| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkMatrix_DEFINED |
| #define SkMatrix_DEFINED |
| |
| #include "include/core/SkRect.h" |
| #include "include/private/SkMacros.h" |
| #include "include/private/SkTo.h" |
| |
| struct SkRSXform; |
| struct SkPoint3; |
| class SkString; |
| |
| /** \class SkMatrix |
| SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping |
| SkPoint and vectors with translation, scaling, skewing, rotation, and |
| perspective. |
| |
| SkMatrix elements are in row major order. SkMatrix does not have a constructor, |
| so it must be explicitly initialized. setIdentity() initializes SkMatrix |
| so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll() |
| initializes all SkMatrix elements with the corresponding mapping. |
| |
| SkMatrix includes a hidden variable that classifies the type of matrix to |
| improve performance. SkMatrix is not thread safe unless getType() is called first. |
| */ |
| SK_BEGIN_REQUIRE_DENSE |
| class SK_API SkMatrix { |
| public: |
| |
| /** Creates an identity SkMatrix: |
| |
| | 1 0 0 | |
| | 0 1 0 | |
| | 0 0 1 | |
| */ |
| constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {} |
| |
| /** Sets SkMatrix to scale by (sx, sy). Returned matrix is: |
| |
| | sx 0 0 | |
| | 0 sy 0 | |
| | 0 0 1 | |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| @return SkMatrix with scale |
| */ |
| static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) { |
| SkMatrix m; |
| m.setScale(sx, sy); |
| return m; |
| } |
| |
| /** Sets SkMatrix to scale by (scale, scale). Returned matrix is: |
| |
| | scale 0 0 | |
| | 0 scale 0 | |
| | 0 0 1 | |
| |
| @param scale horizontal and vertical scale factor |
| @return SkMatrix with scale |
| */ |
| static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) { |
| SkMatrix m; |
| m.setScale(scale, scale); |
| return m; |
| } |
| |
| /** Sets SkMatrix to translate by (dx, dy). Returned matrix is: |
| |
| | 1 0 dx | |
| | 0 1 dy | |
| | 0 0 1 | |
| |
| @param dx horizontal translation |
| @param dy vertical translation |
| @return SkMatrix with translation |
| */ |
| static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) { |
| SkMatrix m; |
| m.setTranslate(dx, dy); |
| return m; |
| } |
| |
| /** Sets SkMatrix to: |
| |
| | scaleX skewX transX | |
| | skewY scaleY transY | |
| | pers0 pers1 pers2 | |
| |
| @param scaleX horizontal scale factor |
| @param skewX horizontal skew factor |
| @param transX horizontal translation |
| @param skewY vertical skew factor |
| @param scaleY vertical scale factor |
| @param transY vertical translation |
| @param pers0 input x-axis perspective factor |
| @param pers1 input y-axis perspective factor |
| @param pers2 perspective scale factor |
| @return SkMatrix constructed from parameters |
| */ |
| static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
| SkScalar skewY, SkScalar scaleY, SkScalar transY, |
| SkScalar pers0, SkScalar pers1, SkScalar pers2) { |
| SkMatrix m; |
| m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2); |
| return m; |
| } |
| |
| /** \enum SkMatrix::TypeMask |
| Enum of bit fields for mask returned by getType(). |
| Used to identify the complexity of SkMatrix, to optimize performance. |
| */ |
| enum TypeMask { |
| kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear |
| kTranslate_Mask = 0x01, //!< translation SkMatrix |
| kScale_Mask = 0x02, //!< scale SkMatrix |
| kAffine_Mask = 0x04, //!< skew or rotate SkMatrix |
| kPerspective_Mask = 0x08, //!< perspective SkMatrix |
| }; |
| |
| /** Returns a bit field describing the transformations the matrix may |
| perform. The bit field is computed conservatively, so it may include |
| false positives. For example, when kPerspective_Mask is set, all |
| other bits are set. |
| |
| @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, |
| kAffine_Mask, kPerspective_Mask |
| */ |
| TypeMask getType() const { |
| if (fTypeMask & kUnknown_Mask) { |
| fTypeMask = this->computeTypeMask(); |
| } |
| // only return the public masks |
| return (TypeMask)(fTypeMask & 0xF); |
| } |
| |
| /** Returns true if SkMatrix is identity. Identity matrix is: |
| |
| | 1 0 0 | |
| | 0 1 0 | |
| | 0 0 1 | |
| |
| @return true if SkMatrix has no effect |
| */ |
| bool isIdentity() const { |
| return this->getType() == 0; |
| } |
| |
| /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity, |
| contain only scale elements, only translate elements, or both. SkMatrix form is: |
| |
| | scale-x 0 translate-x | |
| | 0 scale-y translate-y | |
| | 0 0 1 | |
| |
| @return true if SkMatrix is identity; or scales, translates, or both |
| */ |
| bool isScaleTranslate() const { |
| return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
| } |
| |
| /** Returns true if SkMatrix is identity, or translates. SkMatrix form is: |
| |
| | 1 0 translate-x | |
| | 0 1 translate-y | |
| | 0 0 1 | |
| |
| @return true if SkMatrix is identity, or translates |
| */ |
| bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); } |
| |
| /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
| or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
| cases, SkMatrix may also have translation. SkMatrix form is either: |
| |
| | scale-x 0 translate-x | |
| | 0 scale-y translate-y | |
| | 0 0 1 | |
| |
| or |
| |
| | 0 rotate-x translate-x | |
| | rotate-y 0 translate-y | |
| | 0 0 1 | |
| |
| for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
| |
| Also called preservesAxisAlignment(); use the one that provides better inline |
| documentation. |
| |
| @return true if SkMatrix maps one SkRect into another |
| */ |
| bool rectStaysRect() const { |
| if (fTypeMask & kUnknown_Mask) { |
| fTypeMask = this->computeTypeMask(); |
| } |
| return (fTypeMask & kRectStaysRect_Mask) != 0; |
| } |
| |
| /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
| or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
| cases, SkMatrix may also have translation. SkMatrix form is either: |
| |
| | scale-x 0 translate-x | |
| | 0 scale-y translate-y | |
| | 0 0 1 | |
| |
| or |
| |
| | 0 rotate-x translate-x | |
| | rotate-y 0 translate-y | |
| | 0 0 1 | |
| |
| for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
| |
| Also called rectStaysRect(); use the one that provides better inline |
| documentation. |
| |
| @return true if SkMatrix maps one SkRect into another |
| */ |
| bool preservesAxisAlignment() const { return this->rectStaysRect(); } |
| |
| /** Returns true if the matrix contains perspective elements. SkMatrix form is: |
| |
| | -- -- -- | |
| | -- -- -- | |
| | perspective-x perspective-y perspective-scale | |
| |
| where perspective-x or perspective-y is non-zero, or perspective-scale is |
| not one. All other elements may have any value. |
| |
| @return true if SkMatrix is in most general form |
| */ |
| bool hasPerspective() const { |
