blob: f0d1fd6dd1b0414799b53e54d65f4b38d049ac25 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Platform-specific code for Win32.
// Secure API functions are not available using MinGW with msvcrt.dll
// on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
// disable definition of secure API functions in standard headers that
// would conflict with our own implementation.
#ifdef __MINGW32__
#include <_mingw.h>
#ifdef MINGW_HAS_SECURE_API
#undef MINGW_HAS_SECURE_API
#endif // MINGW_HAS_SECURE_API
#endif // __MINGW32__
#include <limits>
#include "src/base/win32-headers.h"
#include "src/base/bits.h"
#include "src/base/lazy-instance.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/timezone-cache.h"
#include "src/base/utils/random-number-generator.h"
#include <VersionHelpers.h>
#if defined(_MSC_VER) && !defined(DISABLE_WASM_COMPILER_ISSUE_STARBOARD)
#include <crtdbg.h> // NOLINT
#endif // defined(_MSC_VER)
// Extra functions for MinGW. Most of these are the _s functions which are in
// the Microsoft Visual Studio C++ CRT.
#ifdef __MINGW32__
#ifndef __MINGW64_VERSION_MAJOR
#define _TRUNCATE 0
#define STRUNCATE 80
inline void MemoryFence() {
int barrier = 0;
__asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
}
#endif // __MINGW64_VERSION_MAJOR
int localtime_s(tm* out_tm, const time_t* time) {
tm* posix_local_time_struct = localtime_r(time, out_tm);
if (posix_local_time_struct == nullptr) return 1;
return 0;
}
int fopen_s(FILE** pFile, const char* filename, const char* mode) {
*pFile = fopen(filename, mode);
return *pFile != nullptr ? 0 : 1;
}
int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
const char* format, va_list argptr) {
DCHECK(count == _TRUNCATE);
return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
}
int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
CHECK(source != nullptr);
CHECK(dest != nullptr);
CHECK_GT(dest_size, 0);
if (count == _TRUNCATE) {
while (dest_size > 0 && *source != 0) {
*(dest++) = *(source++);
--dest_size;
}
if (dest_size == 0) {
*(dest - 1) = 0;
return STRUNCATE;
}
} else {
while (dest_size > 0 && count > 0 && *source != 0) {
*(dest++) = *(source++);
--dest_size;
--count;
}
}
CHECK_GT(dest_size, 0);
*dest = 0;
return 0;
}
#endif // __MINGW32__
namespace v8 {
namespace base {
namespace {
bool g_hard_abort = false;
} // namespace
class WindowsTimezoneCache : public TimezoneCache {
public:
WindowsTimezoneCache() : initialized_(false) {}
~WindowsTimezoneCache() override {}
void Clear(TimeZoneDetection) override { initialized_ = false; }
const char* LocalTimezone(double time) override;
double LocalTimeOffset(double time, bool is_utc) override;
double DaylightSavingsOffset(double time) override;
// Initialize timezone information. The timezone information is obtained from
// windows. If we cannot get the timezone information we fall back to CET.
void InitializeIfNeeded() {
// Just return if timezone information has already been initialized.
if (initialized_) return;
// Initialize POSIX time zone data.
_tzset();
// Obtain timezone information from operating system.
memset(&tzinfo_, 0, sizeof(tzinfo_));
if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
// If we cannot get timezone information we fall back to CET.
tzinfo_.Bias = -60;
tzinfo_.StandardDate.wMonth = 10;
tzinfo_.StandardDate.wDay = 5;
tzinfo_.StandardDate.wHour = 3;
tzinfo_.StandardBias = 0;
tzinfo_.DaylightDate.wMonth = 3;
tzinfo_.DaylightDate.wDay = 5;
tzinfo_.DaylightDate.wHour = 2;
tzinfo_.DaylightBias = -60;
}
// Make standard and DST timezone names.
WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, std_tz_name_,
kTzNameSize, nullptr, nullptr);
std_tz_name_[kTzNameSize - 1] = '\0';
WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, dst_tz_name_,
kTzNameSize, nullptr, nullptr);
dst_tz_name_[kTzNameSize - 1] = '\0';
// If OS returned empty string or resource id (like "@tzres.dll,-211")
// simply guess the name from the UTC bias of the timezone.
// To properly resolve the resource identifier requires a library load,
// which is not possible in a sandbox.
if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
"%s Standard Time",
GuessTimezoneNameFromBias(tzinfo_.Bias));
}
if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
"%s Daylight Time",
GuessTimezoneNameFromBias(tzinfo_.Bias));
}
// Timezone information initialized.
initialized_ = true;
}
// Guess the name of the timezone from the bias.
