blob: a135eaacdd116e9c73e0fa559ccffe1f0bc50bfd [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_INTERPRETER_INTERPRETER_ASSEMBLER_H_
#define V8_INTERPRETER_INTERPRETER_ASSEMBLER_H_
#include "src/builtins/builtins.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/common/globals.h"
#include "src/interpreter/bytecode-register.h"
#include "src/interpreter/bytecodes.h"
#include "src/runtime/runtime.h"
#include "src/utils/allocation.h"
namespace v8 {
namespace internal {
namespace interpreter {
class V8_EXPORT_PRIVATE InterpreterAssembler : public CodeStubAssembler {
public:
InterpreterAssembler(compiler::CodeAssemblerState* state, Bytecode bytecode,
OperandScale operand_scale);
~InterpreterAssembler();
// Returns the 32-bit unsigned count immediate for bytecode operand
// |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandCount(int operand_index);
// Returns the 32-bit unsigned flag for bytecode operand |operand_index|
// in the current bytecode.
compiler::Node* BytecodeOperandFlag(int operand_index);
// Returns the 32-bit zero-extended index immediate for bytecode operand
// |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandIdxInt32(int operand_index);
// Returns the word zero-extended index immediate for bytecode operand
// |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandIdx(int operand_index);
// Returns the smi index immediate for bytecode operand |operand_index|
// in the current bytecode.
compiler::Node* BytecodeOperandIdxSmi(int operand_index);
// Returns the 32-bit unsigned immediate for bytecode operand |operand_index|
// in the current bytecode.
compiler::Node* BytecodeOperandUImm(int operand_index);
// Returns the word-size unsigned immediate for bytecode operand
// |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandUImmWord(int operand_index);
// Returns the unsigned smi immediate for bytecode operand |operand_index| in
// the current bytecode.
compiler::Node* BytecodeOperandUImmSmi(int operand_index);
// Returns the 32-bit signed immediate for bytecode operand |operand_index|
// in the current bytecode.
compiler::Node* BytecodeOperandImm(int operand_index);
// Returns the word-size signed immediate for bytecode operand |operand_index|
// in the current bytecode.
compiler::Node* BytecodeOperandImmIntPtr(int operand_index);
// Returns the smi immediate for bytecode operand |operand_index| in the
// current bytecode.
compiler::Node* BytecodeOperandImmSmi(int operand_index);
// Returns the 32-bit unsigned runtime id immediate for bytecode operand
// |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandRuntimeId(int operand_index);
// Returns the 32-bit unsigned native context index immediate for bytecode
// operand |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandNativeContextIndex(int operand_index);
// Returns the 32-bit unsigned intrinsic id immediate for bytecode operand
// |operand_index| in the current bytecode.
compiler::Node* BytecodeOperandIntrinsicId(int operand_index);
// Accumulator.
compiler::Node* GetAccumulator();
void SetAccumulator(compiler::Node* value);
// Context.
compiler::Node* GetContext();
void SetContext(compiler::Node* value);
// Context at |depth| in the context chain starting at |context|.
compiler::Node* GetContextAtDepth(compiler::Node* context,
compiler::Node* depth);
// Goto the given |target| if the context chain starting at |context| has any
// extensions up to the given |depth|.
void GotoIfHasContextExtensionUpToDepth(compiler::Node* context,
compiler::Node* depth, Label* target);
// A RegListNodePair provides an abstraction over lists of registers.
class RegListNodePair {
public:
RegListNodePair(Node* base_reg_location, Node* reg_count)
: base_reg_location_(base_reg_location), reg_count_(reg_count) {}
compiler::Node* reg_count() const { return reg_count_; }
compiler::Node* base_reg_location() const { return base_reg_location_; }
private:
compiler::Node* base_reg_location_;
compiler::Node* reg_count_;
};
// Backup/restore register file to/from a fixed array of the correct length.
// There is an asymmetry between suspend/export and resume/import.
// - Suspend copies arguments and registers to the generator.