| return SkToBool(this->getPerspectiveTypeMaskOnly() & |
| kPerspective_Mask); |
| } |
| |
| /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
| uniform scale. |
| Returns false if SkMatrix contains different scales, skewing, perspective, or |
| degenerate forms that collapse to a line or point. |
| |
| Describes that the SkMatrix makes rendering with and without the matrix are |
| visually alike; a transformed circle remains a circle. Mathematically, this is |
| referred to as similarity of a Euclidean space, or a similarity transformation. |
| |
| Preserves right angles, keeping the arms of the angle equal lengths. |
| |
| @param tol to be deprecated |
| @return true if SkMatrix only rotates, uniformly scales, translates |
| */ |
| bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const; |
| |
| /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
| scale. Scale may differ along rotated axes. |
| Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse |
| to a line or point. |
| |
| Preserves right angles, but not requiring that the arms of the angle |
| retain equal lengths. |
| |
| @param tol to be deprecated |
| @return true if SkMatrix only rotates, scales, translates |
| */ |
| bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const; |
| |
| /** SkMatrix organizes its values in row order. These members correspond to |
| each value in SkMatrix. |
| */ |
| static constexpr int kMScaleX = 0; //!< horizontal scale factor |
| static constexpr int kMSkewX = 1; //!< horizontal skew factor |
| static constexpr int kMTransX = 2; //!< horizontal translation |
| static constexpr int kMSkewY = 3; //!< vertical skew factor |
| static constexpr int kMScaleY = 4; //!< vertical scale factor |
| static constexpr int kMTransY = 5; //!< vertical translation |
| static constexpr int kMPersp0 = 6; //!< input x perspective factor |
| static constexpr int kMPersp1 = 7; //!< input y perspective factor |
| static constexpr int kMPersp2 = 8; //!< perspective bias |
| |
| /** Affine arrays are in column major order to match the matrix used by |
| PDF and XPS. |
| */ |
| static constexpr int kAScaleX = 0; //!< horizontal scale factor |
| static constexpr int kASkewY = 1; //!< vertical skew factor |
| static constexpr int kASkewX = 2; //!< horizontal skew factor |
| static constexpr int kAScaleY = 3; //!< vertical scale factor |
| static constexpr int kATransX = 4; //!< horizontal translation |
| static constexpr int kATransY = 5; //!< vertical translation |
| |
| /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
| defined. |
| |
| @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
| kMPersp0, kMPersp1, kMPersp2 |
| @return value corresponding to index |
| */ |
| SkScalar operator[](int index) const { |
| SkASSERT((unsigned)index < 9); |
| return fMat[index]; |
| } |
| |
| /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
| defined. |
| |
| @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
| kMPersp0, kMPersp1, kMPersp2 |
| @return value corresponding to index |
| */ |
| SkScalar get(int index) const { |
| SkASSERT((unsigned)index < 9); |
| return fMat[index]; |
| } |
| |
| /** Returns scale factor multiplied by x-axis input, contributing to x-axis output. |
| With mapPoints(), scales SkPoint along the x-axis. |
| |
| @return horizontal scale factor |
| */ |
| SkScalar getScaleX() const { return fMat[kMScaleX]; } |
| |
| /** Returns scale factor multiplied by y-axis input, contributing to y-axis output. |
| With mapPoints(), scales SkPoint along the y-axis. |
| |
| @return vertical scale factor |
| */ |
| SkScalar getScaleY() const { return fMat[kMScaleY]; } |
| |
| /** Returns scale factor multiplied by x-axis input, contributing to y-axis output. |
| With mapPoints(), skews SkPoint along the y-axis. |
| Skewing both axes can rotate SkPoint. |
| |
| @return vertical skew factor |
| */ |
| SkScalar getSkewY() const { return fMat[kMSkewY]; } |
| |
| /** Returns scale factor multiplied by y-axis input, contributing to x-axis output. |
| With mapPoints(), skews SkPoint along the x-axis. |
| Skewing both axes can rotate SkPoint. |
| |
| @return horizontal scale factor |
| */ |
| SkScalar getSkewX() const { return fMat[kMSkewX]; } |
| |
| /** Returns translation contributing to x-axis output. |
| With mapPoints(), moves SkPoint along the x-axis. |
| |
| @return horizontal translation factor |
| */ |
| SkScalar getTranslateX() const { return fMat[kMTransX]; } |
| |
| /** Returns translation contributing to y-axis output. |
| With mapPoints(), moves SkPoint along the y-axis. |
| |
| @return vertical translation factor |
| */ |
| SkScalar getTranslateY() const { return fMat[kMTransY]; } |
| |
| /** Returns factor scaling input x-axis relative to input y-axis. |
| |
| @return input x-axis perspective factor |
| */ |
| SkScalar getPerspX() const { return fMat[kMPersp0]; } |
| |
| /** Returns factor scaling input y-axis relative to input x-axis. |
| |
| @return input y-axis perspective factor |
| */ |
| SkScalar getPerspY() const { return fMat[kMPersp1]; } |
| |
| /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
| defined. Clears internal cache anticipating that caller will change SkMatrix value. |
| |
| Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix |
| value must be followed by dirtyMatrixTypeCache(). |
| |
| @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
| kMPersp0, kMPersp1, kMPersp2 |
| @return writable value corresponding to index |
| */ |
| SkScalar& operator[](int index) { |
| SkASSERT((unsigned)index < 9); |
| this->setTypeMask(kUnknown_Mask); |
| return fMat[index]; |
| } |
| |
| /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
| defined. Safer than operator[]; internal cache is always maintained. |
| |
| @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
| kMPersp0, kMPersp1, kMPersp2 |
| @param value scalar to store in SkMatrix |
| */ |
| SkMatrix& set(int index, SkScalar value) { |
| SkASSERT((unsigned)index < 9); |
| fMat[index] = value; |
| this->setTypeMask(kUnknown_Mask); |
| return *this; |
| } |
| |
| /** Sets horizontal scale factor. |
| |
| @param v horizontal scale factor to store |
| */ |
| SkMatrix& setScaleX(SkScalar v) { return this->set(kMScaleX, v); } |
| |
| /** Sets vertical scale factor. |
| |
| @param v vertical scale factor to store |
| */ |
| SkMatrix& setScaleY(SkScalar v) { return this->set(kMScaleY, v); } |
| |
| /** Sets vertical skew factor. |
| |
| @param v vertical skew factor to store |
| */ |
| SkMatrix& setSkewY(SkScalar v) { return this->set(kMSkewY, v); } |
| |
| /** Sets horizontal skew factor. |
| |
| @param v horizontal skew factor to store |
| */ |
| SkMatrix& setSkewX(SkScalar v) { return this->set(kMSkewX, v); } |
| |
| /** Sets horizontal translation. |
| |
| @param v horizontal translation to store |
| */ |