// The guess is very biased towards the northern hemisphere.
const char* GuessTimezoneNameFromBias(int bias) {
static const int kHour = 60;
switch (-bias) {
case -9*kHour: return "Alaska";
case -8*kHour: return "Pacific";
case -7*kHour: return "Mountain";
case -6*kHour: return "Central";
case -5*kHour: return "Eastern";
case -4*kHour: return "Atlantic";
case 0*kHour: return "GMT";
case +1*kHour: return "Central Europe";
case +2*kHour: return "Eastern Europe";
case +3*kHour: return "Russia";
case +5*kHour + 30: return "India";
case +8*kHour: return "China";
case +9*kHour: return "Japan";
case +12*kHour: return "New Zealand";
default: return "Local";
}
}
private:
static const int kTzNameSize = 128;
bool initialized_;
char std_tz_name_[kTzNameSize];
char dst_tz_name_[kTzNameSize];
TIME_ZONE_INFORMATION tzinfo_;
friend class Win32Time;
};
// ----------------------------------------------------------------------------
// The Time class represents time on win32. A timestamp is represented as
// a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
// January 1, 1970.
class Win32Time {
public:
// Constructors.
Win32Time();
explicit Win32Time(double jstime);
Win32Time(int year, int mon, int day, int hour, int min, int sec);
// Convert timestamp to JavaScript representation.
double ToJSTime();
// Set timestamp to current time.
void SetToCurrentTime();
// Returns the local timezone offset in milliseconds east of UTC. This is
// the number of milliseconds you must add to UTC to get local time, i.e.
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
// routine also takes into account whether daylight saving is effect
// at the time.
int64_t LocalOffset(WindowsTimezoneCache* cache);
// Returns the daylight savings time offset for the time in milliseconds.
int64_t DaylightSavingsOffset(WindowsTimezoneCache* cache);
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* LocalTimezone(WindowsTimezoneCache* cache);
private:
// Constants for time conversion.
static const int64_t kTimeEpoc = 116444736000000000LL;
static const int64_t kTimeScaler = 10000;
static const int64_t kMsPerMinute = 60000;
// Constants for timezone information.
static const bool kShortTzNames = false;
// Return whether or not daylight savings time is in effect at this time.
bool InDST(WindowsTimezoneCache* cache);
// Accessor for FILETIME representation.
FILETIME& ft() { return time_.ft_; }
// Accessor for integer representation.
int64_t& t() { return time_.t_; }
// Although win32 uses 64-bit integers for representing timestamps,
// these are packed into a FILETIME structure. The FILETIME structure
// is just a struct representing a 64-bit integer. The TimeStamp union
// allows access to both a FILETIME and an integer representation of
// the timestamp.
union TimeStamp {
FILETIME ft_;
int64_t t_;
};
TimeStamp time_;
};
// Initialize timestamp to start of epoc.
Win32Time::Win32Time() {
t() = 0;
}
// Initialize timestamp from a JavaScript timestamp.
Win32Time::Win32Time(double jstime) {
t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
}
// Initialize timestamp from date/time components.
Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
SYSTEMTIME st;
st.wYear = year;
st.wMonth = mon;
st.wDay = day;
st.wHour = hour;
st.wMinute = min;
st.wSecond = sec;
st.wMilliseconds = 0;
SystemTimeToFileTime(&st, &ft());
}
// Convert timestamp to JavaScript timestamp.
double Win32Time::ToJSTime() {
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
}
// Set timestamp to current time.
void Win32Time::SetToCurrentTime() {
// The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
// Because we're fast, we like fast timers which have at least a
// 1ms resolution.
//
// timeGetTime() provides 1ms granularity when combined with
// timeBeginPeriod(). If the host application for v8 wants fast
// timers, it can use timeBeginPeriod to increase the resolution.
//
// Using timeGetTime() has a drawback because it is a 32bit value
// and hence rolls-over every ~49days.
//
// To use the clock, we use GetSystemTimeAsFileTime as our base;
// and then use timeGetTime to extrapolate current time from the
// start time. To deal with rollovers, we resync the clock
// any time when more than kMaxClockElapsedTime has passed or
// whenever timeGetTime creates a rollover.
static bool initialized = false;
static TimeStamp init_time;
static DWORD init_ticks;
static const int64_t kHundredNanosecondsPerSecond = 10000000;
static const int64_t kMaxClockElapsedTime =
60*kHundredNanosecondsPerSecond; // 1 minute
// If we are uninitialized, we need to resync the clock.
bool needs_resync = !initialized;
// Get the current time.
TimeStamp time_now;
GetSystemTimeAsFileTime(&time_now.ft_);
DWORD ticks_now = timeGetTime();
// Check if we need to resync due to clock rollover.
needs_resync |= ticks_now < init_ticks;
// Check if we need to resync due to elapsed time.
needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
// Check if we need to resync due to backwards time change.
needs_resync |= time_now.t_ < init_time.t_;
// Resync the clock if necessary.
if (needs_resync) {
GetSystemTimeAsFileTime(&init_time.ft_);
init_ticks = ticks_now = timeGetTime();
initialized = true;
}
// Finally, compute the actual time. Why is this so hard.
DWORD elapsed = ticks_now - init_ticks;
this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
}
// Return the local timezone offset in milliseconds east of UTC. This
// takes into account whether daylight saving is in effect at the time.
// Only times in the 32-bit Unix range may be passed to this function.
// Also, adding the time-zone offset to the input must not overflow.
