blob: 3898a26431dd8575a280da62c75d81ea5bbf528a [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/execution/arguments-inl.h"
#include "src/heap/factory.h"
#include "src/logging/counters.h"
#include "src/numbers/conversions-inl.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/runtime/runtime-utils.h"
#if defined(V8_OS_STARBOARD)
#include "starboard/common/log.h"
#endif // V8_OS_STARBOARD
// Implement Atomic accesses to SharedArrayBuffers as defined in the
// SharedArrayBuffer draft spec, found here
// https://github.com/tc39/ecmascript_sharedmem
namespace v8 {
namespace internal {
// Other platforms have CSA support, see builtins-sharedarraybuffer-gen.h.
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 || \
V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X
namespace {
#if defined(V8_OS_STARBOARD)
template <typename T>
inline T ExchangeSeqCst(T* p, T value) {
SB_NOTREACHED();
return 0;
}
template <typename T>
inline T CompareExchangeSeqCst(T* p, T oldval, T newval) {
SB_NOTREACHED();
return 0;
}
template <typename T>
inline T AddSeqCst(T* p, T value) {
SB_NOTREACHED();
return 0;
}
template <typename T>
inline T SubSeqCst(T* p, T value) {
SB_NOTREACHED();
return 0;
}
template <typename T>
inline T AndSeqCst(T* p, T value) {
SB_NOTREACHED();
return 0;
}
template <typename T>
inline T OrSeqCst(T* p, T value) {
SB_NOTREACHED();
return 0;
}
template <typename T>
inline T XorSeqCst(T* p, T value) {
SB_NOTREACHED();
return 0;
}
#elif V8_CC_GNU
// GCC/Clang helpfully warn us that using 64-bit atomics on 32-bit platforms
// can be slow. Good to know, but we don't have a choice.
#ifdef V8_TARGET_ARCH_32_BIT
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Watomic-alignment"
#endif // V8_TARGET_ARCH_32_BIT
template <typename T>
inline T LoadSeqCst(T* p) {
return __atomic_load_n(p, __ATOMIC_SEQ_CST);
}
template <typename T>
inline void StoreSeqCst(T* p, T value) {
__atomic_store_n(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T ExchangeSeqCst(T* p, T value) {
return __atomic_exchange_n(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T CompareExchangeSeqCst(T* p, T oldval, T newval) {
(void)__atomic_compare_exchange_n(p, &oldval, newval, 0, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST);
return oldval;
}
template <typename T>
inline T AddSeqCst(T* p, T value) {
return __atomic_fetch_add(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T SubSeqCst(T* p, T value) {
return __atomic_fetch_sub(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T AndSeqCst(T* p, T value) {
return __atomic_fetch_and(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T OrSeqCst(T* p, T value) {
return __atomic_fetch_or(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T XorSeqCst(T* p, T value) {
return __atomic_fetch_xor(p, value, __ATOMIC_SEQ_CST);
}
#ifdef V8_TARGET_ARCH_32_BIT
#pragma GCC diagnostic pop
#endif // V8_TARGET_ARCH_32_BIT
#elif V8_CC_MSVC
#define InterlockedExchange32 _InterlockedExchange
#define InterlockedCompareExchange32 _InterlockedCompareExchange
#define InterlockedCompareExchange8 _InterlockedCompareExchange8
#define InterlockedExchangeAdd32 _InterlockedExchangeAdd
#define InterlockedExchangeAdd16 _InterlockedExchangeAdd16
#define InterlockedExchangeAdd8 _InterlockedExchangeAdd8
#define InterlockedAnd32 _InterlockedAnd
#define InterlockedOr64 _InterlockedOr64
#define InterlockedOr32 _InterlockedOr
#define InterlockedXor32 _InterlockedXor
#if defined(V8_HOST_ARCH_ARM64)
#define InterlockedExchange8 _InterlockedExchange8
#endif
#define ATOMIC_OPS(type, suffix, vctype) \
inline type ExchangeSeqCst(type* p, type value) { \