| SkMatrix& setTranslateX(SkScalar v) { return this->set(kMTransX, v); } |
| |
| /** Sets vertical translation. |
| |
| @param v vertical translation to store |
| */ |
| SkMatrix& setTranslateY(SkScalar v) { return this->set(kMTransY, v); } |
| |
| /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values |
| inversely proportional to input y-axis values. |
| |
| @param v perspective factor |
| */ |
| SkMatrix& setPerspX(SkScalar v) { return this->set(kMPersp0, v); } |
| |
| /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values |
| inversely proportional to input x-axis values. |
| |
| @param v perspective factor |
| */ |
| SkMatrix& setPerspY(SkScalar v) { return this->set(kMPersp1, v); } |
| |
| /** Sets all values from parameters. Sets matrix to: |
| |
| | scaleX skewX transX | |
| | skewY scaleY transY | |
| | persp0 persp1 persp2 | |
| |
| @param scaleX horizontal scale factor to store |
| @param skewX horizontal skew factor to store |
| @param transX horizontal translation to store |
| @param skewY vertical skew factor to store |
| @param scaleY vertical scale factor to store |
| @param transY vertical translation to store |
| @param persp0 input x-axis values perspective factor to store |
| @param persp1 input y-axis values perspective factor to store |
| @param persp2 perspective scale factor to store |
| */ |
| SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
| SkScalar skewY, SkScalar scaleY, SkScalar transY, |
| SkScalar persp0, SkScalar persp1, SkScalar persp2) { |
| fMat[kMScaleX] = scaleX; |
| fMat[kMSkewX] = skewX; |
| fMat[kMTransX] = transX; |
| fMat[kMSkewY] = skewY; |
| fMat[kMScaleY] = scaleY; |
| fMat[kMTransY] = transY; |
| fMat[kMPersp0] = persp0; |
| fMat[kMPersp1] = persp1; |
| fMat[kMPersp2] = persp2; |
| this->setTypeMask(kUnknown_Mask); |
| return *this; |
| } |
| |
| /** Copies nine scalar values contained by SkMatrix into buffer, in member value |
| ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
| kMPersp0, kMPersp1, kMPersp2. |
| |
| @param buffer storage for nine scalar values |
| */ |
| void get9(SkScalar buffer[9]) const { |
| memcpy(buffer, fMat, 9 * sizeof(SkScalar)); |
| } |
| |
| /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order: |
| kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1, |
| kMPersp2. |
| |
| Sets matrix to: |
| |
| | buffer[0] buffer[1] buffer[2] | |
| | buffer[3] buffer[4] buffer[5] | |
| | buffer[6] buffer[7] buffer[8] | |
| |
| In the future, set9 followed by get9 may not return the same values. Since SkMatrix |
| maps non-homogeneous coordinates, scaling all nine values produces an equivalent |
| transformation, possibly improving precision. |
| |
| @param buffer nine scalar values |
| */ |
| SkMatrix& set9(const SkScalar buffer[9]); |
| |
| /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
| |
| | 1 0 0 | |
| | 0 1 0 | |
| | 0 0 1 | |
| |
| Also called setIdentity(); use the one that provides better inline |
| documentation. |
| */ |
| SkMatrix& reset(); |
| |
| /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
| |
| | 1 0 0 | |
| | 0 1 0 | |
| | 0 0 1 | |
| |
| Also called reset(); use the one that provides better inline |
| documentation. |
| */ |
| SkMatrix& setIdentity() { return this->reset(); } |
| |
| /** Sets SkMatrix to translate by (dx, dy). |
| |
| @param dx horizontal translation |
| @param dy vertical translation |
| */ |
| SkMatrix& setTranslate(SkScalar dx, SkScalar dy); |
| |
| /** Sets SkMatrix to translate by (v.fX, v.fY). |
| |
| @param v vector containing horizontal and vertical translation |
| */ |
| SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(v.fX, v.fY); } |
| |
| /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py). |
| The pivot point is unchanged when mapped with SkMatrix. |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0). |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| */ |
| SkMatrix& setScale(SkScalar sx, SkScalar sy); |
| |
| /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py). |
| The pivot point is unchanged when mapped with SkMatrix. |
| |
| Positive degrees rotates clockwise. |
| |
| @param degrees angle of axes relative to upright axes |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0). |
| Positive degrees rotates clockwise. |
| |
| @param degrees angle of axes relative to upright axes |
| */ |
| SkMatrix& setRotate(SkScalar degrees); |
| |
| /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py). |
| The pivot point is unchanged when mapped with SkMatrix. |
| |
| Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
| Vector length specifies scale. |
| |
| @param sinValue rotation vector x-axis component |
| @param cosValue rotation vector y-axis component |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue, |
| SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0). |
| |
| Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
| Vector length specifies scale. |
| |
| @param sinValue rotation vector x-axis component |
| @param cosValue rotation vector y-axis component |
| */ |
| SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue); |
| |
| /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form. |
| |
| Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative |
| to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled |
| by vector, then translated by (rsxForm.fTx, rsxForm.fTy). |
| |
| @param rsxForm compressed SkRSXform matrix |
| @return reference to SkMatrix |
| */ |
| SkMatrix& setRSXform(const SkRSXform& rsxForm); |
| |
| /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py). |
| The pivot point is unchanged when mapped with SkMatrix. |
| |
| @param kx horizontal skew factor |
| @param ky vertical skew factor |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0). |
| |
| @param kx horizontal skew factor |
| @param ky vertical skew factor |
| */ |
| SkMatrix& setSkew(SkScalar kx, SkScalar ky); |
| |
| /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this. |
| |
| Given: |
| |
| | A B C | | J K L | |
| a = | D E F |, b = | M N O | |
| | G H I | | P Q R | |
| |
| sets SkMatrix to: |
| |
| | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
| a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
| | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
| |
| @param a SkMatrix on left side of multiply expression |
| @param b SkMatrix on right side of multiply expression |
| */ |
| SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy). |
| This can be thought of as moving the point to be mapped before applying SkMatrix. |
| |
| Given: |
| |
| | A B C | | 1 0 dx | |
| Matrix = | D E F |, T(dx, dy) = | 0 1 dy | |
| | G H I | | 0 0 1 | |
| |
| sets SkMatrix to: |
| |
| | A B C | | 1 0 dx | | A B A*dx+B*dy+C | |
| Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F | |
| | G H I | | 0 0 1 | | G H G*dx+H*dy+I | |
| |