// The function EquivalentTime() in date.js guarantees this.
int64_t Win32Time::LocalOffset(WindowsTimezoneCache* cache) {
cache->InitializeIfNeeded();
Win32Time rounded_to_second(*this);
rounded_to_second.t() =
rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
// Convert to local time using POSIX localtime function.
// Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
// very slow. Other browsers use localtime().
// Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
// POSIX seconds past 1/1/1970 0:00:00.
double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
return 0;
}
// Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
time_t posix_time = static_cast<time_t>(unchecked_posix_time);
// Convert to local time, as struct with fields for day, hour, year, etc.
tm posix_local_time_struct;
if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
if (posix_local_time_struct.tm_isdst > 0) {
return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
} else if (posix_local_time_struct.tm_isdst == 0) {
return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
} else {
return cache->tzinfo_.Bias * -kMsPerMinute;
}
}
// Return whether or not daylight savings time is in effect at this time.
bool Win32Time::InDST(WindowsTimezoneCache* cache) {
cache->InitializeIfNeeded();
// Determine if DST is in effect at the specified time.
bool in_dst = false;
if (cache->tzinfo_.StandardDate.wMonth != 0 ||
cache->tzinfo_.DaylightDate.wMonth != 0) {
// Get the local timezone offset for the timestamp in milliseconds.
int64_t offset = LocalOffset(cache);
// Compute the offset for DST. The bias parameters in the timezone info
// are specified in minutes. These must be converted to milliseconds.
int64_t dstofs =
-(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
// If the local time offset equals the timezone bias plus the daylight
// bias then DST is in effect.
in_dst = offset == dstofs;
}
return in_dst;
}
// Return the daylight savings time offset for this time.
int64_t Win32Time::DaylightSavingsOffset(WindowsTimezoneCache* cache) {
return InDST(cache) ? 60 * kMsPerMinute : 0;
}
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* Win32Time::LocalTimezone(WindowsTimezoneCache* cache) {
// Return the standard or DST time zone name based on whether daylight
// saving is in effect at the given time.
return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
}
// Returns the accumulated user time for thread.
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
FILETIME dummy;
uint64_t usertime;
// Get the amount of time that the thread has executed in user mode.
if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
reinterpret_cast<FILETIME*>(&usertime))) return -1;
// Adjust the resolution to micro-seconds.
usertime /= 10;
// Convert to seconds and microseconds
*secs = static_cast<uint32_t>(usertime / 1000000);
*usecs = static_cast<uint32_t>(usertime % 1000000);
return 0;
}
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
double OS::TimeCurrentMillis() {
return Time::Now().ToJsTime();
}
// Returns a string identifying the current timezone taking into
// account daylight saving.
const char* WindowsTimezoneCache::LocalTimezone(double time) {
return Win32Time(time).LocalTimezone(this);
}
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
double WindowsTimezoneCache::LocalTimeOffset(double time_ms, bool is_utc) {
// Ignore is_utc and time_ms for now. That way, the behavior wouldn't
// change with icu_timezone_data disabled.
// Use current time, rounded to the millisecond.
Win32Time t(OS::TimeCurrentMillis());
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
return static_cast<double>(t.LocalOffset(this) -
t.DaylightSavingsOffset(this));
}
// Returns the daylight savings offset in milliseconds for the given
// time.
double WindowsTimezoneCache::DaylightSavingsOffset(double time) {
int64_t offset = Win32Time(time).DaylightSavingsOffset(this);
return static_cast<double>(offset);
}
TimezoneCache* OS::CreateTimezoneCache() { return new WindowsTimezoneCache(); }
int OS::GetLastError() {
return ::GetLastError();
}
int OS::GetCurrentProcessId() {
return static_cast<int>(::GetCurrentProcessId());
}
int OS::GetCurrentThreadId() {
return static_cast<int>(::GetCurrentThreadId());
}
void OS::ExitProcess(int exit_code) {
// Use TerminateProcess avoid races between isolate threads and
// static destructors.
fflush(stdout);
fflush(stderr);
TerminateProcess(GetCurrentProcess(), exit_code);
}
// ----------------------------------------------------------------------------
// Win32 console output.
//
// If a Win32 application is linked as a console application it has a normal
// standard output and standard error. In this case normal printf works fine
// for output. However, if the application is linked as a GUI application,
// the process doesn't have a console, and therefore (debugging) output is lost.
// This is the case if we are embedded in a windows program (like a browser).
// In order to be able to get debug output in this case the the debugging
// facility using OutputDebugString. This output goes to the active debugger
// for the process (if any). Else the output can be monitored using DBMON.EXE.
enum OutputMode {
UNKNOWN, // Output method has not yet been determined.
CONSOLE, // Output is written to stdout.
ODS // Output is written to debug facility.
};
static OutputMode output_mode = UNKNOWN; // Current output mode.
