| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/cpu.h" |
| |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <sstream> |
| #include <utility> |
| |
| #include "base/no_destructor.h" |
| #include "build/build_config.h" |
| |
| #if defined(ARCH_CPU_ARM_FAMILY) && \ |
| (BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)) |
| #include <asm/hwcap.h> |
| #include <sys/auxv.h> |
| |
| #include "base/files/file_util.h" |
| #include "base/numerics/checked_math.h" |
| #include "base/ranges/algorithm.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_split.h" |
| #include "base/strings/string_util.h" |
| |
| // Temporary definitions until a new hwcap.h is pulled in everywhere. |
| // https://crbug.com/1265965 |
| #ifndef HWCAP2_MTE |
| #define HWCAP2_MTE (1 << 18) |
| #define HWCAP2_BTI (1 << 17) |
| #endif |
| |
| struct ProcCpuInfo { |
| std::string brand; |
| uint8_t implementer = 0; |
| uint32_t part_number = 0; |
| }; |
| #endif |
| |
| #if defined(ARCH_CPU_X86_FAMILY) |
| #if defined(COMPILER_MSVC) |
| #include <intrin.h> |
| #include <immintrin.h> // For _xgetbv() |
| #endif |
| #endif |
| |
| namespace base { |
| |
| #if defined(ARCH_CPU_X86_FAMILY) |
| namespace internal { |
| |
| X86ModelInfo ComputeX86FamilyAndModel(const std::string& vendor, |
| int signature) { |
| X86ModelInfo results; |
| results.family = (signature >> 8) & 0xf; |
| results.model = (signature >> 4) & 0xf; |
| results.ext_family = 0; |
| results.ext_model = 0; |
| |
| // The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A" |
| // specifies the Extended Model is defined only when the Base Family is |
| // 06h or 0Fh. |
| // The "AMD CPUID Specification" specifies that the Extended Model is |
| // defined only when Base Family is 0Fh. |
| // Both manuals define the display model as |
| // {ExtendedModel[3:0],BaseModel[3:0]} in that case. |
| if (results.family == 0xf || |
| (results.family == 0x6 && vendor == "GenuineIntel")) { |
| results.ext_model = (signature >> 16) & 0xf; |
| results.model += results.ext_model << 4; |
| } |
| // Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A" |
| // and the "AMD CPUID Specification" specify that the Extended Family is |
| // defined only when the Base Family is 0Fh. |
| // Both manuals define the display family as {0000b,BaseFamily[3:0]} + |
| // ExtendedFamily[7:0] in that case. |
| if (results.family == 0xf) { |
| results.ext_family = (signature >> 20) & 0xff; |
| results.family += results.ext_family; |
| } |
| |
| return results; |
| } |
| |
| } // namespace internal |
| #endif // defined(ARCH_CPU_X86_FAMILY) |
| |
| CPU::CPU(bool require_branding) { |
| Initialize(require_branding); |
| } |
| CPU::CPU() : CPU(true) {} |
| CPU::CPU(CPU&&) = default; |
| |
| namespace { |
| |
| #if defined(ARCH_CPU_X86_FAMILY) |
| #if !defined(COMPILER_MSVC) |
| |
| #if defined(__pic__) && defined(__i386__) |
| |
| void __cpuid(int cpu_info[4], int info_type) { |
| __asm__ volatile( |
| "mov %%ebx, %%edi\n" |
| "cpuid\n" |
| "xchg %%edi, %%ebx\n" |
| : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), |
| "=d"(cpu_info[3]) |
| : "a"(info_type), "c"(0)); |
| } |
| |
| #else |
| |
| void __cpuid(int cpu_info[4], int info_type) { |
| __asm__ volatile("cpuid\n" |
| : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), |
| "=d"(cpu_info[3]) |
| : "a"(info_type), "c"(0)); |
| } |
| |
| #endif |
| #endif // !defined(COMPILER_MSVC) |
| |
| // xgetbv returns the value of an Intel Extended Control Register (XCR). |
| // Currently only XCR0 is defined by Intel so |xcr| should always be zero. |
| uint64_t xgetbv(uint32_t xcr) { |
| #if defined(COMPILER_MSVC) |
| return _xgetbv(xcr); |
| #else |
| uint32_t eax, edx; |
| |
| __asm__ volatile ( |