| @param dx x-axis translation before applying SkMatrix |
| @param dy y-axis translation before applying SkMatrix |
| */ |
| SkMatrix& preTranslate(SkScalar dx, SkScalar dy); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
| about pivot point (px, py). |
| This can be thought of as scaling about a pivot point before applying SkMatrix. |
| |
| Given: |
| |
| | A B C | | sx 0 dx | |
| Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy | |
| | G H I | | 0 0 1 | |
| |
| where |
| |
| dx = px - sx * px |
| dy = py - sy * py |
| |
| sets SkMatrix to: |
| |
| | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C | |
| Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F | |
| | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I | |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
| about pivot point (0, 0). |
| This can be thought of as scaling about the origin before applying SkMatrix. |
| |
| Given: |
| |
| | A B C | | sx 0 0 | |
| Matrix = | D E F |, S(sx, sy) = | 0 sy 0 | |
| | G H I | | 0 0 1 | |
| |
| sets SkMatrix to: |
| |
| | A B C | | sx 0 0 | | A*sx B*sy C | |
| Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F | |
| | G H I | | 0 0 1 | | G*sx H*sy I | |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| */ |
| SkMatrix& preScale(SkScalar sx, SkScalar sy); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
| about pivot point (px, py). |
| This can be thought of as rotating about a pivot point before applying SkMatrix. |
| |
| Positive degrees rotates clockwise. |
| |
| Given: |
| |
| | A B C | | c -s dx | |
| Matrix = | D E F |, R(degrees, px, py) = | s c dy | |
| | G H I | | 0 0 1 | |
| |
| where |
| |
| c = cos(degrees) |
| s = sin(degrees) |
| dx = s * py + (1 - c) * px |
| dy = -s * px + (1 - c) * py |
| |
| sets SkMatrix to: |
| |
| | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C | |
| Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F | |
| | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I | |
| |
| @param degrees angle of axes relative to upright axes |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
| about pivot point (0, 0). |
| This can be thought of as rotating about the origin before applying SkMatrix. |
| |
| Positive degrees rotates clockwise. |
| |
| Given: |
| |
| | A B C | | c -s 0 | |
| Matrix = | D E F |, R(degrees, px, py) = | s c 0 | |
| | G H I | | 0 0 1 | |
| |
| where |
| |
| c = cos(degrees) |
| s = sin(degrees) |
| |
| sets SkMatrix to: |
| |
| | A B C | | c -s 0 | | Ac+Bs -As+Bc C | |
| Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F | |
| | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I | |
| |
| @param degrees angle of axes relative to upright axes |
| */ |
| SkMatrix& preRotate(SkScalar degrees); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
| about pivot point (px, py). |
| This can be thought of as skewing about a pivot point before applying SkMatrix. |
| |
| Given: |
| |
| | A B C | | 1 kx dx | |
| Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy | |
| | G H I | | 0 0 1 | |
| |
| where |
| |
| dx = -kx * py |
| dy = -ky * px |
| |
| sets SkMatrix to: |
| |
| | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C | |
| Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F | |
| | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I | |
| |
| @param kx horizontal skew factor |
| @param ky vertical skew factor |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
| about pivot point (0, 0). |
| This can be thought of as skewing about the origin before applying SkMatrix. |
| |
| Given: |
| |
| | A B C | | 1 kx 0 | |
| Matrix = | D E F |, K(kx, ky) = | ky 1 0 | |
| | G H I | | 0 0 1 | |
| |
| sets SkMatrix to: |
| |
| | A B C | | 1 kx 0 | | A+B*ky A*kx+B C | |
| Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F | |
| | G H I | | 0 0 1 | | G+H*ky G*kx+H I | |
| |
| @param kx horizontal skew factor |
| @param ky vertical skew factor |
| */ |
| SkMatrix& preSkew(SkScalar kx, SkScalar ky); |
| |
| /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other. |
| This can be thought of mapping by other before applying SkMatrix. |
| |
| Given: |
| |
| | A B C | | J K L | |
| Matrix = | D E F |, other = | M N O | |
| | G H I | | P Q R | |
| |
| sets SkMatrix to: |
| |
| | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
| Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
| | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
| |
| @param other SkMatrix on right side of multiply expression |
| */ |
| SkMatrix& preConcat(const SkMatrix& other); |
| |
| /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix. |
| This can be thought of as moving the point to be mapped after applying SkMatrix. |
| |
| Given: |
| |
| | J K L | | 1 0 dx | |
| Matrix = | M N O |, T(dx, dy) = | 0 1 dy | |
| | P Q R | | 0 0 1 | |
| |
| sets SkMatrix to: |
| |
| | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R | |
| T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R | |
| | 0 0 1 | | P Q R | | P Q R | |
| |
| @param dx x-axis translation after applying SkMatrix |
| @param dy y-axis translation after applying SkMatrix |
| */ |
| SkMatrix& postTranslate(SkScalar dx, SkScalar dy); |
| |
| /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
| (px, py), multiplied by SkMatrix. |
| This can be thought of as scaling about a pivot point after applying SkMatrix. |
| |
| Given: |
| |
| | J K L | | sx 0 dx | |
| Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy | |
| | P Q R | | 0 0 1 | |
| |
| where |
| |
| dx = px - sx * px |
| dy = py - sy * py |
| |
| sets SkMatrix to: |
| |
| | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R | |
| S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R | |
| | 0 0 1 | | P Q R | | P Q R | |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
| (0, 0), multiplied by SkMatrix. |
| This can be thought of as scaling about the origin after applying SkMatrix. |
| |
| Given: |
| |
| | J K L | | sx 0 0 | |
| Matrix = | M N O |, S(sx, sy) = | 0 sy 0 | |
| | P Q R | | 0 0 1 | |
| |
| sets SkMatrix to: |
| |
| | sx 0 0 | | J K L | | sx*J sx*K sx*L | |
| S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O | |
| | 0 0 1 | | P Q R | | P Q R | |
| |
| @param sx horizontal scale factor |
| @param sy vertical scale factor |
| */ |
| SkMatrix& postScale(SkScalar sx, SkScalar sy); |
| |
| /** Sets SkMatrix to SkMatrix constructed from scaling by (1/divx, 1/divy), |
| about pivot point (px, py), multiplied by SkMatrix. |
| |
| Returns false if either divx or divy is zero. |
| |
| Given: |
| |
| | J K L | | sx 0 0 | |
| Matrix = | M N O |, I(divx, divy) = | 0 sy 0 | |
| | P Q R | | 0 0 1 | |
| |
| where |
| |
| sx = 1 / divx |
| sy = 1 / divy |
| |
| sets SkMatrix to: |
| |
| | sx 0 0 | | J K L | | sx*J sx*K sx*L | |
| I(divx, divy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O | |
