blob: 98639583d8119fc23e243c483aa703e58ce3c54d [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_CODEGEN_ASSEMBLER_H_
#define V8_CODEGEN_ASSEMBLER_H_
#include <forward_list>
#include <unordered_map>
#include "src/base/memory.h"
#include "src/codegen/code-comments.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/external-reference.h"
#include "src/codegen/reglist.h"
#include "src/codegen/reloc-info.h"
#include "src/common/globals.h"
#include "src/deoptimizer/deoptimize-reason.h"
#include "src/flags/flags.h"
#include "src/handles/handles.h"
#include "src/objects/objects.h"
namespace v8 {
// Forward declarations.
class ApiFunction;
namespace internal {
using base::Memory;
using base::ReadUnalignedValue;
using base::WriteUnalignedValue;
// Forward declarations.
class EmbeddedData;
class InstructionStream;
class Isolate;
class SCTableReference;
class SourcePosition;
class StatsCounter;
class StringConstantBase;
// -----------------------------------------------------------------------------
// Optimization for far-jmp like instructions that can be replaced by shorter.
class JumpOptimizationInfo {
public:
bool is_collecting() const { return stage_ == kCollection; }
bool is_optimizing() const { return stage_ == kOptimization; }
void set_optimizing() { stage_ = kOptimization; }
bool is_optimizable() const { return optimizable_; }
void set_optimizable() { optimizable_ = true; }
// Used to verify the instruction sequence is always the same in two stages.
size_t hash_code() const { return hash_code_; }
void set_hash_code(size_t hash_code) { hash_code_ = hash_code; }
std::vector<uint32_t>& farjmp_bitmap() { return farjmp_bitmap_; }
private:
enum { kCollection, kOptimization } stage_ = kCollection;
bool optimizable_ = false;
std::vector<uint32_t> farjmp_bitmap_;
size_t hash_code_ = 0u;
};
class HeapObjectRequest {
public:
explicit HeapObjectRequest(double heap_number, int offset = -1);
explicit HeapObjectRequest(const StringConstantBase* string, int offset = -1);
enum Kind { kHeapNumber, kStringConstant };
Kind kind() const { return kind_; }
double heap_number() const {
DCHECK_EQ(kind(), kHeapNumber);
return value_.heap_number;
}
const StringConstantBase* string() const {
DCHECK_EQ(kind(), kStringConstant);
return value_.string;
}
// The code buffer offset at the time of the request.
int offset() const {
DCHECK_GE(offset_, 0);
return offset_;
}
void set_offset(int offset) {
DCHECK_LT(offset_, 0);
offset_ = offset;
DCHECK_GE(offset_, 0);
}
private:
Kind kind_;
union {
double heap_number;
const StringConstantBase* string;
} value_;
int offset_;
};
// -----------------------------------------------------------------------------
// Platform independent assembler base class.
enum class CodeObjectRequired { kNo, kYes };
struct V8_EXPORT_PRIVATE AssemblerOptions {
// Recording reloc info for external references and off-heap targets is
// needed whenever code is serialized, e.g. into the snapshot or as a WASM
// module. This flag allows this reloc info to be disabled for code that
// will not survive process destruction.
bool record_reloc_info_for_serialization = true;
// Recording reloc info can be disabled wholesale. This is needed when the
// assembler is used on existing code directly (e.g. JumpTableAssembler)
// without any buffer to hold reloc information.
bool disable_reloc_info_for_patching = false;
// Enables access to exrefs by computing a delta from the root array.
// Only valid if code will not survive the process.
bool enable_root_array_delta_access = false;
// Enables specific assembler sequences only used for the simulator.
bool enable_simulator_code = false;
// Enables use of isolate-independent constants, indirected through the
// root array.
// (macro assembler feature).
bool isolate_independent_code = false;
// Enables the use of isolate-independent builtins through an off-heap
// trampoline. (macro assembler feature).
bool inline_offheap_trampolines = FLAG_embedded_builtins;
// On some platforms, all code is within a given range in the process,
// and the start of this range is configured here.