// - Resume copies only the registers from the generator, the arguments
// are copied by the ResumeGenerator trampoline.
compiler::Node* ExportParametersAndRegisterFile(
TNode<FixedArray> array, const RegListNodePair& registers,
TNode<Int32T> formal_parameter_count);
compiler::Node* ImportRegisterFile(TNode<FixedArray> array,
const RegListNodePair& registers,
TNode<Int32T> formal_parameter_count);
// Loads from and stores to the interpreter register file.
compiler::Node* LoadRegister(Register reg);
compiler::Node* LoadAndUntagRegister(Register reg);
compiler::Node* LoadRegisterAtOperandIndex(int operand_index);
std::pair<compiler::Node*, compiler::Node*> LoadRegisterPairAtOperandIndex(
int operand_index);
void StoreRegister(compiler::Node* value, Register reg);
void StoreAndTagRegister(compiler::Node* value, Register reg);
void StoreRegisterAtOperandIndex(compiler::Node* value, int operand_index);
void StoreRegisterPairAtOperandIndex(compiler::Node* value1,
compiler::Node* value2,
int operand_index);
void StoreRegisterTripleAtOperandIndex(compiler::Node* value1,
compiler::Node* value2,
compiler::Node* value3,
int operand_index);
RegListNodePair GetRegisterListAtOperandIndex(int operand_index);
Node* LoadRegisterFromRegisterList(const RegListNodePair& reg_list,
int index);
Node* RegisterLocationInRegisterList(const RegListNodePair& reg_list,
int index);
// Load constant at the index specified in operand |operand_index| from the
// constant pool.
compiler::Node* LoadConstantPoolEntryAtOperandIndex(int operand_index);
// Load and untag constant at the index specified in operand |operand_index|
// from the constant pool.
compiler::Node* LoadAndUntagConstantPoolEntryAtOperandIndex(
int operand_index);
// Load constant at |index| in the constant pool.
compiler::Node* LoadConstantPoolEntry(compiler::Node* index);
// Load and untag constant at |index| in the constant pool.
compiler::Node* LoadAndUntagConstantPoolEntry(compiler::Node* index);
// Load the FeedbackVector for the current function. The retuned node could be
// undefined.
compiler::TNode<HeapObject> LoadFeedbackVector();
// Increment the call count for a CALL_IC or construct call.
// The call count is located at feedback_vector[slot_id + 1].
void IncrementCallCount(compiler::Node* feedback_vector,
compiler::Node* slot_id);
// Collect the callable |target| feedback for either a CALL_IC or
// an INSTANCEOF_IC in the |feedback_vector| at |slot_id|.
void CollectCallableFeedback(compiler::Node* target, compiler::Node* context,
compiler::Node* feedback_vector,
compiler::Node* slot_id);
// Collect CALL_IC feedback for |target| function in the
// |feedback_vector| at |slot_id|, and the call counts in
// the |feedback_vector| at |slot_id+1|.
void CollectCallFeedback(compiler::Node* target, compiler::Node* context,
compiler::Node* maybe_feedback_vector,
compiler::Node* slot_id);
// Call JSFunction or Callable |function| with |args| arguments, possibly
// including the receiver depending on |receiver_mode|. After the call returns
// directly dispatches to the next bytecode.
void CallJSAndDispatch(compiler::Node* function, compiler::Node* context,
const RegListNodePair& args,
ConvertReceiverMode receiver_mode);
// Call JSFunction or Callable |function| with |arg_count| arguments (not
// including receiver) passed as |args|, possibly including the receiver
// depending on |receiver_mode|. After the call returns directly dispatches to
// the next bytecode.
template <class... TArgs>
void CallJSAndDispatch(Node* function, Node* context, Node* arg_count,
ConvertReceiverMode receiver_mode, TArgs... args);
// Call JSFunction or Callable |function| with |args|
// arguments (not including receiver), and the final argument being spread.
// After the call returns directly dispatches to the next bytecode.
void CallJSWithSpreadAndDispatch(compiler::Node* function,
compiler::Node* context,
const RegListNodePair& args,
compiler::Node* slot_id,
compiler::Node* feedback_vector);
// Call constructor |target| with |args| arguments (not including receiver).