// Determine if the process has a console for output.
static bool HasConsole() {
// Only check the first time. Eventual race conditions are not a problem,
// because all threads will eventually determine the same mode.
if (output_mode == UNKNOWN) {
// We cannot just check that the standard output is attached to a console
// because this would fail if output is redirected to a file. Therefore we
// say that a process does not have an output console if either the
// standard output handle is invalid or its file type is unknown.
if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
output_mode = CONSOLE;
else
output_mode = ODS;
}
return output_mode == CONSOLE;
}
static void VPrintHelper(FILE* stream, const char* format, va_list args) {
if ((stream == stdout || stream == stderr) && !HasConsole()) {
// It is important to use safe print here in order to avoid
// overflowing the buffer. We might truncate the output, but this
// does not crash.
char buffer[4096];
OS::VSNPrintF(buffer, sizeof(buffer), format, args);
OutputDebugStringA(buffer);
} else {
vfprintf(stream, format, args);
}
}
FILE* OS::FOpen(const char* path, const char* mode) {
FILE* result;
if (fopen_s(&result, path, mode) == 0) {
return result;
} else {
return nullptr;
}
}
bool OS::Remove(const char* path) {
return (DeleteFileA(path) != 0);
}
char OS::DirectorySeparator() { return '\\'; }
bool OS::isDirectorySeparator(const char ch) {
return ch == '/' || ch == '\\';
}
FILE* OS::OpenTemporaryFile() {
// tmpfile_s tries to use the root dir, don't use it.
char tempPathBuffer[MAX_PATH];
DWORD path_result = 0;
path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
if (path_result > MAX_PATH || path_result == 0) return nullptr;
UINT name_result = 0;
char tempNameBuffer[MAX_PATH];
name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
if (name_result == 0) return nullptr;
FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
if (result != nullptr) {
Remove(tempNameBuffer); // Delete on close.
}
return result;
}
// Open log file in binary mode to avoid /n -> /r/n conversion.
const char* const OS::LogFileOpenMode = "wb";
// Print (debug) message to console.
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VPrint(format, args);
va_end(args);
}
void OS::VPrint(const char* format, va_list args) {
VPrintHelper(stdout, format, args);
}
void OS::FPrint(FILE* out, const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(out, format, args);
va_end(args);
}
void OS::VFPrint(FILE* out, const char* format, va_list args) {
VPrintHelper(out, format, args);
}
// Print error message to console.
void OS::PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
void OS::VPrintError(const char* format, va_list args) {
VPrintHelper(stderr, format, args);
}
int OS::SNPrintF(char* str, int length, const char* format, ...) {
va_list args;
va_start(args, format);
int result = VSNPrintF(str, length, format, args);
va_end(args);
return result;
}
int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
#if defined(COBALT)
// In testing, _vsnprintf_s can fill result's tail with unexpected
// characters if strlen(str) < length. Switching to vsnprintf is what Cobalt
// uses for msvs platforms currently.
int n = vsnprintf(str, length, format, args);
#else
int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
#endif
// Make sure to zero-terminate the string if the output was
// truncated or if there was an error.
if (n < 0 || n >= length) {
if (length > 0)
str[length - 1] = '\0';
return -1;
} else {
return n;
}
}
void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
// Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
size_t buffer_size = static_cast<size_t>(length);
if (n + 1 > buffer_size) // count for trailing '\0'
n = _TRUNCATE;
int result = strncpy_s(dest, length, src, n);
USE(result);
DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
}
#undef _TRUNCATE
#undef STRUNCATE
DEFINE_LAZY_LEAKY_OBJECT_GETTER(RandomNumberGenerator,
GetPlatformRandomNumberGenerator)
static LazyMutex rng_mutex = LAZY_MUTEX_INITIALIZER;
void OS::Initialize(bool hard_abort, const char* const gc_fake_mmap) {
g_hard_abort = hard_abort;
}
// static
size_t OS::AllocatePageSize() {
static size_t allocate_alignment = 0;
if (allocate_alignment == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
allocate_alignment = info.dwAllocationGranularity;
}
return allocate_alignment;
}
// static
size_t OS::CommitPageSize() {
static size_t page_size = 0;
if (page_size == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
page_size = info.dwPageSize;
DCHECK_EQ(4096, page_size);
}
return page_size;
}
// static
void OS::SetRandomMmapSeed(int64_t seed) {
if (seed) {
MutexGuard guard(rng_mutex.Pointer());
GetPlatformRandomNumberGenerator()->SetSeed(seed);
}
}
// static
void* OS::GetRandomMmapAddr() {
// The address range used to randomize RWX allocations in OS::Allocate
// Try not to map pages into the default range that windows loads DLLs
// Use a multiple of 64k to prevent committing unused memory.