| | 0 0 1 | | P Q R | | P Q R | |
| |
| @param divx integer divisor for inverse scale in x |
| @param divy integer divisor for inverse scale in y |
| @return true on successful scale |
| */ |
| bool postIDiv(int divx, int divy); |
| |
| /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
| (px, py), multiplied by SkMatrix. |
| This can be thought of as rotating about a pivot point after applying SkMatrix. |
| |
| Positive degrees rotates clockwise. |
| |
| Given: |
| |
| | J K L | | c -s dx | |
| Matrix = | M N O |, R(degrees, px, py) = | s c dy | |
| | P Q R | | 0 0 1 | |
| |
| where |
| |
| c = cos(degrees) |
| s = sin(degrees) |
| dx = s * py + (1 - c) * px |
| dy = -s * px + (1 - c) * py |
| |
| sets SkMatrix to: |
| |
| |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R| |
| R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R| |
| |0 0 1| |P Q R| | P Q R| |
| |
| @param degrees angle of axes relative to upright axes |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
| (0, 0), multiplied by SkMatrix. |
| This can be thought of as rotating about the origin after applying SkMatrix. |
| |
| Positive degrees rotates clockwise. |
| |
| Given: |
| |
| | J K L | | c -s 0 | |
| Matrix = | M N O |, R(degrees, px, py) = | s c 0 | |
| | P Q R | | 0 0 1 | |
| |
| where |
| |
| c = cos(degrees) |
| s = sin(degrees) |
| |
| sets SkMatrix to: |
| |
| | c -s dx | | J K L | | cJ-sM cK-sN cL-sO | |
| R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO | |
| | 0 0 1 | | P Q R | | P Q R | |
| |
| @param degrees angle of axes relative to upright axes |
| */ |
| SkMatrix& postRotate(SkScalar degrees); |
| |
| /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
| (px, py), multiplied by SkMatrix. |
| This can be thought of as skewing about a pivot point after applying SkMatrix. |
| |
| Given: |
| |
| | J K L | | 1 kx dx | |
| Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy | |
| | P Q R | | 0 0 1 | |
| |
| where |
| |
| dx = -kx * py |
| dy = -ky * px |
| |
| sets SkMatrix to: |
| |
| | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R| |
| K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R| |
| | 0 0 1| |P Q R| | P Q R| |
| |
| @param kx horizontal skew factor |
| @param ky vertical skew factor |
| @param px pivot on x-axis |
| @param py pivot on y-axis |
| */ |
| SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
| |
| /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
| (0, 0), multiplied by SkMatrix. |
| This can be thought of as skewing about the origin after applying SkMatrix. |
| |
| Given: |
| |
| | J K L | | 1 kx 0 | |
| Matrix = | M N O |, K(kx, ky) = | ky 1 0 | |
| | P Q R | | 0 0 1 | |
| |
| sets SkMatrix to: |
| |
| | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O | |
| K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O | |
| | 0 0 1 | | P Q R | | P Q R | |
| |
| @param kx horizontal skew factor |
| @param ky vertical skew factor |
| */ |
| SkMatrix& postSkew(SkScalar kx, SkScalar ky); |
| |
| /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix. |
| This can be thought of mapping by other after applying SkMatrix. |
| |
| Given: |
| |
| | J K L | | A B C | |
| Matrix = | M N O |, other = | D E F | |
| | P Q R | | G H I | |
| |
| sets SkMatrix to: |
| |
| | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
| other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
| | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
| |
| @param other SkMatrix on left side of multiply expression |
| */ |
| SkMatrix& postConcat(const SkMatrix& other); |
| |
| /** \enum SkMatrix::ScaleToFit |
| ScaleToFit describes how SkMatrix is constructed to map one SkRect to another. |
| ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling, |
| or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies |
| how SkMatrix maps to the side or center of the destination SkRect. |
| */ |
| enum ScaleToFit { |
| kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect |
| kStart_ScaleToFit, //!< scales and aligns to left and top |
| kCenter_ScaleToFit, //!< scales and aligns to center |
| kEnd_ScaleToFit, //!< scales and aligns to right and bottom |
| }; |
| |
| /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether |
| mapping completely fills dst or preserves the aspect ratio, and how to align |
| src within dst. Returns false if src is empty, and sets SkMatrix to identity. |
| Returns true if dst is empty, and sets SkMatrix to: |
| |
| | 0 0 0 | |
| | 0 0 0 | |
| | 0 0 1 | |
| |
| @param src SkRect to map from |
| @param dst SkRect to map to |
| @param stf one of: kFill_ScaleToFit, kStart_ScaleToFit, |
| kCenter_ScaleToFit, kEnd_ScaleToFit |
| @return true if SkMatrix can represent SkRect mapping |
| */ |
| bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); |
| |
| /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects |
| whether mapping completely fills dst or preserves the aspect ratio, and how to |
| align src within dst. Returns the identity SkMatrix if src is empty. If dst is |
| empty, returns SkMatrix set to: |
| |
| | 0 0 0 | |
| | 0 0 0 | |
| | 0 0 1 | |
| |
| @param src SkRect to map from |
| @param dst SkRect to map to |
| @param stf one of: kFill_ScaleToFit, kStart_ScaleToFit, |
| kCenter_ScaleToFit, kEnd_ScaleToFit |
| @return SkMatrix mapping src to dst |
| */ |
| static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) { |
| SkMatrix m; |
| m.setRectToRect(src, dst, stf); |
| return m; |
| } |
| |
| /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less. |
| |
| If count is zero, sets SkMatrix to identity and returns true. |
| If count is one, sets SkMatrix to translate and returns true. |
| If count is two or more, sets SkMatrix to map SkPoint if possible; returns false |
| if SkMatrix cannot be constructed. If count is four, SkMatrix may include |
| perspective. |
| |
| @param src SkPoint to map from |
| @param dst SkPoint to map to |
| @param count number of SkPoint in src and dst |
| @return true if SkMatrix was constructed successfully |
| */ |
| bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); |
| |
| /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted. |
| Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix |
| maps from destination to source. If SkMatrix can not be inverted, inverse is |
| unchanged. |
| |
| @param inverse storage for inverted SkMatrix; may be nullptr |
| @return true if SkMatrix can be inverted |
| */ |
| bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const { |
| // Allow the trivial case to be inlined. |
| if (this->isIdentity()) { |
| if (inverse) { |
| inverse->reset(); |
| } |
| return true; |
| } |
| return this->invertNonIdentity(inverse); |
| } |
| |
| /** Fills affine with identity values in column major order. |
| Sets affine to: |
| |
| | 1 0 0 | |
| | 0 1 0 | |
| |
