| //===------------------------- UnwindCursor.hpp ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| // |
| // C++ interface to lower levels of libunwind |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef __UNWINDCURSOR_HPP__ |
| #define __UNWINDCURSOR_HPP__ |
| |
| #include <algorithm> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <unwind.h> |
| |
| #ifdef __APPLE__ |
| #include <mach-o/dyld.h> |
| #endif |
| |
| #include "config.h" |
| |
| #include "AddressSpace.hpp" |
| #include "CompactUnwinder.hpp" |
| #include "config.h" |
| #include "DwarfInstructions.hpp" |
| #include "EHHeaderParser.hpp" |
| #include "libunwind.h" |
| #include "Registers.hpp" |
| #include "RWMutex.hpp" |
| #include "Unwind-EHABI.h" |
| |
| namespace libunwind { |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| /// Cache of recently found FDEs. |
| template <typename A> |
| class _LIBUNWIND_HIDDEN DwarfFDECache { |
| typedef typename A::pint_t pint_t; |
| public: |
| static pint_t findFDE(pint_t mh, pint_t pc); |
| static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); |
| static void removeAllIn(pint_t mh); |
| static void iterateCacheEntries(void (*func)(unw_word_t ip_start, |
| unw_word_t ip_end, |
| unw_word_t fde, unw_word_t mh)); |
| |
| private: |
| |
| struct entry { |
| pint_t mh; |
| pint_t ip_start; |
| pint_t ip_end; |
| pint_t fde; |
| }; |
| |
| // These fields are all static to avoid needing an initializer. |
| // There is only one instance of this class per process. |
| static RWMutex _lock; |
| #ifdef __APPLE__ |
| static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); |
| static bool _registeredForDyldUnloads; |
| #endif |
| // Can't use std::vector<> here because this code is below libc++. |
| static entry *_buffer; |
| static entry *_bufferUsed; |
| static entry *_bufferEnd; |
| static entry _initialBuffer[64]; |
| }; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry * |
| DwarfFDECache<A>::_buffer = _initialBuffer; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry * |
| DwarfFDECache<A>::_bufferUsed = _initialBuffer; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry * |
| DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; |
| |
| template <typename A> |
| RWMutex DwarfFDECache<A>::_lock; |
| |
| #ifdef __APPLE__ |
| template <typename A> |
| bool DwarfFDECache<A>::_registeredForDyldUnloads = false; |
| #endif |
| |
| template <typename A> |
| typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { |
| pint_t result = 0; |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); |
| for (entry *p = _buffer; p < _bufferUsed; ++p) { |
| if ((mh == p->mh) || (mh == 0)) { |
| if ((p->ip_start <= pc) && (pc < p->ip_end)) { |
| result = p->fde; |
| break; |
| } |
| } |
| } |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); |
| return result; |
| } |
| |
| template <typename A> |
| void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, |
| pint_t fde) { |
| #if !defined(_LIBUNWIND_NO_HEAP) |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
| if (_bufferUsed >= _bufferEnd) { |
| size_t oldSize = (size_t)(_bufferEnd - _buffer); |
| size_t newSize = oldSize * 4; |
| // Can't use operator new (we are below it). |
| entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); |
| memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); |
| if (_buffer != _initialBuffer) |
| free(_buffer); |
| _buffer = newBuffer; |
| _bufferUsed = &newBuffer[oldSize]; |
| _bufferEnd = &newBuffer[newSize]; |
| } |
| _bufferUsed->mh = mh; |
| _bufferUsed->ip_start = ip_start; |
| _bufferUsed->ip_end = ip_end; |
| _bufferUsed->fde = fde; |
| ++_bufferUsed; |
| #ifdef __APPLE__ |
| if (!_registeredForDyldUnloads) { |
| _dyld_register_func_for_remove_image(&dyldUnloadHook); |
| _registeredForDyldUnloads = true; |
| } |
| #endif |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
| #endif |
| } |
| |
| template <typename A> |
| void DwarfFDECache<A>::removeAllIn(pint_t mh) { |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
| entry *d = _buffer; |
| for (const entry *s = _buffer; s < _bufferUsed; ++s) { |
| if (s->mh != mh) { |
| if (d != s) |
| *d = *s; |
| ++d; |
| } |
| } |
| _bufferUsed = d; |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
| } |
| |
| #ifdef __APPLE__ |
| template <typename A> |
| void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { |
| removeAllIn((pint_t) mh); |
| } |
| #endif |
| |
| template <typename A> |
| void DwarfFDECache<A>::iterateCacheEntries(void (*func)( |
| unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
| for (entry *p = _buffer; p < _bufferUsed; ++p) { |
| (*func)(p->ip_start, p->ip_end, p->fde, p->mh); |
| } |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| |
| #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) |
| |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| template <typename A> class UnwindSectionHeader { |
| public: |
| UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t version() const { |
| return _addressSpace.get32(_addr + |
| offsetof(unwind_info_section_header, version)); |
| } |
| uint32_t commonEncodingsArraySectionOffset() const { |