Address code_range_start = 0;
// Enable pc-relative calls/jumps on platforms that support it. When setting
// this flag, the code range must be small enough to fit all offsets into
// the instruction immediates.
bool use_pc_relative_calls_and_jumps = false;
// Enables the collection of information useful for the generation of unwind
// info. This is useful in some platform (Win64) where the unwind info depends
// on a function prologue/epilogue.
bool collect_win64_unwind_info = false;
static AssemblerOptions Default(
Isolate* isolate, bool explicitly_support_serialization = false);
};
class AssemblerBuffer {
public:
virtual ~AssemblerBuffer() = default;
virtual byte* start() const = 0;
virtual int size() const = 0;
// Return a grown copy of this buffer. The contained data is uninitialized.
// The data in {this} will still be read afterwards (until {this} is
// destructed), but not written.
virtual std::unique_ptr<AssemblerBuffer> Grow(int new_size)
V8_WARN_UNUSED_RESULT = 0;
};
// Allocate an AssemblerBuffer which uses an existing buffer. This buffer cannot
// grow, so it must be large enough for all code emitted by the Assembler.
V8_EXPORT_PRIVATE
std::unique_ptr<AssemblerBuffer> ExternalAssemblerBuffer(void* buffer,
int size);
// Allocate a new growable AssemblerBuffer with a given initial size.
V8_EXPORT_PRIVATE
std::unique_ptr<AssemblerBuffer> NewAssemblerBuffer(int size);
class V8_EXPORT_PRIVATE AssemblerBase : public Malloced {
public:
AssemblerBase(const AssemblerOptions& options,
std::unique_ptr<AssemblerBuffer>);
virtual ~AssemblerBase();
const AssemblerOptions& options() const { return options_; }
bool emit_debug_code() const { return emit_debug_code_; }
void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
bool predictable_code_size() const { return predictable_code_size_; }
void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
void set_enabled_cpu_features(uint64_t features) {
enabled_cpu_features_ = features;
}
// Features are usually enabled by CpuFeatureScope, which also asserts that
// the features are supported before they are enabled.
bool IsEnabled(CpuFeature f) {
return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
}
void EnableCpuFeature(CpuFeature f) {
enabled_cpu_features_ |= (static_cast<uint64_t>(1) << f);
}
bool is_constant_pool_available() const {
if (FLAG_enable_embedded_constant_pool) {
return constant_pool_available_;
} else {
// Embedded constant pool not supported on this architecture.
UNREACHABLE();
}
}
JumpOptimizationInfo* jump_optimization_info() {
return jump_optimization_info_;
}
void set_jump_optimization_info(JumpOptimizationInfo* jump_opt) {
jump_optimization_info_ = jump_opt;
}
void FinalizeJumpOptimizationInfo() {}
// Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for
// cross-snapshotting.
static void QuietNaN(HeapObject nan) {}
int pc_offset() const { return static_cast<int>(pc_ - buffer_start_); }
byte* buffer_start() const { return buffer_->start(); }
int buffer_size() const { return buffer_->size(); }
int instruction_size() const { return pc_offset(); }
// This function is called when code generation is aborted, so that
// the assembler could clean up internal data structures.
virtual void AbortedCodeGeneration() {}
// Debugging
void Print(Isolate* isolate);
// Record an inline code comment that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg) {
if (FLAG_code_comments) {
code_comments_writer_.Add(pc_offset(), std::string(msg));
}
}
static const int kMinimalBufferSize = 4 * KB;
protected:
// Add 'target' to the {code_targets_} vector, if necessary, and return the
// offset at which it is stored.
int AddCodeTarget(Handle<Code> target);
Handle<Code> GetCodeTarget(intptr_t code_target_index) const;
// Add 'object' to the {embedded_objects_} vector and return the index at
// which it is stored.
using EmbeddedObjectIndex = size_t;
EmbeddedObjectIndex AddEmbeddedObject(Handle<HeapObject> object);
Handle<HeapObject> GetEmbeddedObject(EmbeddedObjectIndex index) const;
// The buffer into which code and relocation info are generated.
std::unique_ptr<AssemblerBuffer> buffer_;
// Cached from {buffer_->start()}, for faster access.
byte* buffer_start_;
std::forward_list<HeapObjectRequest> heap_object_requests_;
// The program counter, which points into the buffer above and moves forward.