| Affine 3 by 2 matrices in column major order are used by OpenGL and XPS. |
| |
| @param affine storage for 3 by 2 affine matrix |
| */ |
| static void SetAffineIdentity(SkScalar affine[6]); |
| |
| /** Fills affine in column major order. Sets affine to: |
| |
| | scale-x skew-x translate-x | |
| | skew-y scale-y translate-y | |
| |
| If SkMatrix contains perspective, returns false and leaves affine unchanged. |
| |
| @param affine storage for 3 by 2 affine matrix; may be nullptr |
| @return true if SkMatrix does not contain perspective |
| */ |
| bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const; |
| |
| /** Sets SkMatrix to affine values, passed in column major order. Given affine, |
| column, then row, as: |
| |
| | scale-x skew-x translate-x | |
| | skew-y scale-y translate-y | |
| |
| SkMatrix is set, row, then column, to: |
| |
| | scale-x skew-x translate-x | |
| | skew-y scale-y translate-y | |
| | 0 0 1 | |
| |
| @param affine 3 by 2 affine matrix |
| */ |
| SkMatrix& setAffine(const SkScalar affine[6]); |
| |
| /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater |
| length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, pt = | y | |
| | G H I | | 1 | |
| |
| where |
| |
| for (i = 0; i < count; ++i) { |
| x = src[i].fX |
| y = src[i].fY |
| } |
| |
| each dst SkPoint is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| src and dst may point to the same storage. |
| |
| @param dst storage for mapped SkPoint |
| @param src SkPoint to transform |
| @param count number of SkPoint to transform |
| */ |
| void mapPoints(SkPoint dst[], const SkPoint src[], int count) const; |
| |
| /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying |
| each SkPoint by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, pt = | y | |
| | G H I | | 1 | |
| |
| where |
| |
| for (i = 0; i < count; ++i) { |
| x = pts[i].fX |
| y = pts[i].fY |
| } |
| |
| each resulting pts SkPoint is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param pts storage for mapped SkPoint |
| @param count number of SkPoint to transform |
| */ |
| void mapPoints(SkPoint pts[], int count) const { |
| this->mapPoints(pts, pts, count); |
| } |
| |
| /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or |
| greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, src = | y | |
| | G H I | | z | |
| |
| each resulting dst SkPoint is computed as: |
| |
| |A B C| |x| |
| Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz| |
| |G H I| |z| |
| |
| @param dst storage for mapped SkPoint3 array |
| @param src SkPoint3 array to transform |
| @param count items in SkPoint3 array to transform |
| */ |
| void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const; |
| |
| /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, pt = | y | |
| | G H I | | 1 | |
| |
| result is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param x x-axis value of SkPoint to map |
| @param y y-axis value of SkPoint to map |
| @param result storage for mapped SkPoint |
| */ |
| void mapXY(SkScalar x, SkScalar y, SkPoint* result) const; |
| |
| /** Returns SkPoint (x, y) multiplied by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, pt = | y | |
| | G H I | | 1 | |
| |
| result is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param x x-axis value of SkPoint to map |
| @param y y-axis value of SkPoint to map |
| @return mapped SkPoint |
| */ |
| SkPoint mapXY(SkScalar x, SkScalar y) const { |
| SkPoint result; |
| this->mapXY(x,y, &result); |
| return result; |
| } |
| |
| /** Maps src vector array of length count to vector SkPoint array of equal or greater |
| length. Vectors are mapped by multiplying each vector by SkMatrix, treating |
| SkMatrix translation as zero. Given: |
| |
| | A B 0 | | x | |
| Matrix = | D E 0 |, src = | y | |
| | G H I | | 1 | |
| |
| where |
| |
| for (i = 0; i < count; ++i) { |
| x = src[i].fX |
| y = src[i].fY |
| } |
| |
| each dst vector is computed as: |
| |
| |A B 0| |x| Ax+By Dx+Ey |
| Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| src and dst may point to the same storage. |
| |
| @param dst storage for mapped vectors |
| @param src vectors to transform |
| @param count number of vectors to transform |
| */ |
| void mapVectors(SkVector dst[], const SkVector src[], int count) const; |
| |
| /** Maps vecs vector array of length count in place, multiplying each vector by |
| SkMatrix, treating SkMatrix translation as zero. Given: |
| |
| | A B 0 | | x | |
| Matrix = | D E 0 |, vec = | y | |
| | G H I | | 1 | |
| |
| where |
| |
| for (i = 0; i < count; ++i) { |
| x = vecs[i].fX |
| y = vecs[i].fY |
| } |
| |
| each result vector is computed as: |
| |
| |A B 0| |x| Ax+By Dx+Ey |
| Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param vecs vectors to transform, and storage for mapped vectors |
| @param count number of vectors to transform |
| */ |
| void mapVectors(SkVector vecs[], int count) const { |
| this->mapVectors(vecs, vecs, count); |
| } |
| |
| /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix, |
| treating SkMatrix translation as zero. Given: |
| |
| | A B 0 | | dx | |
| Matrix = | D E 0 |, vec = | dy | |
| | G H I | | 1 | |
| |
| each result vector is computed as: |
| |
| |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
| Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
| |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
| |
| @param dx x-axis value of vector to map |
| @param dy y-axis value of vector to map |
| @param result storage for mapped vector |
| */ |
| void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const { |
| SkVector vec = { dx, dy }; |
| this->mapVectors(result, &vec, 1); |
| } |
| |
| /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero. |
| Given: |
| |
| | A B 0 | | dx | |
| Matrix = | D E 0 |, vec = | dy | |
| | G H I | | 1 | |
| |
| each result vector is computed as: |
| |
| |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
| Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
| |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
| |
| @param dx x-axis value of vector to map |
| @param dy y-axis value of vector to map |
| @return mapped vector |
| */ |
| SkVector mapVector(SkScalar dx, SkScalar dy) const { |
| SkVector vec = { dx, dy }; |
| this->mapVectors(&vec, &vec, 1); |
| return vec; |
| } |
| |
| /** Sets dst to bounds of src corners mapped by SkMatrix. |
| Returns true if mapped corners are dst corners. |
| |
| Returned value is the same as calling rectStaysRect(). |
| |
| @param dst storage for bounds of mapped SkPoint |
| @param src SkRect to map |
| @return true if dst is equivalent to mapped src |
| */ |
| bool mapRect(SkRect* dst, const SkRect& src) const; |
| |
| /** Sets rect to bounds of rect corners mapped by SkMatrix. |
| Returns true if mapped corners are computed rect corners. |
| |
| Returned value is the same as calling rectStaysRect(). |