| return _addressSpace.get32(_addr + |
| offsetof(unwind_info_section_header, |
| commonEncodingsArraySectionOffset)); |
| } |
| uint32_t commonEncodingsArrayCount() const { |
| return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
| commonEncodingsArrayCount)); |
| } |
| uint32_t personalityArraySectionOffset() const { |
| return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
| personalityArraySectionOffset)); |
| } |
| uint32_t personalityArrayCount() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_section_header, personalityArrayCount)); |
| } |
| uint32_t indexSectionOffset() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_section_header, indexSectionOffset)); |
| } |
| uint32_t indexCount() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_section_header, indexCount)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionIndexArray { |
| public: |
| UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
| functionOffset)); |
| } |
| uint32_t secondLevelPagesSectionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
| secondLevelPagesSectionOffset)); |
| } |
| uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
| lsdaIndexArraySectionOffset)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionRegularPageHeader { |
| public: |
| UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t kind() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); |
| } |
| uint16_t entryPageOffset() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_regular_second_level_page_header, |
| entryPageOffset)); |
| } |
| uint16_t entryCount() const { |
| return _addressSpace.get16( |
| _addr + |
| offsetof(unwind_info_regular_second_level_page_header, entryCount)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionRegularArray { |
| public: |
| UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, |
| functionOffset)); |
| } |
| uint32_t encoding(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + |
| arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionCompressedPageHeader { |
| public: |
| UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t kind() const { |
| return _addressSpace.get32( |
| _addr + |
| offsetof(unwind_info_compressed_second_level_page_header, kind)); |
| } |
| uint16_t entryPageOffset() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_compressed_second_level_page_header, |
| entryPageOffset)); |
| } |
| uint16_t entryCount() const { |
| return _addressSpace.get16( |
| _addr + |
| offsetof(unwind_info_compressed_second_level_page_header, entryCount)); |
| } |
| uint16_t encodingsPageOffset() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_compressed_second_level_page_header, |
| encodingsPageOffset)); |
| } |
| uint16_t encodingsCount() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_compressed_second_level_page_header, |
| encodingsCount)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionCompressedArray { |
| public: |
| UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( |
| _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
| } |
| uint16_t encodingIndex(uint32_t index) const { |
| return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( |
| _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionLsdaArray { |
| public: |
| UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
| index, functionOffset)); |
| } |
| uint32_t lsdaOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
| index, lsdaOffset)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| class _LIBUNWIND_HIDDEN AbstractUnwindCursor { |
| public: |
| // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) |
| // This avoids an unnecessary dependency to libc++abi. |
| void operator delete(void *, size_t) {} |
| |
| virtual ~AbstractUnwindCursor() {} |
| virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } |
| virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } |
| virtual void setReg(int, unw_word_t) { |
| _LIBUNWIND_ABORT("setReg not implemented"); |
| } |
| virtual bool validFloatReg(int) { |
| _LIBUNWIND_ABORT("validFloatReg not implemented"); |
| } |
| virtual unw_fpreg_t getFloatReg(int) { |
| _LIBUNWIND_ABORT("getFloatReg not implemented"); |
| } |
| virtual void setFloatReg(int, unw_fpreg_t) { |
| _LIBUNWIND_ABORT("setFloatReg not implemented"); |
| } |
| virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } |
| virtual void getInfo(unw_proc_info_t *) { |
| _LIBUNWIND_ABORT("getInfo not implemented"); |
| } |
| virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } |
| virtual bool isSignalFrame() { |
| _LIBUNWIND_ABORT("isSignalFrame not implemented"); |
| } |
| virtual bool getFunctionName(char *, size_t, unw_word_t *) { |
| _LIBUNWIND_ABORT("getFunctionName not implemented"); |
| } |
| virtual void setInfoBasedOnIPRegister(bool = false) { |
| _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); |
| } |
| virtual const char *getRegisterName(int) { |
| _LIBUNWIND_ABORT("getRegisterName not implemented"); |
| } |
| #ifdef __arm__ |
| virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } |
| #endif |
| }; |
| |
| /// UnwindCursor contains all state (including all register values) during |
