
permutation -= (permunreg[3] * 2);
permunreg[4] = permutation;
permunreg[5] = 0;
break;
case 5:
permunreg[0] = permutation / 120;
permutation -= (permunreg[0] * 120);
permunreg[1] = permutation / 24;
permutation -= (permunreg[1] * 24);
permunreg[2] = permutation / 6;
permutation -= (permunreg[2] * 6);
permunreg[3] = permutation / 2;
permutation -= (permunreg[3] * 2);
permunreg[4] = permutation;
break;
case 4:
permunreg[0] = permutation / 60;
permutation -= (permunreg[0] * 60);
permunreg[1] = permutation / 12;
permutation -= (permunreg[1] * 12);
permunreg[2] = permutation / 3;
permutation -= (permunreg[2] * 3);
permunreg[3] = permutation;
break;
case 3:
permunreg[0] = permutation / 20;
permutation -= (permunreg[0] * 20);
permunreg[1] = permutation / 4;
permutation -= (permunreg[1] * 4);
permunreg[2] = permutation;
break;
case 2:
permunreg[0] = permutation / 5;
permutation -= (permunreg[0] * 5);
permunreg[1] = permutation;
break;
case 1:
permunreg[0] = permutation;
break;
}
// re-number registers back to standard numbers
int registersSaved[6];
bool used[7] = { false, false, false, false, false, false, false };
for (uint32_t i = 0; i < regCount; ++i) {
uint32_t renum = 0;
for (int u = 1; u < 7; ++u) {
if (!used[u]) {
if (renum == permunreg[i]) {
registersSaved[i] = u;
used[u] = true;
break;
}
++renum;
}
}
}
uint32_t savedRegisters = registers.getSP() + stackSize - 4 - 4 * regCount;
for (uint32_t i = 0; i < regCount; ++i) {
switch (registersSaved[i]) {
case UNWIND_X86_REG_EBX:
registers.setEBX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ECX:
registers.setECX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDX:
registers.setEDX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDI:
registers.setEDI(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ESI:
registers.setESI(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EBP:
registers.setEBP(addressSpace.get32(savedRegisters));
break;
default:
_LIBUNWIND_DEBUG_LOG("bad register for frameless, encoding=%08X for "
"function starting at 0x%X",
encoding, functionStart);
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
savedRegisters += 4;
}
framelessUnwind(addressSpace, savedRegisters, registers);
return UNW_STEP_SUCCESS;
}
template <typename A>
void CompactUnwinder_x86<A>::frameUnwind(A &addressSpace,
Registers_x86 &registers) {
typename A::pint_t bp = registers.getEBP();
// ebp points to old ebp
registers.setEBP(addressSpace.get32(bp));
// old esp is ebp less saved ebp and return address
registers.setSP((uint32_t)bp + 8);
// pop return address into eip
registers.setIP(addressSpace.get32(bp + 4));
}
template <typename A>
void CompactUnwinder_x86<A>::framelessUnwind(
A &addressSpace, typename A::pint_t returnAddressLocation,
Registers_x86 &registers) {
// return address is on stack after last saved register
registers.setIP(addressSpace.get32(returnAddressLocation));
// old esp is before return address
registers.setSP((uint32_t)returnAddressLocation + 4);
}
#endif // _LIBUNWIND_TARGET_I386
#if defined(_LIBUNWIND_TARGET_X86_64)
/// CompactUnwinder_x86_64 uses a compact unwind info to virtually "step" (aka
/// unwind) by modifying a Registers_x86_64 register set
template <typename A>
class CompactUnwinder_x86_64 {
public:
static int stepWithCompactEncoding(compact_unwind_encoding_t compactEncoding,
uint64_t functionStart, A &addressSpace,
Registers_x86_64 &registers);
private:
typename A::pint_t pint_t;
static void frameUnwind(A &addressSpace, Registers_x86_64 &registers);
static void framelessUnwind(A &addressSpace, uint64_t returnAddressLocation,
Registers_x86_64 &registers);
static int
stepWithCompactEncodingRBPFrame(compact_unwind_encoding_t compactEncoding,
uint64_t functionStart, A &addressSpace,
Registers_x86_64 &registers);
static int stepWithCompactEncodingFrameless(
compact_unwind_encoding_t compactEncoding, uint64_t functionStart,
