| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkMatrix44_DEFINED |
| #define SkMatrix44_DEFINED |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkScalar.h" |
| |
| #include <atomic> |
| #include <cstring> |
| |
| #ifdef SK_MSCALAR_IS_DOUBLE |
| #ifdef SK_MSCALAR_IS_FLOAT |
| #error "can't define MSCALAR both as DOUBLE and FLOAT" |
| #endif |
| typedef double SkMScalar; |
| |
| static inline double SkFloatToMScalar(float x) { |
| return static_cast<double>(x); |
| } |
| static inline float SkMScalarToFloat(double x) { |
| return static_cast<float>(x); |
| } |
| static inline double SkDoubleToMScalar(double x) { |
| return x; |
| } |
| static inline double SkMScalarToDouble(double x) { |
| return x; |
| } |
| static inline double SkMScalarAbs(double x) { |
| return fabs(x); |
| } |
| static const SkMScalar SK_MScalarPI = 3.141592653589793; |
| static const SkMScalar SK_MScalarNaN = SK_DoubleNaN; |
| |
| #define SkMScalarFloor(x) sk_double_floor(x) |
| #define SkMScalarCeil(x) sk_double_ceil(x) |
| #define SkMScalarRound(x) sk_double_round(x) |
| |
| #define SkMScalarFloorToInt(x) sk_double_floor2int(x) |
| #define SkMScalarCeilToInt(x) sk_double_ceil2int(x) |
| #define SkMScalarRoundToInt(x) sk_double_round2int(x) |
| |
| |
| #elif defined SK_MSCALAR_IS_FLOAT |
| #ifdef SK_MSCALAR_IS_DOUBLE |
| #error "can't define MSCALAR both as DOUBLE and FLOAT" |
| #endif |
| typedef float SkMScalar; |
| |
| static inline float SkFloatToMScalar(float x) { |
| return x; |
| } |
| static inline float SkMScalarToFloat(float x) { |
| return x; |
| } |
| static inline float SkDoubleToMScalar(double x) { |
| return sk_double_to_float(x); |
| } |
| static inline double SkMScalarToDouble(float x) { |
| return static_cast<double>(x); |
| } |
| static inline float SkMScalarAbs(float x) { |
| return sk_float_abs(x); |
| } |
| static const SkMScalar SK_MScalarPI = 3.14159265f; |
| static const SkMScalar SK_MScalarNaN = SK_FloatNaN; |
| |
| #define SkMScalarFloor(x) sk_float_floor(x) |
| #define SkMScalarCeil(x) sk_float_ceil(x) |
| #define SkMScalarRound(x) sk_float_round(x) |
| |
| #define SkMScalarFloorToInt(x) sk_float_floor2int(x) |
| #define SkMScalarCeilToInt(x) sk_float_ceil2int(x) |
| #define SkMScalarRoundToInt(x) sk_float_round2int(x) |
| |
| #endif |
| |
| #define SkIntToMScalar(n) static_cast<SkMScalar>(n) |
| |
| #define SkMScalarToScalar(x) SkMScalarToFloat(x) |
| #define SkScalarToMScalar(x) SkFloatToMScalar(x) |
| |
| static const SkMScalar SK_MScalar1 = 1; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct SkVector4 { |
| SkScalar fData[4]; |
| |
| SkVector4() { |
| this->set(0, 0, 0, 1); |
| } |
| SkVector4(const SkVector4& src) { |
| memcpy(fData, src.fData, sizeof(fData)); |
| } |
| SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
| fData[0] = x; |
| fData[1] = y; |
| fData[2] = z; |
| fData[3] = w; |
| } |
| |
| SkVector4& operator=(const SkVector4& src) { |
| memcpy(fData, src.fData, sizeof(fData)); |
| return *this; |
| } |
| |
| bool operator==(const SkVector4& v) const { |
| return fData[0] == v.fData[0] && fData[1] == v.fData[1] && |
| fData[2] == v.fData[2] && fData[3] == v.fData[3]; |
| } |
| bool operator!=(const SkVector4& v) const { return !(*this == v); } |
| bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
| return fData[0] == x && fData[1] == y && |
| fData[2] == z && fData[3] == w; |
| } |
| |
| void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { |
| fData[0] = x; |
| fData[1] = y; |
| fData[2] = z; |
| fData[3] = w; |
| } |
| }; |
| |
| /** \class SkMatrix44 |
| |
| The SkMatrix44 class holds a 4x4 matrix. |
| |
| */ |
| class SK_API SkMatrix44 { |
| public: |
| |
| enum Uninitialized_Constructor { |
| kUninitialized_Constructor |
| }; |
| enum Identity_Constructor { |
| kIdentity_Constructor |
| }; |
| enum NaN_Constructor { |