return InterlockedExchange##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type CompareExchangeSeqCst(type* p, type oldval, type newval) { \
return InterlockedCompareExchange##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(newval), \
bit_cast<vctype>(oldval)); \
} \
inline type AddSeqCst(type* p, type value) { \
return InterlockedExchangeAdd##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type SubSeqCst(type* p, type value) { \
return InterlockedExchangeAdd##suffix(reinterpret_cast<vctype*>(p), \
-bit_cast<vctype>(value)); \
} \
inline type AndSeqCst(type* p, type value) { \
return InterlockedAnd##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type OrSeqCst(type* p, type value) { \
return InterlockedOr##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type XorSeqCst(type* p, type value) { \
return InterlockedXor##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
}
ATOMIC_OPS(int8_t, 8, char)
ATOMIC_OPS(uint8_t, 8, char)
ATOMIC_OPS(int16_t, 16, short) /* NOLINT(runtime/int) */
ATOMIC_OPS(uint16_t, 16, short) /* NOLINT(runtime/int) */
ATOMIC_OPS(int32_t, 32, long) /* NOLINT(runtime/int) */
ATOMIC_OPS(uint32_t, 32, long) /* NOLINT(runtime/int) */
ATOMIC_OPS(int64_t, 64, __int64)
ATOMIC_OPS(uint64_t, 64, __int64)
template <typename T>
inline T LoadSeqCst(T* p) {
UNREACHABLE();
}
template <typename T>
inline void StoreSeqCst(T* p, T value) {
UNREACHABLE();
}
#undef ATOMIC_OPS
#undef InterlockedExchange32
#undef InterlockedCompareExchange32
#undef InterlockedCompareExchange8
#undef InterlockedExchangeAdd32
#undef InterlockedExchangeAdd16
#undef InterlockedExchangeAdd8
#undef InterlockedAnd32
#undef InterlockedOr64
#undef InterlockedOr32
#undef InterlockedXor32
#if defined(V8_HOST_ARCH_ARM64)
#undef InterlockedExchange8
#endif
#else
#error Unsupported platform!
#endif // V8_OS_STARBOARD
template <typename T>
T FromObject(Handle<Object> number);
template <>
inline uint8_t FromObject<uint8_t>(Handle<Object> number) {
return NumberToUint32(*number);
}
template <>
inline int8_t FromObject<int8_t>(Handle<Object> number) {
return NumberToInt32(*number);
}
template <>
inline uint16_t FromObject<uint16_t>(Handle<Object> number) {
return NumberToUint32(*number);
}
template <>
inline int16_t FromObject<int16_t>(Handle<Object> number) {
return NumberToInt32(*number);
}
template <>
inline uint32_t FromObject<uint32_t>(Handle<Object> number) {
return NumberToUint32(*number);
}
template <>
inline int32_t FromObject<int32_t>(Handle<Object> number) {
return NumberToInt32(*number);
}
template <>
inline uint64_t FromObject<uint64_t>(Handle<Object> bigint) {
return Handle<BigInt>::cast(bigint)->AsUint64();
}
template <>
inline int64_t FromObject<int64_t>(Handle<Object> bigint) {
return Handle<BigInt>::cast(bigint)->AsInt64();
}
inline Object ToObject(Isolate* isolate, int8_t t) { return Smi::FromInt(t); }
inline Object ToObject(Isolate* isolate, uint8_t t) { return Smi::FromInt(t); }
inline Object ToObject(Isolate* isolate, int16_t t) { return Smi::FromInt(t); }
inline Object ToObject(Isolate* isolate, uint16_t t) { return Smi::FromInt(t); }
inline Object ToObject(Isolate* isolate, int32_t t) {
return *isolate->factory()->NewNumber(t);
}
inline Object ToObject(Isolate* isolate, uint32_t t) {
return *isolate->factory()->NewNumber(t);
}
inline Object ToObject(Isolate* isolate, int64_t t) {
return *BigInt::FromInt64(isolate, t);
}
inline Object ToObject(Isolate* isolate, uint64_t t) {
return *BigInt::FromUint64(isolate, t);
}
template <typename T>
struct Load {
static inline Object Do(Isolate* isolate, void* buffer, size_t index) {