| /// an unwind. This is normally stack allocated inside a unw_cursor_t. |
| template <typename A, typename R> |
| class UnwindCursor : public AbstractUnwindCursor{ |
| typedef typename A::pint_t pint_t; |
| public: |
| UnwindCursor(unw_context_t *context, A &as); |
| UnwindCursor(A &as, void *threadArg); |
| virtual ~UnwindCursor() {} |
| virtual bool validReg(int); |
| virtual unw_word_t getReg(int); |
| virtual void setReg(int, unw_word_t); |
| virtual bool validFloatReg(int); |
| virtual unw_fpreg_t getFloatReg(int); |
| virtual void setFloatReg(int, unw_fpreg_t); |
| virtual int step(); |
| virtual void getInfo(unw_proc_info_t *); |
| virtual void jumpto(); |
| virtual bool isSignalFrame(); |
| virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
| virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
| virtual const char *getRegisterName(int num); |
| #ifdef __arm__ |
| virtual void saveVFPAsX(); |
| #endif |
| |
| private: |
| |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); |
| |
| int stepWithEHABI() { |
| size_t len = 0; |
| size_t off = 0; |
| // FIXME: Calling decode_eht_entry() here is violating the libunwind |
| // abstraction layer. |
| const uint32_t *ehtp = |
| decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), |
| &off, &len); |
| if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != |
| _URC_CONTINUE_UNWIND) |
| return UNW_STEP_END; |
| return UNW_STEP_SUCCESS; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, |
| uint32_t fdeSectionOffsetHint=0); |
| int stepWithDwarfFDE() { |
| return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace, |
| (pint_t)this->getReg(UNW_REG_IP), |
| (pint_t)_info.unwind_info, |
| _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| bool getInfoFromCompactEncodingSection(pint_t pc, |
| const UnwindInfoSections §s); |
| int stepWithCompactEncoding() { |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| if ( compactSaysUseDwarf() ) |
| return stepWithDwarfFDE(); |
| #endif |
| R dummy; |
| return stepWithCompactEncoding(dummy); |
| } |
| |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| int stepWithCompactEncoding(Registers_x86_64 &) { |
| return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( |
| _info.format, _info.start_ip, _addressSpace, _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_I386) |
| int stepWithCompactEncoding(Registers_x86 &) { |
| return CompactUnwinder_x86<A>::stepWithCompactEncoding( |
| _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC) |
| int stepWithCompactEncoding(Registers_ppc &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC64) |
| int stepWithCompactEncoding(Registers_ppc64 &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| int stepWithCompactEncoding(Registers_arm64 &) { |
| return CompactUnwinder_arm64<A>::stepWithCompactEncoding( |
| _info.format, _info.start_ip, _addressSpace, _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
| int stepWithCompactEncoding(Registers_mips_o32 &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
| int stepWithCompactEncoding(Registers_mips_newabi &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| bool compactSaysUseDwarf(uint32_t *offset=NULL) const { |
| R dummy; |
| return compactSaysUseDwarf(dummy, offset); |
| } |
| |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { |
| if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { |
| if (offset) |
| *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); |
| return true; |
| } |
| return false; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_I386) |
| bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { |
| if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { |
| if (offset) |
| *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); |
| return true; |
| } |
| return false; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC) |
| bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC64) |
| bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { |
| if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { |
| if (offset) |
| *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); |
| return true; |
| } |
| return false; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
| bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
| bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| compact_unwind_encoding_t dwarfEncoding() const { |
| R dummy; |
| return dwarfEncoding(dummy); |
| } |
| |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { |
| return UNWIND_X86_64_MODE_DWARF; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_I386) |
| compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { |
| return UNWIND_X86_MODE_DWARF; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC) |
| compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { |
| return UNWIND_ARM64_MODE_DWARF; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_ARM) |
| compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_OR1K) |
| compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_MIPS_O32) |
| compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) |
| compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { |
| return 0; |
| } |
| #endif |
| #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| |
| A &_addressSpace; |
| R _registers; |
| unw_proc_info_t _info; |
| bool _unwindInfoMissing; |
| bool _isSignalFrame; |
| }; |
| |
| |
| template <typename A, typename R> |
| UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
| : _addressSpace(as), _registers(context), _unwindInfoMissing(false), |
| _isSignalFrame(false) { |
| static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
| "UnwindCursor<> does not fit in unw_cursor_t"); |
| memset(&_info, 0, sizeof(_info)); |
| } |
| |
| template <typename A, typename R> |
| UnwindCursor<A, R>::UnwindCursor(A &as, void *) |
| : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { |
| memset(&_info, 0, sizeof(_info)); |
| // FIXME |
| // fill in _registers from thread arg |
| } |
| |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::validReg(int regNum) { |
| return _registers.validRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
| return _registers.getRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
| _registers.setRegister(regNum, (typename A::pint_t)value); |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
| return _registers.validFloatRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
| return _registers.getFloatRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
| _registers.setFloatRegister(regNum, value); |
| } |
| |
| template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
| _registers.jumpto(); |
| } |
| |
| #ifdef __arm__ |
| template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { |
| _registers.saveVFPAsX(); |
| } |
| #endif |
| |
| template <typename A, typename R> |
| const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
| return _registers.getRegisterName(regNum); |
| } |
| |
| template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
| return _isSignalFrame; |
| } |
| |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| struct EHABIIndexEntry { |
| uint32_t functionOffset; |
| uint32_t data; |
| }; |
| |
| template<typename A> |
| struct EHABISectionIterator { |
| typedef EHABISectionIterator _Self; |
| |
| typedef std::random_access_iterator_tag iterator_category; |
| typedef typename A::pint_t value_type; |
| typedef typename A::pint_t* pointer; |
| typedef typename A::pint_t& reference; |
| typedef size_t size_type; |
| typedef size_t difference_type; |
| |
| static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { |
| return _Self(addressSpace, sects, 0); |
| } |
| static _Self end(A& addressSpace, const UnwindInfoSections& sects) { |
| return _Self(addressSpace, sects, |
| sects.arm_section_length / sizeof(EHABIIndexEntry)); |
| } |
| |
| EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) |
| : _i(i), _addressSpace(&addressSpace), _sects(§s) {} |
| |
| _Self& operator++() { ++_i; return *this; } |
| _Self& operator+=(size_t a) { _i += a; return *this; } |
| _Self& operator--() { assert(_i > 0); --_i; return *this; } |
| _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } |
| |
| _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } |
| _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } |
| |
| size_t operator-(const _Self& other) const { return _i - other._i; } |
| |
| bool operator==(const _Self& other) const { |
| assert(_addressSpace == other._addressSpace); |
| assert(_sects == other._sects); |
| return _i == other._i; |
| } |
| |
| bool operator!=(const _Self& other) const { |
| assert(_addressSpace == other._addressSpace); |
| assert(_sects == other._sects); |
| return _i != other._i; |
| } |
| |
| typename A::pint_t operator*() const { return functionAddress(); } |
| |
| typename A::pint_t functionAddress() const { |
| typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
| EHABIIndexEntry, _i, functionOffset); |
| return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); |
| } |
| |
| typename A::pint_t dataAddress() { |
| typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
| EHABIIndexEntry, _i, data); |
| return indexAddr; |
| } |
| |
| private: |
| size_t _i; |
| A* _addressSpace; |
| const UnwindInfoSections* _sects; |
| }; |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromEHABISection( |
| pint_t pc, |
| const UnwindInfoSections §s) { |
| EHABISectionIterator<A> begin = |
| EHABISectionIterator<A>::begin(_addressSpace, sects); |
| EHABISectionIterator<A> end = |
| EHABISectionIterator<A>::end(_addressSpace, sects); |
| if (begin == end) |
| return false; |
| |
| EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc); |
| if (itNextPC == begin) |
| return false; |
| EHABISectionIterator<A> itThisPC = itNextPC - 1; |
| |
| pint_t thisPC = itThisPC.functionAddress(); |
| // If an exception is thrown from a function, corresponding to the last entry |
| // in the table, we don't really know the function extent and have to choose a |
| // value for nextPC. Choosing max() will allow the range check during trace to |
| // succeed. |
| pint_t nextPC = (itNextPC == end) ? std::numeric_limits<pint_t>::max() |
| : itNextPC.functionAddress(); |