// The |new_target| is the same as the |target| for the new keyword, but
// differs for the super keyword.
compiler::Node* Construct(compiler::Node* target, compiler::Node* context,
compiler::Node* new_target,
const RegListNodePair& args,
compiler::Node* slot_id,
compiler::Node* feedback_vector);
// Call constructor |target| with |args| arguments (not including
// receiver). The last argument is always a spread. The |new_target| is the
// same as the |target| for the new keyword, but differs for the super
// keyword.
compiler::Node* ConstructWithSpread(compiler::Node* target,
compiler::Node* context,
compiler::Node* new_target,
const RegListNodePair& args,
compiler::Node* slot_id,
compiler::Node* feedback_vector);
// Call runtime function with |args| arguments which will return |return_size|
// number of values.
compiler::Node* CallRuntimeN(compiler::Node* function_id,
compiler::Node* context,
const RegListNodePair& args,
int return_size = 1);
// Jump forward relative to the current bytecode by the |jump_offset|.
compiler::Node* Jump(compiler::Node* jump_offset);
// Jump backward relative to the current bytecode by the |jump_offset|.
compiler::Node* JumpBackward(compiler::Node* jump_offset);
// Jump forward relative to the current bytecode by |jump_offset| if the
// word values |lhs| and |rhs| are equal.
void JumpIfWordEqual(compiler::Node* lhs, compiler::Node* rhs,
compiler::Node* jump_offset);
// Jump forward relative to the current bytecode by |jump_offset| if the
// word values |lhs| and |rhs| are not equal.
void JumpIfWordNotEqual(compiler::Node* lhs, compiler::Node* rhs,
compiler::Node* jump_offset);
// Updates the profiler interrupt budget for a return.
void UpdateInterruptBudgetOnReturn();
// Returns the OSR nesting level from the bytecode header.
compiler::Node* LoadOsrNestingLevel();
// Dispatch to the bytecode.
compiler::Node* Dispatch();
// Dispatch bytecode as wide operand variant.
void DispatchWide(OperandScale operand_scale);
// Dispatch to |target_bytecode| at |new_bytecode_offset|.
// |target_bytecode| should be equivalent to loading from the offset.
compiler::Node* DispatchToBytecode(compiler::Node* target_bytecode,
compiler::Node* new_bytecode_offset);
// Abort with the given abort reason.
void Abort(AbortReason abort_reason);
void AbortIfWordNotEqual(compiler::Node* lhs, compiler::Node* rhs,
AbortReason abort_reason);
// Abort if |register_count| is invalid for given register file array.
void AbortIfRegisterCountInvalid(compiler::Node* parameters_and_registers,
compiler::Node* formal_parameter_count,
compiler::Node* register_count);
// Dispatch to frame dropper trampoline if necessary.
void MaybeDropFrames(compiler::Node* context);
// Returns the offset from the BytecodeArrayPointer of the current bytecode.
compiler::Node* BytecodeOffset();
protected:
Bytecode bytecode() const { return bytecode_; }
static bool TargetSupportsUnalignedAccess();
void ToNumberOrNumeric(Object::Conversion mode);
private:
// Returns a tagged pointer to the current function's BytecodeArray object.
compiler::Node* BytecodeArrayTaggedPointer();
// Returns a raw pointer to first entry in the interpreter dispatch table.
compiler::Node* DispatchTableRawPointer();
// Returns the accumulator value without checking whether bytecode
// uses it. This is intended to be used only in dispatch and in
// tracing as these need to bypass accumulator use validity checks.
compiler::Node* GetAccumulatorUnchecked();
// Returns the frame pointer for the interpreted frame of the function being
// interpreted.
compiler::Node* GetInterpretedFramePointer();
// Operations on registers.
compiler::Node* RegisterLocation(Register reg);
compiler::Node* RegisterLocation(compiler::Node* reg_index);
compiler::Node* NextRegister(compiler::Node* reg_index);
compiler::Node* LoadRegister(Node* reg_index);
void StoreRegister(compiler::Node* value, compiler::Node* reg_index);
// Saves and restores interpreter bytecode offset to the interpreter stack
// frame when performing a call.
void CallPrologue();
void CallEpilogue();
// Increment the dispatch counter for the (current, next) bytecode pair.
void TraceBytecodeDispatch(compiler::Node* target_index);
// Traces the current bytecode by calling |function_id|.
void TraceBytecode(Runtime::FunctionId function_id);
// Updates the bytecode array's interrupt budget by a 32-bit unsigned |weight|
// and calls Runtime::kInterrupt if counter reaches zero. If |backward|, then
// the interrupt budget is decremented, otherwise it is incremented.
void UpdateInterruptBudget(compiler::Node* weight, bool backward);
// Returns the offset of register |index| relative to RegisterFilePointer().
compiler::Node* RegisterFrameOffset(compiler::Node* index);
// Returns the offset of an operand relative to the current bytecode offset.
compiler::Node* OperandOffset(int operand_index);
// Returns a value built from an sequence of bytes in the bytecode
// array starting at |relative_offset| from the current bytecode.