// TODO(jkummerow): This should probably have type {Address}.
byte* pc_;
void set_constant_pool_available(bool available) {
if (FLAG_enable_embedded_constant_pool) {
constant_pool_available_ = available;
} else {
// Embedded constant pool not supported on this architecture.
UNREACHABLE();
}
}
// {RequestHeapObject} records the need for a future heap number allocation,
// code stub generation or string allocation. After code assembly, each
// platform's {Assembler::AllocateAndInstallRequestedHeapObjects} will
// allocate these objects and place them where they are expected (determined
// by the pc offset associated with each request).
void RequestHeapObject(HeapObjectRequest request);
bool ShouldRecordRelocInfo(RelocInfo::Mode rmode) const {
DCHECK(!RelocInfo::IsNone(rmode));
if (options().disable_reloc_info_for_patching) return false;
if (RelocInfo::IsOnlyForSerializer(rmode) &&
!options().record_reloc_info_for_serialization && !emit_debug_code()) {
return false;
}
return true;
}
CodeCommentsWriter code_comments_writer_;
private:
// Before we copy code into the code space, we sometimes cannot encode
// call/jump code targets as we normally would, as the difference between the
// instruction's location in the temporary buffer and the call target is not
// guaranteed to fit in the instruction's offset field. We keep track of the
// code handles we encounter in calls in this vector, and encode the index of
// the code handle in the vector instead.
std::vector<Handle<Code>> code_targets_;
// If an assembler needs a small number to refer to a heap object handle
// (for example, because there are only 32bit available on a 64bit arch), the
// assembler adds the object into this vector using AddEmbeddedObject, and
// may then refer to the heap object using the handle's index in this vector.
std::vector<Handle<HeapObject>> embedded_objects_;
// Embedded objects are deduplicated based on handle location. This is a
// compromise that is almost as effective as deduplication based on actual
// heap object addresses maintains GC safety.
std::unordered_map<Handle<HeapObject>, EmbeddedObjectIndex,
Handle<HeapObject>::hash, Handle<HeapObject>::equal_to>
embedded_objects_map_;
const AssemblerOptions options_;
uint64_t enabled_cpu_features_;
bool emit_debug_code_;
bool predictable_code_size_;
// Indicates whether the constant pool can be accessed, which is only possible
// if the pp register points to the current code object's constant pool.
bool constant_pool_available_;
JumpOptimizationInfo* jump_optimization_info_;
// Constant pool.
friend class FrameAndConstantPoolScope;
friend class ConstantPoolUnavailableScope;
};
// Avoids emitting debug code during the lifetime of this scope object.
class DontEmitDebugCodeScope {
public:
explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
: assembler_(assembler), old_value_(assembler->emit_debug_code()) {
assembler_->set_emit_debug_code(false);
}
~DontEmitDebugCodeScope() { assembler_->set_emit_debug_code(old_value_); }
private:
AssemblerBase* assembler_;
bool old_value_;
};
// Enable a specified feature within a scope.
class V8_EXPORT_PRIVATE CpuFeatureScope {
public:
enum CheckPolicy {
kCheckSupported,
kDontCheckSupported,
};
#ifdef DEBUG
CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
CheckPolicy check = kCheckSupported);
~CpuFeatureScope();
private:
AssemblerBase* assembler_;
uint64_t old_enabled_;
#else
CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
CheckPolicy check = kCheckSupported) {}
~CpuFeatureScope() { // NOLINT (modernize-use-equals-default)
// Define a destructor to avoid unused variable warnings.
}
#endif
};
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_ASSEMBLER_H_