| kNaN_Constructor |
| }; |
| |
| SkMatrix44(Uninitialized_Constructor) {} // ironically, cannot be constexpr |
| |
| constexpr SkMatrix44(Identity_Constructor) |
| : fMat{{ 1, 0, 0, 0, }, |
| { 0, 1, 0, 0, }, |
| { 0, 0, 1, 0, }, |
| { 0, 0, 0, 1, }} |
| , fTypeMask(kIdentity_Mask) {} |
| |
| SkMatrix44(NaN_Constructor) |
| : fMat{{ SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN }, |
| { SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN }, |
| { SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN }, |
| { SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN, SK_MScalarNaN }} |
| , fTypeMask(kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask) {} |
| |
| constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {} |
| |
| SkMatrix44(const SkMatrix44& src) = default; |
| |
| SkMatrix44& operator=(const SkMatrix44& src) = default; |
| |
| SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) { |
| this->setConcat(a, b); |
| } |
| |
| bool operator==(const SkMatrix44& other) const; |
| bool operator!=(const SkMatrix44& other) const { |
| return !(other == *this); |
| } |
| |
| /* When converting from SkMatrix44 to SkMatrix, the third row and |
| * column is dropped. When converting from SkMatrix to SkMatrix44 |
| * the third row and column remain as identity: |
| * [ a b c ] [ a b 0 c ] |
| * [ d e f ] -> [ d e 0 f ] |
| * [ g h i ] [ 0 0 1 0 ] |
| * [ g h 0 i ] |
| */ |
| SkMatrix44(const SkMatrix&); |
| SkMatrix44& operator=(const SkMatrix& src); |
| operator SkMatrix() const; |
| |
| /** |
| * Return a reference to a const identity matrix |
| */ |
| static const SkMatrix44& I(); |
| |
| using TypeMask = uint8_t; |
| enum : TypeMask { |
| kIdentity_Mask = 0, |
| kTranslate_Mask = 1 << 0, //!< set if the matrix has translation |
| kScale_Mask = 1 << 1, //!< set if the matrix has any scale != 1 |
| kAffine_Mask = 1 << 2, //!< set if the matrix skews or rotates |
| kPerspective_Mask = 1 << 3, //!< set if the matrix is in perspective |
| }; |
| |
| /** |
| * Returns a bitfield describing the transformations the matrix may |
| * perform. The bitfield is computed conservatively, so it may include |
| * false positives. For example, when kPerspective_Mask is true, all |
| * other bits may be set to true even in the case of a pure perspective |
| * transform. |
| */ |
| inline TypeMask getType() const { return fTypeMask; } |
| |
| /** |
| * Return true if the matrix is identity. |
| */ |
| inline bool isIdentity() const { |
| return kIdentity_Mask == this->getType(); |
| } |
| |
| /** |
| * Return true if the matrix contains translate or is identity. |
| */ |
| inline bool isTranslate() const { |
| return !(this->getType() & ~kTranslate_Mask); |
| } |
| |
| /** |
| * Return true if the matrix only contains scale or translate or is identity. |
| */ |
| inline bool isScaleTranslate() const { |
| return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
| } |
| |
| /** |
| * Returns true if the matrix only contains scale or is identity. |
| */ |
| inline bool isScale() const { |
| return !(this->getType() & ~kScale_Mask); |
| } |
| |
| inline bool hasPerspective() const { |
| return SkToBool(this->getType() & kPerspective_Mask); |
| } |
| |
| void setIdentity(); |
| inline void reset() { this->setIdentity();} |
| |
| /** |
| * get a value from the matrix. The row,col parameters work as follows: |
| * (0, 0) scale-x |
| * (0, 3) translate-x |
| * (3, 0) perspective-x |
| */ |
| inline SkMScalar get(int row, int col) const { |
| SkASSERT((unsigned)row <= 3); |
| SkASSERT((unsigned)col <= 3); |
| return fMat[col][row]; |
| } |
| |
| /** |
| * set a value in the matrix. The row,col parameters work as follows: |
| * (0, 0) scale-x |
| * (0, 3) translate-x |
| * (3, 0) perspective-x |
| */ |
| inline void set(int row, int col, SkMScalar value) { |
| SkASSERT((unsigned)row <= 3); |