T result = LoadSeqCst(static_cast<T*>(buffer) + index);
return ToObject(isolate, result);
}
};
template <typename T>
struct Store {
static inline void Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
StoreSeqCst(static_cast<T*>(buffer) + index, value);
}
};
template <typename T>
struct Exchange {
static inline Object Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = ExchangeSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
};
template <typename T>
inline Object DoCompareExchange(Isolate* isolate, void* buffer, size_t index,
Handle<Object> oldobj, Handle<Object> newobj) {
T oldval = FromObject<T>(oldobj);
T newval = FromObject<T>(newobj);
T result =
CompareExchangeSeqCst(static_cast<T*>(buffer) + index, oldval, newval);
return ToObject(isolate, result);
}
template <typename T>
struct Add {
static inline Object Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = AddSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
};
template <typename T>
struct Sub {
static inline Object Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = SubSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
};
template <typename T>
struct And {
static inline Object Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = AndSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
};
template <typename T>
struct Or {
static inline Object Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = OrSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
};
template <typename T>
struct Xor {
static inline Object Do(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = XorSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
};
} // anonymous namespace
// Duplicated from objects.h
// V has parameters (Type, type, TYPE, C type)
#define INTEGER_TYPED_ARRAYS(V) \
V(Uint8, uint8, UINT8, uint8_t) \
V(Int8, int8, INT8, int8_t) \
V(Uint16, uint16, UINT16, uint16_t) \
V(Int16, int16, INT16, int16_t) \
V(Uint32, uint32, UINT32, uint32_t) \
V(Int32, int32, INT32, int32_t)
// This is https://tc39.github.io/ecma262/#sec-getmodifysetvalueinbuffer
// but also includes the ToInteger/ToBigInt conversion that's part of
// https://tc39.github.io/ecma262/#sec-atomicreadmodifywrite
template <template <typename> class Op>
Object GetModifySetValueInBuffer(Arguments args, Isolate* isolate) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value_obj, 2);
CHECK(sta->GetBuffer()->is_shared());
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
sta->byte_offset();
if (sta->type() >= kExternalBigInt64Array) {
Handle<BigInt> bigint;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, bigint,
BigInt::FromObject(isolate, value_obj));
// SharedArrayBuffers are not detachable.
CHECK_LT(index, sta->length());
if (sta->type() == kExternalBigInt64Array) {
return Op<int64_t>::Do(isolate, source, index, bigint);
}
DCHECK(sta->type() == kExternalBigUint64Array);
return Op<uint64_t>::Do(isolate, source, index, bigint);
}
Handle<Object> value;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
Object::ToInteger(isolate, value_obj));
// SharedArrayBuffers are not detachable.
CHECK_LT(index, sta->length());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype) \
case kExternal##Type##Array: \
return Op<ctype>::Do(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
break;
}
UNREACHABLE();
}
RUNTIME_FUNCTION(Runtime_AtomicsLoad64) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CHECK(sta->GetBuffer()->is_shared());
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
sta->byte_offset();
DCHECK(sta->type() == kExternalBigInt64Array ||
sta->type() == kExternalBigUint64Array);
// SharedArrayBuffers are not detachable.