| pint_t indexDataAddr = itThisPC.dataAddress(); |
| |
| if (indexDataAddr == 0) |
| return false; |
| |
| uint32_t indexData = _addressSpace.get32(indexDataAddr); |
| if (indexData == UNW_EXIDX_CANTUNWIND) |
| return false; |
| |
| // If the high bit is set, the exception handling table entry is inline inside |
| // the index table entry on the second word (aka |indexDataAddr|). Otherwise, |
| // the table points at an offset in the exception handling table (section 5 EHABI). |
| pint_t exceptionTableAddr; |
| uint32_t exceptionTableData; |
| bool isSingleWordEHT; |
| if (indexData & 0x80000000) { |
| exceptionTableAddr = indexDataAddr; |
| // TODO(ajwong): Should this data be 0? |
| exceptionTableData = indexData; |
| isSingleWordEHT = true; |
| } else { |
| exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); |
| exceptionTableData = _addressSpace.get32(exceptionTableAddr); |
| isSingleWordEHT = false; |
| } |
| |
| // Now we know the 3 things: |
| // exceptionTableAddr -- exception handler table entry. |
| // exceptionTableData -- the data inside the first word of the eht entry. |
| // isSingleWordEHT -- whether the entry is in the index. |
| unw_word_t personalityRoutine = 0xbadf00d; |
| bool scope32 = false; |
| uintptr_t lsda; |
| |
| // If the high bit in the exception handling table entry is set, the entry is |
| // in compact form (section 6.3 EHABI). |
| if (exceptionTableData & 0x80000000) { |
| // Grab the index of the personality routine from the compact form. |
| uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; |
| uint32_t extraWords = 0; |
| switch (choice) { |
| case 0: |
| personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; |
| extraWords = 0; |
| scope32 = false; |
| lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); |
| break; |
| case 1: |
| personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; |
| extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
| scope32 = false; |
| lsda = exceptionTableAddr + (extraWords + 1) * 4; |
| break; |
| case 2: |
| personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; |
| extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
| scope32 = true; |
| lsda = exceptionTableAddr + (extraWords + 1) * 4; |
| break; |
| default: |
| _LIBUNWIND_ABORT("unknown personality routine"); |
| return false; |
| } |
| |
| if (isSingleWordEHT) { |
| if (extraWords != 0) { |
| _LIBUNWIND_ABORT("index inlined table detected but pr function " |
| "requires extra words"); |
| return false; |
| } |
| } |
| } else { |
| pint_t personalityAddr = |
| exceptionTableAddr + signExtendPrel31(exceptionTableData); |
| personalityRoutine = personalityAddr; |
| |
| // ARM EHABI # 6.2, # 9.2 |
| // |
| // +---- ehtp |
| // v |
| // +--------------------------------------+ |
| // | +--------+--------+--------+-------+ | |
| // | |0| prel31 to personalityRoutine | | |
| // | +--------+--------+--------+-------+ | |
| // | | N | unwind opcodes | | <-- UnwindData |
| // | +--------+--------+--------+-------+ | |
| // | | Word 2 unwind opcodes | | |
| // | +--------+--------+--------+-------+ | |
| // | ... | |
| // | +--------+--------+--------+-------+ | |
| // | | Word N unwind opcodes | | |
| // | +--------+--------+--------+-------+ | |
| // | | LSDA | | <-- lsda |
| // | | ... | | |
| // | +--------+--------+--------+-------+ | |
| // +--------------------------------------+ |
| |
| uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; |
| uint32_t FirstDataWord = *UnwindData; |
| size_t N = ((FirstDataWord >> 24) & 0xff); |
| size_t NDataWords = N + 1; |
| lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); |
| } |
| |
| _info.start_ip = thisPC; |
| _info.end_ip = nextPC; |
| _info.handler = personalityRoutine; |
| _info.unwind_info = exceptionTableAddr; |
| _info.lsda = lsda; |
| // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. |
| _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum? |
| |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, |
| const UnwindInfoSections §s, |
| uint32_t fdeSectionOffsetHint) { |
| typename CFI_Parser<A>::FDE_Info fdeInfo; |
| typename CFI_Parser<A>::CIE_Info cieInfo; |
| bool foundFDE = false; |
| bool foundInCache = false; |
| // If compact encoding table gave offset into dwarf section, go directly there |
| if (fdeSectionOffsetHint != 0) { |
| foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
| (uint32_t)sects.dwarf_section_length, |
| sects.dwarf_section + fdeSectionOffsetHint, |
| &fdeInfo, &cieInfo); |
| } |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
| if (!foundFDE && (sects.dwarf_index_section != 0)) { |
| foundFDE = EHHeaderParser<A>::findFDE( |
| _addressSpace, pc, sects.dwarf_index_section, |
| (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); |
| } |
| #endif |
| if (!foundFDE) { |
| // otherwise, search cache of previously found FDEs. |
| pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); |
| if (cachedFDE != 0) { |
| foundFDE = |
| CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
| (uint32_t)sects.dwarf_section_length, |
| cachedFDE, &fdeInfo, &cieInfo); |
| foundInCache = foundFDE; |