| SkASSERT((unsigned)col <= 3); |
| fMat[col][row] = value; |
| this->recomputeTypeMask(); |
| } |
| |
| inline double getDouble(int row, int col) const { |
| return SkMScalarToDouble(this->get(row, col)); |
| } |
| inline void setDouble(int row, int col, double value) { |
| this->set(row, col, SkDoubleToMScalar(value)); |
| } |
| inline float getFloat(int row, int col) const { |
| return SkMScalarToFloat(this->get(row, col)); |
| } |
| inline void setFloat(int row, int col, float value) { |
| this->set(row, col, SkFloatToMScalar(value)); |
| } |
| |
| /** These methods allow one to efficiently read matrix entries into an |
| * array. The given array must have room for exactly 16 entries. Whenever |
| * possible, they will try to use memcpy rather than an entry-by-entry |
| * copy. |
| * |
| * Col major indicates that consecutive elements of columns will be stored |
| * contiguously in memory. Row major indicates that consecutive elements |
| * of rows will be stored contiguously in memory. |
| */ |
| void asColMajorf(float[]) const; |
| void asColMajord(double[]) const; |
| void asRowMajorf(float[]) const; |
| void asRowMajord(double[]) const; |
| |
| /** These methods allow one to efficiently set all matrix entries from an |
| * array. The given array must have room for exactly 16 entries. Whenever |
| * possible, they will try to use memcpy rather than an entry-by-entry |
| * copy. |
| * |
| * Col major indicates that input memory will be treated as if consecutive |
| * elements of columns are stored contiguously in memory. Row major |
| * indicates that input memory will be treated as if consecutive elements |
| * of rows are stored contiguously in memory. |
| */ |
| void setColMajorf(const float[]); |
| void setColMajord(const double[]); |
| void setRowMajorf(const float[]); |
| void setRowMajord(const double[]); |
| |
| #ifdef SK_MSCALAR_IS_FLOAT |
| void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); } |
| void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); } |
| #else |
| void setColMajor(const SkMScalar data[]) { this->setColMajord(data); } |
| void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); } |
| #endif |
| |
| /* This sets the top-left of the matrix and clears the translation and |
| * perspective components (with [3][3] set to 1). m_ij is interpreted |
| * as the matrix entry at row = i, col = j. */ |
| void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20, |
| SkMScalar m_01, SkMScalar m_11, SkMScalar m_21, |
| SkMScalar m_02, SkMScalar m_12, SkMScalar m_22); |
| void set3x3RowMajorf(const float[]); |
| |
| void set4x4(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20, SkMScalar m_30, |
| SkMScalar m_01, SkMScalar m_11, SkMScalar m_21, SkMScalar m_31, |
| SkMScalar m_02, SkMScalar m_12, SkMScalar m_22, SkMScalar m_32, |
| SkMScalar m_03, SkMScalar m_13, SkMScalar m_23, SkMScalar m_33); |
| |
| void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); |
| void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); |
| void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); |
| |
| void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); |
| void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); |
| void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); |
| |
| inline void setScale(SkMScalar scale) { |
| this->setScale(scale, scale, scale); |
| } |
| inline void preScale(SkMScalar scale) { |
| this->preScale(scale, scale, scale); |
| } |
| inline void postScale(SkMScalar scale) { |
| this->postScale(scale, scale, scale); |
| } |
| |
| void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z, |
| SkMScalar degrees) { |
| this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180); |
| } |
| |
| /** Rotate about the vector [x,y,z]. If that vector is not unit-length, |
| it will be automatically resized. |