| |
| @param rect rectangle to map, and storage for bounds of mapped corners |
| @return true if result is equivalent to mapped rect |
| */ |
| bool mapRect(SkRect* rect) const { |
| return this->mapRect(rect, *rect); |
| } |
| |
| /** Returns bounds of src corners mapped by SkMatrix. |
| |
| @param src rectangle to map |
| @return mapped bounds |
| */ |
| SkRect mapRect(const SkRect& src) const { |
| SkRect dst; |
| (void)this->mapRect(&dst, src); |
| return dst; |
| } |
| |
| /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each |
| rect corner by SkMatrix. rect corner is processed in this order: |
| (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), |
| (rect.fLeft, rect.fBottom). |
| |
| rect may be empty: rect.fLeft may be greater than or equal to rect.fRight; |
| rect.fTop may be greater than or equal to rect.fBottom. |
| |
| Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, pt = | y | |
| | G H I | | 1 | |
| |
| where pt is initialized from each of (rect.fLeft, rect.fTop), |
| (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom), |
| each dst SkPoint is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param dst storage for mapped corner SkPoint |
| @param rect SkRect to map |
| */ |
| void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const { |
| // This could potentially be faster if we only transformed each x and y of the rect once. |
| rect.toQuad(dst); |
| this->mapPoints(dst, 4); |
| } |
| |
| /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains |
| elements other than scale or translate: asserts if SK_DEBUG is defined; |
| otherwise, results are undefined. |
| |
| @param dst storage for bounds of mapped SkPoint |
| @param src SkRect to map |
| */ |
| void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const; |
| |
| /** Returns geometric mean radius of ellipse formed by constructing circle of |
| size radius, and mapping constructed circle with SkMatrix. The result squared is |
| equal to the major axis length times the minor axis length. |
| Result is not meaningful if SkMatrix contains perspective elements. |
| |
| @param radius circle size to map |
| @return average mapped radius |
| */ |
| SkScalar mapRadius(SkScalar radius) const; |
| |
| /** Returns true if a unit step on x-axis at some y-axis value mapped through SkMatrix |
| can be represented by a constant vector. Returns true if getType() returns |
| kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, and kAffine_Mask. |
| |
| May return true if getType() returns kPerspective_Mask, but only when SkMatrix |
| does not include rotation or skewing along the y-axis. |
| |
| @return true if SkMatrix does not have complex perspective |
| */ |
| bool isFixedStepInX() const; |
| |
| /** Returns vector representing a unit step on x-axis at y mapped through SkMatrix. |
| If isFixedStepInX() is false, returned value is undefined. |
| |
| @param y position of line parallel to x-axis |
| @return vector advance of mapped unit step on x-axis |
| */ |
| SkVector fixedStepInX(SkScalar y) const; |
| |
| /** Returns true if SkMatrix equals m, using an efficient comparison. |
| |
| Returns false when the sign of zero values is the different; when one |
| matrix has positive zero value and the other has negative zero value. |
| |
| Returns true even when both SkMatrix contain NaN. |
| |
| NaN never equals any value, including itself. To improve performance, NaN values |
| are treated as bit patterns that are equal if their bit patterns are equal. |
| |
| @param m SkMatrix to compare |
| @return true if m and SkMatrix are represented by identical bit patterns |
| */ |
| bool cheapEqualTo(const SkMatrix& m) const { |
| return 0 == memcmp(fMat, m.fMat, sizeof(fMat)); |
| } |
| |
| /** Compares a and b; returns true if a and b are numerically equal. Returns true |
| even if sign of zero values are different. Returns false if either SkMatrix |
| contains NaN, even if the other SkMatrix also contains NaN. |
| |
| @param a SkMatrix to compare |
| @param b SkMatrix to compare |
| @return true if SkMatrix a and SkMatrix b are numerically equal |
| */ |
| friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b); |
| |
| /** Compares a and b; returns true if a and b are not numerically equal. Returns false |
| even if sign of zero values are different. Returns true if either SkMatrix |
| contains NaN, even if the other SkMatrix also contains NaN. |
| |
| @param a SkMatrix to compare |
| @param b SkMatrix to compare |
| @return true if SkMatrix a and SkMatrix b are numerically not equal |
| */ |
| friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) { |
| return !(a == b); |
| } |
| |
| /** Writes text representation of SkMatrix to standard output. Floating point values |
| are written with limited precision; it may not be possible to reconstruct |
| original SkMatrix from output. |
| */ |
| void dump() const; |
| |
| /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and |
| skewing elements. |
| Returns -1 if scale factor overflows or SkMatrix contains perspective. |
| |
| @return minimum scale factor |
| */ |
| SkScalar getMinScale() const; |
| |
| /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and |
| skewing elements. |
| Returns -1 if scale factor overflows or SkMatrix contains perspective. |
| |
| @return maximum scale factor |
| */ |
| SkScalar getMaxScale() const; |
| |
| /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the |
| maximum scaling factor. Scaling factors are computed by decomposing |
| the SkMatrix scaling and skewing elements. |
| |
| Returns true if scaleFactors are found; otherwise, returns false and sets |
| scaleFactors to undefined values. |
| |
| @param scaleFactors storage for minimum and maximum scale factors |
| @return true if scale factors were computed correctly |
| */ |
| bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const; |
| |
| /** Decomposes SkMatrix into scale components and whatever remains. Returns false if |
| SkMatrix could not be decomposed. |
| |
| Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix |
| with scaling factored out. remaining may be passed as nullptr |
| to determine if SkMatrix can be decomposed without computing remainder. |
| |
| Returns true if scale components are found. scale and remaining are |
| unchanged if SkMatrix contains perspective; scale factors are not finite, or |
| are nearly zero. |
| |
| On success: Matrix = Remaining * scale. |
| |
| @param scale axes scaling factors; may be nullptr |
| @param remaining SkMatrix without scaling; may be nullptr |
| @return true if scale can be computed |
| */ |
| bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const; |
| |
| /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to: |
| |
| | 1 0 0 | |
| | 0 1 0 | |
| | 0 0 1 | |
| |
| @return const identity SkMatrix |