A &addressSpace, Registers_x86_64 &registers, bool indirectStackSize);
};
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
compact_unwind_encoding_t compactEncoding, uint64_t functionStart,
A &addressSpace, Registers_x86_64 &registers) {
switch (compactEncoding & UNWIND_X86_64_MODE_MASK) {
case UNWIND_X86_64_MODE_RBP_FRAME:
return stepWithCompactEncodingRBPFrame(compactEncoding, functionStart,
addressSpace, registers);
case UNWIND_X86_64_MODE_STACK_IMMD:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart,
addressSpace, registers, false);
case UNWIND_X86_64_MODE_STACK_IND:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart,
addressSpace, registers, true);
}
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncodingRBPFrame(
compact_unwind_encoding_t compactEncoding, uint64_t functionStart,
A &addressSpace, Registers_x86_64 &registers) {
uint32_t savedRegistersOffset =
EXTRACT_BITS(compactEncoding, UNWIND_X86_64_RBP_FRAME_OFFSET);
uint32_t savedRegistersLocations =
EXTRACT_BITS(compactEncoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);
uint64_t savedRegisters = registers.getRBP() - 8 * savedRegistersOffset;
for (int i = 0; i < 5; ++i) {
switch (savedRegistersLocations & 0x7) {
case UNWIND_X86_64_REG_NONE:
// no register saved in this slot
break;
case UNWIND_X86_64_REG_RBX:
registers.setRBX(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R12:
registers.setR12(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R13:
registers.setR13(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R14:
registers.setR14(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R15:
registers.setR15(addressSpace.get64(savedRegisters));
break;
default:
(void)functionStart;
_LIBUNWIND_DEBUG_LOG("bad register for RBP frame, encoding=%08X for "
"function starting at 0x%llX",
compactEncoding, functionStart);
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
savedRegisters += 8;
savedRegistersLocations = (savedRegistersLocations >> 3);
}
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
}
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncodingFrameless(
compact_unwind_encoding_t encoding, uint64_t functionStart, A &addressSpace,
Registers_x86_64 &registers, bool indirectStackSize) {
uint32_t stackSizeEncoded =
EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
uint32_t stackAdjust =
EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST);
uint32_t regCount =
EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT);
uint32_t permutation =
EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION);
uint32_t stackSize = stackSizeEncoded * 8;
if (indirectStackSize) {
// stack size is encoded in subl $xxx,%esp instruction
uint32_t subl = addressSpace.get32(functionStart + stackSizeEncoded);
stackSize = subl + 8 * stackAdjust;
}
// decompress permutation
uint32_t permunreg[6];
switch (regCount) {
case 6:
permunreg[0] = permutation / 120;
permutation -= (permunreg[0] * 120);
permunreg[1] = permutation / 24;
permutation -= (permunreg[1] * 24);
permunreg[2] = permutation / 6;
permutation -= (permunreg[2] * 6);
permunreg[3] = permutation / 2;
permutation -= (permunreg[3] * 2);
permunreg[4] = permutation;
permunreg[5] = 0;
break;
case 5:
permunreg[0] = permutation / 120;
permutation -= (permunreg[0] * 120);
permunreg[1] = permutation / 24;
permutation -= (permunreg[1] * 24);
permunreg[2] = permutation / 6;
permutation -= (permunreg[2] * 6);
permunreg[3] = permutation / 2;
permutation -= (permunreg[3] * 2);
permunreg[4] = permutation;
break;
case 4:
permunreg[0] = permutation / 60;
permutation -= (permunreg[0] * 60);
permunreg[1] = permutation / 12;
permutation -= (permunreg[1] * 12);
permunreg[2] = permutation / 3;
permutation -= (permunreg[2] * 3);
permunreg[3] = permutation;
break;
case 3:
permunreg[0] = permutation / 20;
permutation -= (permunreg[0] * 20);
permunreg[1] = permutation / 4;