| */ |
| void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, |
| SkMScalar radians); |
| /** Rotate about the vector [x,y,z]. Does not check the length of the |
| vector, assuming it is unit-length. |
| */ |
| void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, |
| SkMScalar radians); |
| |
| void setConcat(const SkMatrix44& a, const SkMatrix44& b); |
| inline void preConcat(const SkMatrix44& m) { |
| this->setConcat(*this, m); |
| } |
| inline void postConcat(const SkMatrix44& m) { |
| this->setConcat(m, *this); |
| } |
| |
| friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) { |
| return SkMatrix44(a, b); |
| } |
| |
| /** If this is invertible, return that in inverse and return true. If it is |
| not invertible, return false and leave the inverse parameter in an |
| unspecified state. |
| */ |
| bool invert(SkMatrix44* inverse) const; |
| |
| /** Transpose this matrix in place. */ |
| void transpose(); |
| |
| /** Apply the matrix to the src vector, returning the new vector in dst. |
| It is legal for src and dst to point to the same memory. |
| */ |
| void mapScalars(const SkScalar src[4], SkScalar dst[4]) const; |
| inline void mapScalars(SkScalar vec[4]) const { |
| this->mapScalars(vec, vec); |
| } |
| |
| #ifdef SK_MSCALAR_IS_DOUBLE |
| void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const; |
| #elif defined SK_MSCALAR_IS_FLOAT |
| inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { |
| this->mapScalars(src, dst); |
| } |
| #endif |
| inline void mapMScalars(SkMScalar vec[4]) const { |
| this->mapMScalars(vec, vec); |
| } |
| |
| friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) { |
| SkVector4 dst; |
| m.mapScalars(src.fData, dst.fData); |
| return dst; |
| } |
| |
| /** |
| * map an array of [x, y, 0, 1] through the matrix, returning an array |
| * of [x', y', z', w']. |
| * |
| * @param src2 array of [x, y] pairs, with implied z=0 and w=1 |
| * @param count number of [x, y] pairs in src2 |
| * @param dst4 array of [x', y', z', w'] quads as the output. |
| */ |
| void map2(const float src2[], int count, float dst4[]) const; |
| void map2(const double src2[], int count, double dst4[]) const; |
| |
| /** Returns true if transformating an axis-aligned square in 2d by this matrix |
| will produce another 2d axis-aligned square; typically means the matrix |
| is a scale with perhaps a 90-degree rotation. A 3d rotation through 90 |
| degrees into a perpendicular plane collapses a square to a line, but |
| is still considered to be axis-aligned. |
| |
| By default, tolerates very slight error due to float imprecisions; |
| a 90-degree rotation can still end up with 10^-17 of |
| "non-axis-aligned" result. |
| */ |
| bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const; |
| |
| void dump() const; |
| |
| double determinant() const; |
| |
| private: |
| /* This is indexed by [col][row]. */ |
| SkMScalar fMat[4][4]; |
| TypeMask fTypeMask; |
| |
| static constexpr int kAllPublic_Masks = 0xF; |
| |
| void as3x4RowMajorf(float[]) const; |
| void set3x4RowMajorf(const float[]); |
| |
| SkMScalar transX() const { return fMat[3][0]; } |
| SkMScalar transY() const { return fMat[3][1]; } |
| SkMScalar transZ() const { return fMat[3][2]; } |
| |
| SkMScalar scaleX() const { return fMat[0][0]; } |
| SkMScalar scaleY() const { return fMat[1][1]; } |
| SkMScalar scaleZ() const { return fMat[2][2]; } |
| |
| SkMScalar perspX() const { return fMat[0][3]; } |
| SkMScalar perspY() const { return fMat[1][3]; } |
| SkMScalar perspZ() const { return fMat[2][3]; } |
| |
| void recomputeTypeMask(); |
| |
| inline void setTypeMask(TypeMask mask) { |
| SkASSERT(0 == (~kAllPublic_Masks & mask)); |
| fTypeMask = mask; |
| } |
| |
| inline const SkMScalar* values() const { return &fMat[0][0]; } |
| |
| friend class SkColorSpace; |
| }; |
| |
| #endif |