| */ |
| static const SkMatrix& I(); |
| |
| /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set |
| to: |
| |
| | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
| | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
| | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
| |
| @return const invalid SkMatrix |
| */ |
| static const SkMatrix& InvalidMatrix(); |
| |
| /** Returns SkMatrix a multiplied by SkMatrix b. |
| |
| Given: |
| |
| | A B C | | J K L | |
| a = | D E F |, b = | M N O | |
| | G H I | | P Q R | |
| |
| sets SkMatrix to: |
| |
| | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
| a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
| | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
| |
| @param a SkMatrix on left side of multiply expression |
| @param b SkMatrix on right side of multiply expression |
| @return SkMatrix computed from a times b |
| */ |
| static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) { |
| SkMatrix result; |
| result.setConcat(a, b); |
| return result; |
| } |
| |
| /** Sets internal cache to unknown state. Use to force update after repeated |
| modifications to SkMatrix element reference returned by operator[](int index). |
| */ |
| void dirtyMatrixTypeCache() { |
| this->setTypeMask(kUnknown_Mask); |
| } |
| |
| /** Initializes SkMatrix with scale and translate elements. |
| |
| | sx 0 tx | |
| | 0 sy ty | |
| | 0 0 1 | |
| |
| @param sx horizontal scale factor to store |
| @param sy vertical scale factor to store |
| @param tx horizontal translation to store |
| @param ty vertical translation to store |
| */ |
| void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) { |
| fMat[kMScaleX] = sx; |
| fMat[kMSkewX] = 0; |
| fMat[kMTransX] = tx; |
| |
| fMat[kMSkewY] = 0; |
| fMat[kMScaleY] = sy; |
| fMat[kMTransY] = ty; |
| |
| fMat[kMPersp0] = 0; |
| fMat[kMPersp1] = 0; |
| fMat[kMPersp2] = 1; |
| |
| unsigned mask = 0; |
| if (sx != 1 || sy != 1) { |
| mask |= kScale_Mask; |
| } |
| if (tx!=0.0f || ty!=0.0f) { |
| mask |= kTranslate_Mask; |
| } |
| this->setTypeMask(mask | kRectStaysRect_Mask); |
| } |
| |
| /** Returns true if all elements of the matrix are finite. Returns false if any |
| element is infinity, or NaN. |
| |
| @return true if matrix has only finite elements |
| */ |
| bool isFinite() const { return SkScalarsAreFinite(fMat, 9); } |
| |
| private: |
| /** Set if the matrix will map a rectangle to another rectangle. This |
| can be true if the matrix is scale-only, or rotates a multiple of |
| 90 degrees. |
| |
| This bit will be set on identity matrices |
| */ |
| static constexpr int kRectStaysRect_Mask = 0x10; |
| |
| /** Set if the perspective bit is valid even though the rest of |
| the matrix is Unknown. |
| */ |
| static constexpr int kOnlyPerspectiveValid_Mask = 0x40; |
| |
| static constexpr int kUnknown_Mask = 0x80; |
| |
| static constexpr int kORableMasks = kTranslate_Mask | |
| kScale_Mask | |
| kAffine_Mask | |
| kPerspective_Mask; |
| |
| static constexpr int kAllMasks = kTranslate_Mask | |
| kScale_Mask | |
| kAffine_Mask | |
| kPerspective_Mask | |
| kRectStaysRect_Mask; |
| |
| SkScalar fMat[9]; |
| mutable uint32_t fTypeMask; |
| |
| constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx, |
| SkScalar ky, SkScalar sy, SkScalar ty, |
| SkScalar p0, SkScalar p1, SkScalar p2, uint32_t typeMask) |
| : fMat{sx, kx, tx, |
| ky, sy, ty, |
| p0, p1, p2} |
| , fTypeMask(typeMask) {} |
| |
| static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp); |
| |
| uint8_t computeTypeMask() const; |
| uint8_t computePerspectiveTypeMask() const; |
| |
| void setTypeMask(int mask) { |
| // allow kUnknown or a valid mask |
| SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || |
| ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) |
| == (kUnknown_Mask | kOnlyPerspectiveValid_Mask)); |
| fTypeMask = SkToU8(mask); |
| } |
| |
| void orTypeMask(int mask) { |
| SkASSERT((mask & kORableMasks) == mask); |
| fTypeMask = SkToU8(fTypeMask | mask); |
| } |
| |
| void clearTypeMask(int mask) { |
| // only allow a valid mask |
| SkASSERT((mask & kAllMasks) == mask); |
| fTypeMask = fTypeMask & ~mask; |
| } |
| |
| TypeMask getPerspectiveTypeMaskOnly() const { |
| if ((fTypeMask & kUnknown_Mask) && |
| !(fTypeMask & kOnlyPerspectiveValid_Mask)) { |
| fTypeMask = this->computePerspectiveTypeMask(); |
| } |
| return (TypeMask)(fTypeMask & 0xF); |
| } |
| |
| /** Returns true if we already know that the matrix is identity; |
| false otherwise. |
| */ |
| bool isTriviallyIdentity() const { |
| if (fTypeMask & kUnknown_Mask) { |
| return false; |
| } |
| return ((fTypeMask & 0xF) == 0); |
| } |
| |
| inline void updateTranslateMask() { |
| if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) { |
| fTypeMask |= kTranslate_Mask; |
| } else { |
| fTypeMask &= ~kTranslate_Mask; |
| } |
| } |
| |
| typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, |
| SkPoint* result); |
| |
| static MapXYProc GetMapXYProc(TypeMask mask) { |
| SkASSERT((mask & ~kAllMasks) == 0); |
| return gMapXYProcs[mask & kAllMasks]; |
| } |
| |
| MapXYProc getMapXYProc() const { |
| return GetMapXYProc(this->getType()); |
| } |
| |
| typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], |
| const SkPoint src[], int count); |
| |
| static MapPtsProc GetMapPtsProc(TypeMask mask) { |
| SkASSERT((mask & ~kAllMasks) == 0); |
| return gMapPtsProcs[mask & kAllMasks]; |
| } |
| |
| MapPtsProc getMapPtsProc() const { |
| return GetMapPtsProc(this->getType()); |
| } |
| |
| bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const; |
| |
| static bool Poly2Proc(const SkPoint[], SkMatrix*); |
| static bool Poly3Proc(const SkPoint[], SkMatrix*); |
| static bool Poly4Proc(const SkPoint[], SkMatrix*); |
| |
| static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| |
| static const MapXYProc gMapXYProcs[]; |
| |
| static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); |
| static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], |
| int count); |
| static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| |
| static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| |
| static const MapPtsProc gMapPtsProcs[]; |
| |
| // return the number of bytes written, whether or not buffer is null |
| size_t writeToMemory(void* buffer) const; |
| /** |
| * Reads data from the buffer parameter |
| * |
| * @param buffer Memory to read from |
| * @param length Amount of memory available in the buffer |
| * @return number of bytes read (must be a multiple of 4) or |
| * 0 if there was not enough memory available |
| */ |
| size_t readFromMemory(const void* buffer, size_t length); |
| |
| friend class SkPerspIter; |
| friend class SkMatrixPriv; |
| friend class SkReader32; |
| friend class SerializationTest; |
| }; |
| SK_END_REQUIRE_DENSE |
| |
| #endif |