| } |
| } |
| if (!foundFDE) { |
| // Still not found, do full scan of __eh_frame section. |
| foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
| (uint32_t)sects.dwarf_section_length, 0, |
| &fdeInfo, &cieInfo); |
| } |
| if (foundFDE) { |
| typename CFI_Parser<A>::PrologInfo prolog; |
| if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, |
| &prolog)) { |
| // Save off parsed FDE info |
| _info.start_ip = fdeInfo.pcStart; |
| _info.end_ip = fdeInfo.pcEnd; |
| _info.lsda = fdeInfo.lsda; |
| _info.handler = cieInfo.personality; |
| _info.gp = prolog.spExtraArgSize; |
| _info.flags = 0; |
| _info.format = dwarfEncoding(); |
| _info.unwind_info = fdeInfo.fdeStart; |
| _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; |
| _info.extra = (unw_word_t) sects.dso_base; |
| |
| // Add to cache (to make next lookup faster) if we had no hint |
| // and there was no index. |
| if (!foundInCache && (fdeSectionOffsetHint == 0)) { |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
| if (sects.dwarf_index_section == 0) |
| #endif |
| DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, |
| fdeInfo.fdeStart); |
| } |
| return true; |
| } |
| } |
| //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); |
| return false; |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, |
| const UnwindInfoSections §s) { |
| const bool log = false; |
| if (log) |
| fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", |
| (uint64_t)pc, (uint64_t)sects.dso_base); |
| |
| const UnwindSectionHeader<A> sectionHeader(_addressSpace, |
| sects.compact_unwind_section); |
| if (sectionHeader.version() != UNWIND_SECTION_VERSION) |
| return false; |
| |
| // do a binary search of top level index to find page with unwind info |
| pint_t targetFunctionOffset = pc - sects.dso_base; |
| const UnwindSectionIndexArray<A> topIndex(_addressSpace, |
| sects.compact_unwind_section |
| + sectionHeader.indexSectionOffset()); |
| uint32_t low = 0; |
| uint32_t high = sectionHeader.indexCount(); |
| uint32_t last = high - 1; |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", |
| //mid, low, high, topIndex.functionOffset(mid)); |
| if (topIndex.functionOffset(mid) <= targetFunctionOffset) { |
| if ((mid == last) || |
| (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { |
| low = mid; |
| break; |
| } else { |
| low = mid + 1; |
| } |
| } else { |
| high = mid; |
| } |
| } |
| const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); |
| const uint32_t firstLevelNextPageFunctionOffset = |
| topIndex.functionOffset(low + 1); |
| const pint_t secondLevelAddr = |
| sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); |
| const pint_t lsdaArrayStartAddr = |
| sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); |
| const pint_t lsdaArrayEndAddr = |
| sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); |
| if (log) |
| fprintf(stderr, "\tfirst level search for result index=%d " |
| "to secondLevelAddr=0x%llX\n", |
| low, (uint64_t) secondLevelAddr); |
| // do a binary search of second level page index |
| uint32_t encoding = 0; |
| pint_t funcStart = 0; |
| pint_t funcEnd = 0; |
| pint_t lsda = 0; |
| pint_t personality = 0; |
| uint32_t pageKind = _addressSpace.get32(secondLevelAddr); |
| if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { |
| // regular page |
| UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, |
| secondLevelAddr); |
| UnwindSectionRegularArray<A> pageIndex( |
| _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
| // binary search looks for entry with e where index[e].offset <= pc < |
| // index[e+1].offset |
| if (log) |
| fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " |
| "regular page starting at secondLevelAddr=0x%llX\n", |
| (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); |
| low = 0; |
| high = pageHeader.entryCount(); |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { |
| if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { |
| // at end of table |
| low = mid; |
| funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
| break; |
| } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { |
| // next is too big, so we found it |
| low = mid; |
| funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; |
| break; |
| } else { |
| low = mid + 1; |
| } |
| } else { |
| high = mid; |
| } |
| } |
| encoding = pageIndex.encoding(low); |
| funcStart = pageIndex.functionOffset(low) + sects.dso_base; |
| if (pc < funcStart) { |
| if (log) |
| fprintf( |
| stderr, |
| "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", |
| (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
| return false; |
| } |
| if (pc > funcEnd) { |
| if (log) |
| fprintf( |
| stderr, |
| "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", |
| (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
| return false; |
| } |
| } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { |
| // compressed page |
| UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, |
| secondLevelAddr); |
| UnwindSectionCompressedArray<A> pageIndex( |
| _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