// The |result_type| determines the size and signedness. of the
// value read. This method should only be used on architectures that
// do not support unaligned memory accesses.
compiler::Node* BytecodeOperandReadUnaligned(
int relative_offset, MachineType result_type,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
// Returns zero- or sign-extended to word32 value of the operand.
compiler::Node* BytecodeOperandUnsignedByte(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
compiler::Node* BytecodeOperandSignedByte(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
compiler::Node* BytecodeOperandUnsignedShort(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
compiler::Node* BytecodeOperandSignedShort(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
compiler::Node* BytecodeOperandUnsignedQuad(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
compiler::Node* BytecodeOperandSignedQuad(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
// Returns zero- or sign-extended to word32 value of the operand of
// given size.
compiler::Node* BytecodeSignedOperand(
int operand_index, OperandSize operand_size,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
compiler::Node* BytecodeUnsignedOperand(
int operand_index, OperandSize operand_size,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
// Returns the word-size sign-extended register index for bytecode operand
// |operand_index| in the current bytecode. Value is not poisoned on
// speculation since the value loaded from the register is poisoned instead.
compiler::Node* BytecodeOperandReg(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
// Returns the word zero-extended index immediate for bytecode operand
// |operand_index| in the current bytecode for use when loading a .
compiler::Node* BytecodeOperandConstantPoolIdx(
int operand_index,
LoadSensitivity needs_poisoning = LoadSensitivity::kCritical);
// Jump relative to the current bytecode by the |jump_offset|. If |backward|,
// then jump backward (subtract the offset), otherwise jump forward (add the
// offset). Helper function for Jump and JumpBackward.
compiler::Node* Jump(compiler::Node* jump_offset, bool backward);
// Jump forward relative to the current bytecode by |jump_offset| if the
// |condition| is true. Helper function for JumpIfWordEqual and
// JumpIfWordNotEqual.
void JumpConditional(compiler::Node* condition, compiler::Node* jump_offset);
// Save the bytecode offset to the interpreter frame.
void SaveBytecodeOffset();
// Reload the bytecode offset from the interpreter frame.
Node* ReloadBytecodeOffset();
// Updates and returns BytecodeOffset() advanced by the current bytecode's
// size. Traces the exit of the current bytecode.
compiler::Node* Advance();
// Updates and returns BytecodeOffset() advanced by delta bytecodes.
// Traces the exit of the current bytecode.
compiler::Node* Advance(int delta);
compiler::Node* Advance(compiler::Node* delta, bool backward = false);
// Load the bytecode at |bytecode_offset|.
compiler::Node* LoadBytecode(compiler::Node* bytecode_offset);
// Look ahead for Star and inline it in a branch. Returns a new target
// bytecode node for dispatch.
compiler::Node* StarDispatchLookahead(compiler::Node* target_bytecode);
// Build code for Star at the current BytecodeOffset() and Advance() to the
// next dispatch offset.
void InlineStar();
// Dispatch to the bytecode handler with code offset |handler|.
compiler::Node* DispatchToBytecodeHandler(compiler::Node* handler,
compiler::Node* bytecode_offset,
compiler::Node* target_bytecode);
// Dispatch to the bytecode handler with code entry point |handler_entry|.
compiler::Node* DispatchToBytecodeHandlerEntry(
compiler::Node* handler_entry, compiler::Node* bytecode_offset,
compiler::Node* target_bytecode);
int CurrentBytecodeSize() const;
OperandScale operand_scale() const { return operand_scale_; }
Bytecode bytecode_;
OperandScale operand_scale_;
CodeStubAssembler::Variable interpreted_frame_pointer_;
CodeStubAssembler::Variable bytecode_array_;
CodeStubAssembler::Variable bytecode_offset_;
CodeStubAssembler::Variable dispatch_table_;
CodeStubAssembler::Variable accumulator_;
AccumulatorUse accumulator_use_;
bool made_call_;
bool reloaded_frame_ptr_;
bool bytecode_array_valid_;
bool disable_stack_check_across_call_;
compiler::Node* stack_pointer_before_call_;
DISALLOW_COPY_AND_ASSIGN(InterpreterAssembler);
};
} // namespace interpreter
} // namespace internal
} // namespace v8
#endif // V8_INTERPRETER_INTERPRETER_ASSEMBLER_H_