// Note: This does not guarantee RWX regions will be within the
// range kAllocationRandomAddressMin to kAllocationRandomAddressMax
#ifdef V8_HOST_ARCH_64_BIT
static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
#else
static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
#endif
uintptr_t address;
{
MutexGuard guard(rng_mutex.Pointer());
GetPlatformRandomNumberGenerator()->NextBytes(&address, sizeof(address));
}
address <<= kPageSizeBits;
address += kAllocationRandomAddressMin;
address &= kAllocationRandomAddressMax;
return reinterpret_cast<void*>(address);
}
namespace {
DWORD GetProtectionFromMemoryPermission(OS::MemoryPermission access) {
switch (access) {
case OS::MemoryPermission::kNoAccess:
return PAGE_NOACCESS;
case OS::MemoryPermission::kRead:
return PAGE_READONLY;
case OS::MemoryPermission::kReadWrite:
return PAGE_READWRITE;
case OS::MemoryPermission::kReadWriteExecute:
if (IsWindows10OrGreater())
return PAGE_EXECUTE_READWRITE | PAGE_TARGETS_INVALID;
return PAGE_EXECUTE_READWRITE;
case OS::MemoryPermission::kReadExecute:
if (IsWindows10OrGreater())
return PAGE_EXECUTE_READ | PAGE_TARGETS_INVALID;
return PAGE_EXECUTE_READ;
}
UNREACHABLE();
}
uint8_t* RandomizedVirtualAlloc(size_t size, DWORD flags, DWORD protect,
void* hint) {
LPVOID base = nullptr;
static BOOL use_aslr = -1;
#ifdef V8_HOST_ARCH_32_BIT
// Don't bother randomizing on 32-bit hosts, because they lack the room and
// don't have viable ASLR anyway.
if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
use_aslr = FALSE;
#else
use_aslr = TRUE;
#endif
if (use_aslr && protect != PAGE_READWRITE) {
// For executable or reserved pages try to randomize the allocation address.
base = VirtualAlloc(hint, size, flags, protect);
}
// On failure, let the OS find an address to use.
if (base == nullptr) {
base = VirtualAlloc(nullptr, size, flags, protect);
}
return reinterpret_cast<uint8_t*>(base);
}
} // namespace
// static
void* OS::Allocate(void* address, size_t size, size_t alignment,
MemoryPermission access) {
size_t page_size = AllocatePageSize();
DCHECK_EQ(0, size % page_size);
DCHECK_EQ(0, alignment % page_size);
DCHECK_LE(page_size, alignment);
address = AlignedAddress(address, alignment);
DWORD flags = (access == OS::MemoryPermission::kNoAccess)
? MEM_RESERVE
: MEM_RESERVE | MEM_COMMIT;
DWORD protect = GetProtectionFromMemoryPermission(access);
// First, try an exact size aligned allocation.
uint8_t* base = RandomizedVirtualAlloc(size, flags, protect, address);
if (base == nullptr) return nullptr; // Can't allocate, we're OOM.
// If address is suitably aligned, we're done.
uint8_t* aligned_base = reinterpret_cast<uint8_t*>(
RoundUp(reinterpret_cast<uintptr_t>(base), alignment));
if (base == aligned_base) return reinterpret_cast<void*>(base);
// Otherwise, free it and try a larger allocation.
CHECK(Free(base, size));
// Clear the hint. It's unlikely we can allocate at this address.
address = nullptr;
// Add the maximum misalignment so we are guaranteed an aligned base address
// in the allocated region.
size_t padded_size = size + (alignment - page_size);
const int kMaxAttempts = 3;
aligned_base = nullptr;
for (int i = 0; i < kMaxAttempts; ++i) {
base = RandomizedVirtualAlloc(padded_size, flags, protect, address);
if (base == nullptr) return nullptr; // Can't allocate, we're OOM.
// Try to trim the allocation by freeing the padded allocation and then
// calling VirtualAlloc at the aligned base.
CHECK(Free(base, padded_size));
aligned_base = reinterpret_cast<uint8_t*>(
RoundUp(reinterpret_cast<uintptr_t>(base), alignment));
base = reinterpret_cast<uint8_t*>(
VirtualAlloc(aligned_base, size, flags, protect));
// We might not get the reduced allocation due to a race. In that case,
// base will be nullptr.
if (base != nullptr) break;
}
DCHECK_IMPLIES(base, base == aligned_base);
return reinterpret_cast<void*>(base);
}
// static
bool OS::Free(void* address, const size_t size) {
DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % AllocatePageSize());
DCHECK_EQ(0, size % AllocatePageSize());
USE(size);
return VirtualFree(address, 0, MEM_RELEASE) != 0;
}
// static
bool OS::Release(void* address, size_t size) {
DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
DCHECK_EQ(0, size % CommitPageSize());
return VirtualFree(address, size, MEM_DECOMMIT) != 0;
}
// static
bool OS::SetPermissions(void* address, size_t size, MemoryPermission access) {
DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
DCHECK_EQ(0, size % CommitPageSize());
if (access == MemoryPermission::kNoAccess) {
return VirtualFree(address, size, MEM_DECOMMIT) != 0;
}
DWORD protect = GetProtectionFromMemoryPermission(access);
return VirtualAlloc(address, size, MEM_COMMIT, protect) != nullptr;
}
// static
bool OS::DiscardSystemPages(void* address, size_t size) {
// On Windows, discarded pages are not returned to the system immediately and
// not guaranteed to be zeroed when returned to the application.
using DiscardVirtualMemoryFunction =
DWORD(WINAPI*)(PVOID virtualAddress, SIZE_T size);
static std::atomic<DiscardVirtualMemoryFunction> discard_virtual_memory(
reinterpret_cast<DiscardVirtualMemoryFunction>(-1));
if (discard_virtual_memory ==
reinterpret_cast<DiscardVirtualMemoryFunction>(-1))
discard_virtual_memory =
reinterpret_cast<DiscardVirtualMemoryFunction>(GetProcAddress(
GetModuleHandle(L"Kernel32.dll"), "DiscardVirtualMemory"));
// Use DiscardVirtualMemory when available because it releases faster than
// MEM_RESET.