permutation -= (permunreg[1] * 4);
permunreg[2] = permutation;
break;
case 2:
permunreg[0] = permutation / 5;
permutation -= (permunreg[0] * 5);
permunreg[1] = permutation;
break;
case 1:
permunreg[0] = permutation;
break;
}
// re-number registers back to standard numbers
int registersSaved[6];
bool used[7] = { false, false, false, false, false, false, false };
for (uint32_t i = 0; i < regCount; ++i) {
uint32_t renum = 0;
for (int u = 1; u < 7; ++u) {
if (!used[u]) {
if (renum == permunreg[i]) {
registersSaved[i] = u;
used[u] = true;
break;
}
++renum;
}
}
}
uint64_t savedRegisters = registers.getSP() + stackSize - 8 - 8 * regCount;
for (uint32_t i = 0; i < regCount; ++i) {
switch (registersSaved[i]) {
case UNWIND_X86_64_REG_RBX:
registers.setRBX(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R12:
registers.setR12(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R13:
registers.setR13(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R14:
registers.setR14(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R15:
registers.setR15(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_RBP:
registers.setRBP(addressSpace.get64(savedRegisters));
break;
default:
_LIBUNWIND_DEBUG_LOG("bad register for frameless, encoding=%08X for "
"function starting at 0x%llX",
encoding, functionStart);
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
savedRegisters += 8;
}
framelessUnwind(addressSpace, savedRegisters, registers);
return UNW_STEP_SUCCESS;
}
template <typename A>
void CompactUnwinder_x86_64<A>::frameUnwind(A &addressSpace,
Registers_x86_64 &registers) {
uint64_t rbp = registers.getRBP();
// ebp points to old ebp
registers.setRBP(addressSpace.get64(rbp));
// old esp is ebp less saved ebp and return address
registers.setSP(rbp + 16);
// pop return address into eip
registers.setIP(addressSpace.get64(rbp + 8));
}
template <typename A>
void CompactUnwinder_x86_64<A>::framelessUnwind(A &addressSpace,
uint64_t returnAddressLocation,
Registers_x86_64 &registers) {
// return address is on stack after last saved register
registers.setIP(addressSpace.get64(returnAddressLocation));
// old esp is before return address
registers.setSP(returnAddressLocation + 8);
}
#endif // _LIBUNWIND_TARGET_X86_64
#if defined(_LIBUNWIND_TARGET_AARCH64)
/// CompactUnwinder_arm64 uses a compact unwind info to virtually "step" (aka
/// unwind) by modifying a Registers_arm64 register set
template <typename A>
class CompactUnwinder_arm64 {
public:
static int stepWithCompactEncoding(compact_unwind_encoding_t compactEncoding,
uint64_t functionStart, A &addressSpace,
Registers_arm64 &registers);
private:
typename A::pint_t pint_t;
static int
stepWithCompactEncodingFrame(compact_unwind_encoding_t compactEncoding,
uint64_t functionStart, A &addressSpace,
Registers_arm64 &registers);
static int stepWithCompactEncodingFrameless(
compact_unwind_encoding_t compactEncoding, uint64_t functionStart,
A &addressSpace, Registers_arm64 &registers);
};
template <typename A>
int CompactUnwinder_arm64<A>::stepWithCompactEncoding(
compact_unwind_encoding_t compactEncoding, uint64_t functionStart,
A &addressSpace, Registers_arm64 &registers) {
switch (compactEncoding & UNWIND_ARM64_MODE_MASK) {
case UNWIND_ARM64_MODE_FRAME:
return stepWithCompactEncodingFrame(compactEncoding, functionStart,
addressSpace, registers);
case UNWIND_ARM64_MODE_FRAMELESS:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart,
addressSpace, registers);
}
_LIBUNWIND_ABORT("invalid compact unwind encoding");
}
template <typename A>
int CompactUnwinder_arm64<A>::stepWithCompactEncodingFrameless(
compact_unwind_encoding_t encoding, uint64_t, A &addressSpace,
Registers_arm64 &registers) {
uint32_t stackSize =
16 * EXTRACT_BITS(encoding, UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK);
uint64_t savedRegisterLoc = registers.getSP() + stackSize;
if (encoding & UNWIND_ARM64_FRAME_X19_X20_PAIR) {