| const uint32_t targetFunctionPageOffset = |
| (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); |
| // binary search looks for entry with e where index[e].offset <= pc < |
| // index[e+1].offset |
| if (log) |
| fprintf(stderr, "\tbinary search of compressed page starting at " |
| "secondLevelAddr=0x%llX\n", |
| (uint64_t) secondLevelAddr); |
| low = 0; |
| last = pageHeader.entryCount() - 1; |
| high = pageHeader.entryCount(); |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { |
| if ((mid == last) || |
| (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { |
| low = mid; |
| break; |
| } else { |
| low = mid + 1; |
| } |
| } else { |
| high = mid; |
| } |
| } |
| funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset |
| + sects.dso_base; |
| if (low < last) |
| funcEnd = |
| pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset |
| + sects.dso_base; |
| else |
| funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
| if (pc < funcStart) { |
| _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " |
| "level compressed unwind table. funcStart=0x%llX", |
| (uint64_t) pc, (uint64_t) funcStart); |
| return false; |
| } |
| if (pc > funcEnd) { |
| _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " |
| "level compressed unwind table. funcEnd=0x%llX", |
| (uint64_t) pc, (uint64_t) funcEnd); |
| return false; |
| } |
| uint16_t encodingIndex = pageIndex.encodingIndex(low); |
| if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { |
| // encoding is in common table in section header |
| encoding = _addressSpace.get32( |
| sects.compact_unwind_section + |
| sectionHeader.commonEncodingsArraySectionOffset() + |
| encodingIndex * sizeof(uint32_t)); |
| } else { |
| // encoding is in page specific table |
| uint16_t pageEncodingIndex = |
| encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); |
| encoding = _addressSpace.get32(secondLevelAddr + |
| pageHeader.encodingsPageOffset() + |
| pageEncodingIndex * sizeof(uint32_t)); |
| } |
| } else { |
| _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second " |
| "level page", |
| (uint64_t) sects.compact_unwind_section); |
| return false; |
| } |
| |
| // look up LSDA, if encoding says function has one |
| if (encoding & UNWIND_HAS_LSDA) { |
| UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); |
| uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); |
| low = 0; |
| high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / |
| sizeof(unwind_info_section_header_lsda_index_entry); |
| // binary search looks for entry with exact match for functionOffset |
| if (log) |
| fprintf(stderr, |
| "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", |
| funcStartOffset); |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| if (lsdaIndex.functionOffset(mid) == funcStartOffset) { |
| lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; |
| break; |
| } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| if (lsda == 0) { |
| _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " |
| "pc=0x%0llX, but lsda table has no entry", |
| encoding, (uint64_t) pc); |
| return false; |
| } |
| } |
| |
| // extact personality routine, if encoding says function has one |
| uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> |
| (__builtin_ctz(UNWIND_PERSONALITY_MASK)); |
| if (personalityIndex != 0) { |
| --personalityIndex; // change 1-based to zero-based index |
| if (personalityIndex > sectionHeader.personalityArrayCount()) { |
| _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " |
| "but personality table has only %d entires", |
| encoding, personalityIndex, |
| sectionHeader.personalityArrayCount()); |
| return false; |
| } |
| int32_t personalityDelta = (int32_t)_addressSpace.get32( |
| sects.compact_unwind_section + |
| sectionHeader.personalityArraySectionOffset() + |
| personalityIndex * sizeof(uint32_t)); |
| pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; |
| personality = _addressSpace.getP(personalityPointer); |
| if (log) |
| fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
| "personalityDelta=0x%08X, personality=0x%08llX\n", |
| (uint64_t) pc, personalityDelta, (uint64_t) personality); |
| } |
| |
| if (log) |
| fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
| "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", |
| (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); |
| _info.start_ip = funcStart; |
| _info.end_ip = funcEnd; |
| _info.lsda = lsda; |
| _info.handler = personality; |
| _info.gp = 0; |
| _info.flags = 0; |
| _info.format = encoding; |
| _info.unwind_info = 0; |
| _info.unwind_info_size = 0; |
| _info.extra = sects.dso_base; |
| return true; |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { |
| pint_t pc = (pint_t)this->getReg(UNW_REG_IP); |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| // Remove the thumb bit so the IP represents the actual instruction address. |
| // This matches the behaviour of _Unwind_GetIP on arm. |
| pc &= (pint_t)~0x1; |
| #endif |
| |
| // If the last line of a function is a "throw" the compiler sometimes |
| // emits no instructions after the call to __cxa_throw. This means |