DiscardVirtualMemoryFunction discard_function = discard_virtual_memory.load();
if (discard_function) {
DWORD ret = discard_function(address, size);
if (!ret) return true;
}
// DiscardVirtualMemory is buggy in Win10 SP0, so fall back to MEM_RESET on
// failure.
void* ptr = VirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE);
CHECK(ptr);
return ptr;
}
// static
bool OS::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
void OS::Sleep(TimeDelta interval) {
::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
}
void OS::Abort() {
// Give a chance to debug the failure.
if (IsDebuggerPresent()) {
DebugBreak();
}
// Before aborting, make sure to flush output buffers.
fflush(stdout);
fflush(stderr);
if (g_hard_abort) {
V8_IMMEDIATE_CRASH();
}
// Make the MSVCRT do a silent abort.
raise(SIGABRT);
// Make sure function doesn't return.
abort();
}
void OS::DebugBreak() {
#if V8_CC_MSVC
// To avoid Visual Studio runtime support the following code can be used
// instead
// __asm { int 3 }
__debugbreak();
#else
::DebugBreak();
#endif
}
class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
public:
Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
size_t size)
: file_(file),
file_mapping_(file_mapping),
memory_(memory),
size_(size) {}
~Win32MemoryMappedFile() final;
void* memory() const final { return memory_; }
size_t size() const final { return size_; }
private:
HANDLE const file_;
HANDLE const file_mapping_;
void* const memory_;
size_t const size_;
};
// static
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name,
FileMode mode) {
// Open a physical file.
DWORD access = GENERIC_READ;
if (mode == FileMode::kReadWrite) {
access |= GENERIC_WRITE;
}
HANDLE file = CreateFileA(name, access, FILE_SHARE_READ | FILE_SHARE_WRITE,
nullptr, OPEN_EXISTING, 0, nullptr);
if (file == INVALID_HANDLE_VALUE) return nullptr;
DWORD size = GetFileSize(file, nullptr);
if (size == 0) return new Win32MemoryMappedFile(file, nullptr, nullptr, 0);
DWORD protection =
(mode == FileMode::kReadOnly) ? PAGE_READONLY : PAGE_READWRITE;
// Create a file mapping for the physical file.
HANDLE file_mapping =
CreateFileMapping(file, nullptr, protection, 0, size, nullptr);
if (file_mapping == nullptr) return nullptr;
// Map a view of the file into memory.
DWORD view_access =
(mode == FileMode::kReadOnly) ? FILE_MAP_READ : FILE_MAP_ALL_ACCESS;
void* memory = MapViewOfFile(file_mapping, view_access, 0, 0, size);
return new Win32MemoryMappedFile(file, file_mapping, memory, size);
}
// static
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
size_t size, void* initial) {
// Open a physical file.
HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
OPEN_ALWAYS, 0, nullptr);
if (file == nullptr) return nullptr;
if (size == 0) return new Win32MemoryMappedFile(file, nullptr, nullptr, 0);
// Create a file mapping for the physical file.
HANDLE file_mapping = CreateFileMapping(file, nullptr, PAGE_READWRITE, 0,
static_cast<DWORD>(size), nullptr);
if (file_mapping == nullptr) return nullptr;
// Map a view of the file into memory.
void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
if (memory) memmove(memory, initial, size);
return new Win32MemoryMappedFile(file, file_mapping, memory, size);
}
Win32MemoryMappedFile::~Win32MemoryMappedFile() {
if (memory_) UnmapViewOfFile(memory_);
if (file_mapping_) CloseHandle(file_mapping_);
CloseHandle(file_);
}
// The following code loads functions defined in DbhHelp.h and TlHelp32.h
// dynamically. This is to avoid being depending on dbghelp.dll and
// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
// kernel32.dll at some point so loading functions defines in TlHelp32.h
// dynamically might not be necessary any more - for some versions of Windows?).
// Function pointers to functions dynamically loaded from dbghelp.dll.
#define DBGHELP_FUNCTION_LIST(V) \
V(SymInitialize) \
V(SymGetOptions) \
V(SymSetOptions) \
V(SymGetSearchPath) \
V(SymLoadModule64) \
V(StackWalk64) \
V(SymGetSymFromAddr64) \
V(SymGetLineFromAddr64) \
V(SymFunctionTableAccess64) \
V(SymGetModuleBase64)
// Function pointers to functions dynamically loaded from dbghelp.dll.
#define TLHELP32_FUNCTION_LIST(V) \
V(CreateToolhelp32Snapshot) \
V(Module32FirstW) \
V(Module32NextW)
// Define the decoration to use for the type and variable name used for
// dynamically loaded DLL function..