registers.setRegister(UNW_ARM64_X19, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X20, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X21_X22_PAIR) {
registers.setRegister(UNW_ARM64_X21, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X22, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X23_X24_PAIR) {
registers.setRegister(UNW_ARM64_X23, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X24, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X25_X26_PAIR) {
registers.setRegister(UNW_ARM64_X25, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X26, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X27_X28_PAIR) {
registers.setRegister(UNW_ARM64_X27, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X28, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D8_D9_PAIR) {
registers.setFloatRegister(UNW_ARM64_D8,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D9,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D10_D11_PAIR) {
registers.setFloatRegister(UNW_ARM64_D10,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D11,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D12_D13_PAIR) {
registers.setFloatRegister(UNW_ARM64_D12,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D13,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D14_D15_PAIR) {
registers.setFloatRegister(UNW_ARM64_D14,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D15,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
// subtract stack size off of sp
registers.setSP(savedRegisterLoc);
// set pc to be value in lr
registers.setIP(registers.getRegister(UNW_ARM64_LR));
return UNW_STEP_SUCCESS;
}
template <typename A>
int CompactUnwinder_arm64<A>::stepWithCompactEncodingFrame(
compact_unwind_encoding_t encoding, uint64_t, A &addressSpace,
Registers_arm64 &registers) {
uint64_t savedRegisterLoc = registers.getFP() - 8;
if (encoding & UNWIND_ARM64_FRAME_X19_X20_PAIR) {
registers.setRegister(UNW_ARM64_X19, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X20, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X21_X22_PAIR) {
registers.setRegister(UNW_ARM64_X21, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X22, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X23_X24_PAIR) {
registers.setRegister(UNW_ARM64_X23, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X24, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X25_X26_PAIR) {
registers.setRegister(UNW_ARM64_X25, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X26, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_X27_X28_PAIR) {
registers.setRegister(UNW_ARM64_X27, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setRegister(UNW_ARM64_X28, addressSpace.get64(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D8_D9_PAIR) {
registers.setFloatRegister(UNW_ARM64_D8,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D9,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D10_D11_PAIR) {
registers.setFloatRegister(UNW_ARM64_D10,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D11,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D12_D13_PAIR) {
registers.setFloatRegister(UNW_ARM64_D12,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D13,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
if (encoding & UNWIND_ARM64_FRAME_D14_D15_PAIR) {
registers.setFloatRegister(UNW_ARM64_D14,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
registers.setFloatRegister(UNW_ARM64_D15,
addressSpace.getDouble(savedRegisterLoc));
savedRegisterLoc -= 8;
}
uint64_t fp = registers.getFP();
// fp points to old fp
registers.setFP(addressSpace.get64(fp));
// old sp is fp less saved fp and lr
registers.setSP(fp + 16);
// pop return address into pc
registers.setIP(addressSpace.get64(fp + 8));
return UNW_STEP_SUCCESS;
}
#endif // _LIBUNWIND_TARGET_AARCH64
} // namespace libunwind
#endif // __COMPACT_UNWINDER_HPP__