| // the return address is actually the start of the next function. |
| // To disambiguate this, back up the pc when we know it is a return |
| // address. |
| if (isReturnAddress) |
| --pc; |
| |
| // Ask address space object to find unwind sections for this pc. |
| UnwindInfoSections sects; |
| if (_addressSpace.findUnwindSections(pc, sects)) { |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| // If there is a compact unwind encoding table, look there first. |
| if (sects.compact_unwind_section != 0) { |
| if (this->getInfoFromCompactEncodingSection(pc, sects)) { |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| // Found info in table, done unless encoding says to use dwarf. |
| uint32_t dwarfOffset; |
| if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { |
| if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { |
| // found info in dwarf, done |
| return; |
| } |
| } |
| #endif |
| // If unwind table has entry, but entry says there is no unwind info, |
| // record that we have no unwind info. |
| if (_info.format == 0) |
| _unwindInfoMissing = true; |
| return; |
| } |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| // If there is dwarf unwind info, look there next. |
| if (sects.dwarf_section != 0) { |
| if (this->getInfoFromDwarfSection(pc, sects)) { |
| // found info in dwarf, done |
| return; |
| } |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| // If there is ARM EHABI unwind info, look there next. |
| if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) |
| return; |
| #endif |
| } |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| // There is no static unwind info for this pc. Look to see if an FDE was |
| // dynamically registered for it. |
| pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc); |
| if (cachedFDE != 0) { |
| CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; |
| CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; |
| const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace, |
| cachedFDE, &fdeInfo, &cieInfo); |
| if (msg == NULL) { |
| typename CFI_Parser<A>::PrologInfo prolog; |
| if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, |
| pc, &prolog)) { |
| // save off parsed FDE info |
| _info.start_ip = fdeInfo.pcStart; |
| _info.end_ip = fdeInfo.pcEnd; |
| _info.lsda = fdeInfo.lsda; |
| _info.handler = cieInfo.personality; |
| _info.gp = prolog.spExtraArgSize; |
| // Some frameless functions need SP |
| // altered when resuming in function. |
| _info.flags = 0; |
| _info.format = dwarfEncoding(); |
| _info.unwind_info = fdeInfo.fdeStart; |
| _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; |
| _info.extra = 0; |
| return; |
| } |
| } |
| } |
| |
| // Lastly, ask AddressSpace object about platform specific ways to locate |
| // other FDEs. |
| pint_t fde; |
| if (_addressSpace.findOtherFDE(pc, fde)) { |
| CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; |
| CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; |
| if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { |
| // Double check this FDE is for a function that includes the pc. |
| if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) { |
| typename CFI_Parser<A>::PrologInfo prolog; |
| if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, |
| cieInfo, pc, &prolog)) { |
| // save off parsed FDE info |
| _info.start_ip = fdeInfo.pcStart; |
| _info.end_ip = fdeInfo.pcEnd; |
| _info.lsda = fdeInfo.lsda; |
| _info.handler = cieInfo.personality; |
| _info.gp = prolog.spExtraArgSize; |
| _info.flags = 0; |
| _info.format = dwarfEncoding(); |
| _info.unwind_info = fdeInfo.fdeStart; |
| _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; |
| _info.extra = 0; |
| return; |
| } |
| } |
| } |
| } |
| #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| // no unwind info, flag that we can't reliably unwind |
| _unwindInfoMissing = true; |
| } |
| |
| template <typename A, typename R> |
| int UnwindCursor<A, R>::step() { |
| // Bottom of stack is defined is when unwind info cannot be found. |
| if (_unwindInfoMissing) |
| return UNW_STEP_END; |
| |
| // Use unwinding info to modify register set as if function returned. |
| int result; |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| result = this->stepWithCompactEncoding(); |
| #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| result = this->stepWithDwarfFDE(); |
| #elif defined(_LIBUNWIND_ARM_EHABI) |
| result = this->stepWithEHABI(); |
| #else |
| #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ |
| _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ |
| _LIBUNWIND_ARM_EHABI |
| #endif |
| |
| // update info based on new PC |
| if (result == UNW_STEP_SUCCESS) { |
| this->setInfoBasedOnIPRegister(true); |
| if (_unwindInfoMissing) |
| return UNW_STEP_END; |
| } |
| |
| return result; |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { |
| *info = _info; |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, |
| unw_word_t *offset) { |
| return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), |
| buf, bufLen, offset); |
| } |
| |
| } // namespace libunwind |
| |
| #endif // __UNWINDCURSOR_HPP__ |