#define DLL_FUNC_TYPE(name) _##name##_
#define DLL_FUNC_VAR(name) _##name
// Define the type for each dynamically loaded DLL function. The function
// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
// from the Windows include files are redefined here to have the function
// definitions to be as close to the ones in the original .h files as possible.
#ifndef IN
#define IN
#endif
#ifndef VOID
#define VOID void
#endif
// DbgHelp isn't supported on MinGW yet
#ifndef __MINGW32__
// DbgHelp.h functions.
using DLL_FUNC_TYPE(SymInitialize) = BOOL(__stdcall*)(IN HANDLE hProcess,
IN PSTR UserSearchPath,
IN BOOL fInvadeProcess);
using DLL_FUNC_TYPE(SymGetOptions) = DWORD(__stdcall*)(VOID);
using DLL_FUNC_TYPE(SymSetOptions) = DWORD(__stdcall*)(IN DWORD SymOptions);
using DLL_FUNC_TYPE(SymGetSearchPath) = BOOL(__stdcall*)(
IN HANDLE hProcess, OUT PSTR SearchPath, IN DWORD SearchPathLength);
using DLL_FUNC_TYPE(SymLoadModule64) = DWORD64(__stdcall*)(
IN HANDLE hProcess, IN HANDLE hFile, IN PSTR ImageName, IN PSTR ModuleName,
IN DWORD64 BaseOfDll, IN DWORD SizeOfDll);
using DLL_FUNC_TYPE(StackWalk64) = BOOL(__stdcall*)(
DWORD MachineType, HANDLE hProcess, HANDLE hThread,
LPSTACKFRAME64 StackFrame, PVOID ContextRecord,
PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
using DLL_FUNC_TYPE(SymGetSymFromAddr64) = BOOL(__stdcall*)(
IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD64 pdwDisplacement,
OUT PIMAGEHLP_SYMBOL64 Symbol);
using DLL_FUNC_TYPE(SymGetLineFromAddr64) =
BOOL(__stdcall*)(IN HANDLE hProcess, IN DWORD64 qwAddr,
OUT PDWORD pdwDisplacement, OUT PIMAGEHLP_LINE64 Line64);
// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
using DLL_FUNC_TYPE(SymFunctionTableAccess64) = PVOID(__stdcall*)(
HANDLE hProcess,
DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
using DLL_FUNC_TYPE(SymGetModuleBase64) = DWORD64(__stdcall*)(
HANDLE hProcess,
DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
// TlHelp32.h functions.
using DLL_FUNC_TYPE(CreateToolhelp32Snapshot) =
HANDLE(__stdcall*)(DWORD dwFlags, DWORD th32ProcessID);
using DLL_FUNC_TYPE(Module32FirstW) = BOOL(__stdcall*)(HANDLE hSnapshot,
LPMODULEENTRY32W lpme);
using DLL_FUNC_TYPE(Module32NextW) = BOOL(__stdcall*)(HANDLE hSnapshot,
LPMODULEENTRY32W lpme);
#undef IN
#undef VOID
// Declare a variable for each dynamically loaded DLL function.
#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = nullptr;
DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
#undef DEF_DLL_FUNCTION
// Load the functions. This function has a lot of "ugly" macros in order to
// keep down code duplication.
static bool LoadDbgHelpAndTlHelp32() {
static bool dbghelp_loaded = false;
if (dbghelp_loaded) return true;
HMODULE module;
// Load functions from the dbghelp.dll module.
module = LoadLibrary(TEXT("dbghelp.dll"));
if (module == nullptr) {
return false;
}
#define LOAD_DLL_FUNC(name) \
DLL_FUNC_VAR(name) = \
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
#undef LOAD_DLL_FUNC
// Load functions from the kernel32.dll module (the TlHelp32.h function used
// to be in tlhelp32.dll but are now moved to kernel32.dll).
module = LoadLibrary(TEXT("kernel32.dll"));
if (module == nullptr) {
return false;
}
#define LOAD_DLL_FUNC(name) \
DLL_FUNC_VAR(name) = \
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
#undef LOAD_DLL_FUNC
// Check that all functions where loaded.
bool result =
#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != nullptr)&&
DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
#undef DLL_FUNC_LOADED
true;
dbghelp_loaded = result;
return result;
// NOTE: The modules are never unloaded and will stay around until the
// application is closed.