CHECK_LT(index, sta->length());
if (sta->type() == kExternalBigInt64Array) {
return Load<int64_t>::Do(isolate, source, index);
}
DCHECK(sta->type() == kExternalBigUint64Array);
return Load<uint64_t>::Do(isolate, source, index);
}
RUNTIME_FUNCTION(Runtime_AtomicsStore64) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, value_obj, 2);
CHECK(sta->GetBuffer()->is_shared());
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
sta->byte_offset();
Handle<BigInt> bigint;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, bigint,
BigInt::FromObject(isolate, value_obj));
DCHECK(sta->type() == kExternalBigInt64Array ||
sta->type() == kExternalBigUint64Array);
// SharedArrayBuffers are not detachable.
CHECK_LT(index, sta->length());
if (sta->type() == kExternalBigInt64Array) {
Store<int64_t>::Do(isolate, source, index, bigint);
return *bigint;
}
DCHECK(sta->type() == kExternalBigUint64Array);
Store<uint64_t>::Do(isolate, source, index, bigint);
return *bigint;
}
RUNTIME_FUNCTION(Runtime_AtomicsExchange) {
return GetModifySetValueInBuffer<Exchange>(args, isolate);
}
RUNTIME_FUNCTION(Runtime_AtomicsCompareExchange) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, old_value_obj, 2);
CONVERT_ARG_HANDLE_CHECKED(Object, new_value_obj, 3);
CHECK(sta->GetBuffer()->is_shared());
CHECK_LT(index, sta->length());
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
sta->byte_offset();
if (sta->type() >= kExternalBigInt64Array) {
Handle<BigInt> old_bigint;
Handle<BigInt> new_bigint;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, old_bigint, BigInt::FromObject(isolate, old_value_obj));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, new_bigint, BigInt::FromObject(isolate, new_value_obj));
// SharedArrayBuffers are not detachable.
CHECK_LT(index, sta->length());
if (sta->type() == kExternalBigInt64Array) {
return DoCompareExchange<int64_t>(isolate, source, index, old_bigint,
new_bigint);
}
DCHECK(sta->type() == kExternalBigUint64Array);
return DoCompareExchange<uint64_t>(isolate, source, index, old_bigint,
new_bigint);
}
Handle<Object> old_value;
Handle<Object> new_value;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, old_value,
Object::ToInteger(isolate, old_value_obj));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, new_value,
Object::ToInteger(isolate, new_value_obj));
// SharedArrayBuffers are not detachable.
CHECK_LT(index, sta->length());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype) \
case kExternal##Type##Array: \
return DoCompareExchange<ctype>(isolate, source, index, old_value, \
new_value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
break;
}
UNREACHABLE();
}
// ES #sec-atomics.add
// Atomics.add( typedArray, index, value )
RUNTIME_FUNCTION(Runtime_AtomicsAdd) {
return GetModifySetValueInBuffer<Add>(args, isolate);
}
// ES #sec-atomics.sub
// Atomics.sub( typedArray, index, value )
RUNTIME_FUNCTION(Runtime_AtomicsSub) {
return GetModifySetValueInBuffer<Sub>(args, isolate);
}
// ES #sec-atomics.and
// Atomics.and( typedArray, index, value )
RUNTIME_FUNCTION(Runtime_AtomicsAnd) {
return GetModifySetValueInBuffer<And>(args, isolate);
}
// ES #sec-atomics.or
// Atomics.or( typedArray, index, value )
RUNTIME_FUNCTION(Runtime_AtomicsOr) {
return GetModifySetValueInBuffer<Or>(args, isolate);
}
// ES #sec-atomics.xor
// Atomics.xor( typedArray, index, value )
RUNTIME_FUNCTION(Runtime_AtomicsXor) {
return GetModifySetValueInBuffer<Xor>(args, isolate);
}
#undef INTEGER_TYPED_ARRAYS
#else
RUNTIME_FUNCTION(Runtime_AtomicsLoad64) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsStore64) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsExchange) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsCompareExchange) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsAdd) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsSub) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsAnd) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsOr) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsXor) { UNREACHABLE(); }
#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64
// || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X
} // namespace internal
} // namespace v8