}
#undef DBGHELP_FUNCTION_LIST
#undef TLHELP32_FUNCTION_LIST
#undef DLL_FUNC_VAR
#undef DLL_FUNC_TYPE
// Load the symbols for generating stack traces.
static std::vector<OS::SharedLibraryAddress> LoadSymbols(
HANDLE process_handle) {
static std::vector<OS::SharedLibraryAddress> result;
static bool symbols_loaded = false;
if (symbols_loaded) return result;
BOOL ok;
// Initialize the symbol engine.
ok = _SymInitialize(process_handle, // hProcess
nullptr, // UserSearchPath
false); // fInvadeProcess
if (!ok) return result;
DWORD options = _SymGetOptions();
options |= SYMOPT_LOAD_LINES;
options |= SYMOPT_FAIL_CRITICAL_ERRORS;
options = _SymSetOptions(options);
char buf[OS::kStackWalkMaxNameLen] = {0};
ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
if (!ok) {
int err = GetLastError();
OS::Print("%d\n", err);
return result;
}
HANDLE snapshot = _CreateToolhelp32Snapshot(
TH32CS_SNAPMODULE, // dwFlags
GetCurrentProcessId()); // th32ProcessId
if (snapshot == INVALID_HANDLE_VALUE) return result;
MODULEENTRY32W module_entry;
module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
BOOL cont = _Module32FirstW(snapshot, &module_entry);
while (cont) {
DWORD64 base;
// NOTE the SymLoadModule64 function has the peculiarity of accepting a
// both unicode and ASCII strings even though the parameter is PSTR.
base = _SymLoadModule64(
process_handle, // hProcess
0, // hFile
reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
module_entry.modBaseSize); // SizeOfDll
if (base == 0) {
int err = GetLastError();
if (err != ERROR_MOD_NOT_FOUND &&
err != ERROR_INVALID_HANDLE) {
result.clear();
return result;
}
}
int lib_name_length = WideCharToMultiByte(
CP_UTF8, 0, module_entry.szExePath, -1, nullptr, 0, nullptr, nullptr);
std::string lib_name(lib_name_length, 0);
WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
lib_name_length, nullptr, nullptr);
result.push_back(OS::SharedLibraryAddress(
lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
module_entry.modBaseSize)));
cont = _Module32NextW(snapshot, &module_entry);
}
CloseHandle(snapshot);
symbols_loaded = true;
return result;
}
std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
// SharedLibraryEvents are logged when loading symbol information.
// Only the shared libraries loaded at the time of the call to
// GetSharedLibraryAddresses are logged. DLLs loaded after
// initialization are not accounted for.
if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
HANDLE process_handle = GetCurrentProcess();
return LoadSymbols(process_handle);
}
void OS::SignalCodeMovingGC() {}
#else // __MINGW32__
std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
return std::vector<OS::SharedLibraryAddress>();
}
void OS::SignalCodeMovingGC() {}
#endif // __MINGW32__
int OS::ActivationFrameAlignment() {
#ifdef _WIN64
return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
#elif defined(__MINGW32__)
// With gcc 4.4 the tree vectorization optimizer can generate code
// that requires 16 byte alignment such as movdqa on x86.
return 16;
#else
return 8; // Floating-point math runs faster with 8-byte alignment.
#endif
}
#if (defined(_WIN32) || defined(_WIN64))
void EnsureConsoleOutputWin32() {
UINT new_flags =
SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX;
UINT existing_flags = SetErrorMode(new_flags);
SetErrorMode(existing_flags | new_flags);
#if defined(_MSC_VER)
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);
_set_error_mode(_OUT_TO_STDERR);
#endif // defined(_MSC_VER)
}
#endif // (defined(_WIN32) || defined(_WIN64))
// ----------------------------------------------------------------------------
// Win32 thread support.
// Definition of invalid thread handle and id.
static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
// Entry point for threads. The supplied argument is a pointer to the thread
// object. The entry function dispatches to the run method in the thread
// object. It is important that this function has __stdcall calling
// convention.
static unsigned int __stdcall ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
thread->NotifyStartedAndRun();
return 0;
}
class Thread::PlatformData {
public:
explicit PlatformData(HANDLE thread) : thread_(thread) {}
HANDLE thread_;
unsigned thread_id_;
};
// Initialize a Win32 thread object. The thread has an invalid thread
// handle until it is started.
Thread::Thread(const Options& options)
: stack_size_(options.stack_size()), start_semaphore_(nullptr) {
data_ = new PlatformData(kNoThread);
set_name(options.name());
}
void Thread::set_name(const char* name) {
OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
name_[sizeof(name_) - 1] = '\0';
}
// Close our own handle for the thread.
Thread::~Thread() {
if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
delete data_;
}
// Create a new thread. It is important to use _beginthreadex() instead of
// the Win32 function CreateThread(), because the CreateThread() does not
// initialize thread specific structures in the C runtime library.
void Thread::Start() {
data_->thread_ = reinterpret_cast<HANDLE>(
_beginthreadex(nullptr, static_cast<unsigned>(stack_size_), ThreadEntry,
this, 0, &data_->thread_id_));
}
// Wait for thread to terminate.
void Thread::Join() {
if (data_->thread_id_ != GetCurrentThreadId()) {
WaitForSingleObject(data_->thread_, INFINITE);
}
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
DWORD result = TlsAlloc();
DCHECK(result != TLS_OUT_OF_INDEXES);
return static_cast<LocalStorageKey>(result);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
BOOL result = TlsFree(static_cast<DWORD>(key));
USE(result);
DCHECK(result);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
return TlsGetValue(static_cast<DWORD>(key));
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
USE(result);
DCHECK(result);
}
void OS::AdjustSchedulingParams() {}
} // namespace base
} // namespace v8