| "xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr)); |
| return (static_cast<uint64_t>(edx) << 32) | eax; |
| #endif // defined(COMPILER_MSVC) |
| } |
| |
| #endif // ARCH_CPU_X86_FAMILY |
| |
| #if defined(ARCH_CPU_ARM_FAMILY) && \ |
| (BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)) |
| StringPairs::const_iterator FindFirstProcCpuKey(const StringPairs& pairs, |
| StringPiece key) { |
| return ranges::find_if(pairs, [key](const StringPairs::value_type& pair) { |
| return TrimWhitespaceASCII(pair.first, base::TRIM_ALL) == key; |
| }); |
| } |
| |
| // Parses information about the ARM processor. Note that depending on the CPU |
| // package, processor configuration, and/or kernel version, this may only |
| // report information about the processor on which this thread is running. This |
| // can happen on heterogeneous-processor SoCs like Snapdragon 808, which has 4 |
| // Cortex-A53 and 2 Cortex-A57. Unfortunately there is not a universally |
| // reliable way to examine the CPU part information for all cores. |
| const ProcCpuInfo& ParseProcCpu() { |
| static const NoDestructor<ProcCpuInfo> info([]() { |
| // This function finds the value from /proc/cpuinfo under the key "model |
| // name" or "Processor". "model name" is used in Linux 3.8 and later (3.7 |
| // and later for arm64) and is shown once per CPU. "Processor" is used in |
| // earler versions and is shown only once at the top of /proc/cpuinfo |
| // regardless of the number CPUs. |
| const char kModelNamePrefix[] = "model name"; |
| const char kProcessorPrefix[] = "Processor"; |
| |
| std::string cpuinfo; |
| ReadFileToString(FilePath("/proc/cpuinfo"), &cpuinfo); |
| DCHECK(!cpuinfo.empty()); |
| |
| ProcCpuInfo info; |
| |
| StringPairs pairs; |
| if (!SplitStringIntoKeyValuePairs(cpuinfo, ':', '\n', &pairs)) { |
| NOTREACHED(); |
| return info; |
| } |
| |
| auto model_name = FindFirstProcCpuKey(pairs, kModelNamePrefix); |
| if (model_name == pairs.end()) |
| model_name = FindFirstProcCpuKey(pairs, kProcessorPrefix); |
| if (model_name != pairs.end()) { |
| info.brand = |
| std::string(TrimWhitespaceASCII(model_name->second, TRIM_ALL)); |
| } |
| |
| auto implementer_string = FindFirstProcCpuKey(pairs, "CPU implementer"); |
| if (implementer_string != pairs.end()) { |
| // HexStringToUInt() handles the leading whitespace on the value. |
| uint32_t implementer; |
| HexStringToUInt(implementer_string->second, &implementer); |
| if (!CheckedNumeric<uint32_t>(implementer) |
| .AssignIfValid(&info.implementer)) { |
| info.implementer = 0; |
| } |
| } |
| |
| auto part_number_string = FindFirstProcCpuKey(pairs, "CPU part"); |
| if (part_number_string != pairs.end()) |
| HexStringToUInt(part_number_string->second, &info.part_number); |
| |
| return info; |
| }()); |
| |
| return *info; |
| } |
| #endif // defined(ARCH_CPU_ARM_FAMILY) && (BUILDFLAG(IS_ANDROID) || |
| // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)) |
| |
| } // namespace |
| |
| void CPU::Initialize(bool require_branding) { |
| #if defined(ARCH_CPU_X86_FAMILY) |
| int cpu_info[4] = {-1}; |
| // This array is used to temporarily hold the vendor name and then the brand |
| // name. Thus it has to be big enough for both use cases. There are |
| // static_asserts below for each of the use cases to make sure this array is |
| // big enough. |
| char cpu_string[sizeof(cpu_info) * 3 + 1]; |
| |
| // __cpuid with an InfoType argument of 0 returns the number of |
| // valid Ids in CPUInfo[0] and the CPU identification string in |
| // the other three array elements. The CPU identification string is |
| // not in linear order. The code below arranges the information |
| // in a human readable form. The human readable order is CPUInfo[1] | |
| // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped |
| // before using memcpy() to copy these three array elements to |cpu_string|. |
| __cpuid(cpu_info, 0); |
| int num_ids = cpu_info[0]; |
| std::swap(cpu_info[2], cpu_info[3]); |
| static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]); |
| static_assert(kVendorNameSize < std::size(cpu_string), |
| "cpu_string too small"); |
| memcpy(cpu_string, &cpu_info[1], kVendorNameSize); |
| cpu_string[kVendorNameSize] = '\0'; |
| cpu_vendor_ = cpu_string; |
| |
| // Interpret CPU feature information. |
| if (num_ids > 0) { |
| int cpu_info7[4] = {0}; |
| __cpuid(cpu_info, 1); |
| if (num_ids >= 7) { |
| __cpuid(cpu_info7, 7); |
| } |
| signature_ = cpu_info[0]; |
| stepping_ = cpu_info[0] & 0xf; |
| type_ = (cpu_info[0] >> 12) & 0x3; |
| internal::X86ModelInfo results = |
| internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_); |
| family_ = results.family; |
| model_ = results.model; |
| ext_family_ = results.ext_family; |
| ext_model_ = results.ext_model; |
| has_mmx_ = (cpu_info[3] & 0x00800000) != 0; |
| has_sse_ = (cpu_info[3] & 0x02000000) != 0; |
| has_sse2_ = (cpu_info[3] & 0x04000000) != 0; |
| has_sse3_ = (cpu_info[2] & 0x00000001) != 0; |
| has_ssse3_ = (cpu_info[2] & 0x00000200) != 0; |
| has_sse41_ = (cpu_info[2] & 0x00080000) != 0; |
| has_sse42_ = (cpu_info[2] & 0x00100000) != 0; |
| has_popcnt_ = (cpu_info[2] & 0x00800000) != 0; |
| |
| // "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1." |
| // See https://lwn.net/Articles/301888/ |
| // This is checking for any hypervisor. Hypervisors may choose not to |
| // announce themselves. Hypervisors trap CPUID and sometimes return |
| // different results to underlying hardware. |
| is_running_in_vm_ = (static_cast<uint32_t>(cpu_info[2]) & 0x80000000) != 0; |
| |
| // AVX instructions will generate an illegal instruction exception unless |
| // a) they are supported by the CPU, |
| // b) XSAVE is supported by the CPU and |
| // c) XSAVE is enabled by the kernel. |
| // See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled |
| // |
| // In addition, we have observed some crashes with the xgetbv instruction |
| // even after following Intel's example code. (See crbug.com/375968.) |
| // Because of that, we also test the XSAVE bit because its description in |
| // the CPUID documentation suggests that it signals xgetbv support. |
| has_avx_ = |
| (cpu_info[2] & 0x10000000) != 0 && |
| (cpu_info[2] & 0x04000000) != 0 /* XSAVE */ && |
| (cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ && |
| (xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */; |
| has_aesni_ = (cpu_info[2] & 0x02000000) != 0; |
| has_fma3_ = (cpu_info[2] & 0x00001000) != 0; |
| has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0; |
| |
| has_pku_ = (cpu_info7[2] & 0x00000010) != 0; |
| } |
| |
| // Get the brand string of the cpu. |
| __cpuid(cpu_info, static_cast<int>(0x80000000)); |
| const uint32_t max_parameter = static_cast<uint32_t>(cpu_info[0]); |
| |
| static constexpr uint32_t kParameterStart = 0x80000002; |
| static constexpr uint32_t kParameterEnd = 0x80000004; |
| static constexpr uint32_t kParameterSize = |
| kParameterEnd - kParameterStart + 1; |
| static_assert(kParameterSize * sizeof(cpu_info) + 1 == std::size(cpu_string), |
| "cpu_string has wrong size"); |
| |
| if (max_parameter >= kParameterEnd) { |
| size_t i = 0; |
| for (uint32_t parameter = kParameterStart; parameter <= kParameterEnd; |
| ++parameter) { |
| __cpuid(cpu_info, static_cast<int>(parameter)); |
| memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info)); |
| i += sizeof(cpu_info); |
| } |
| cpu_string[i] = '\0'; |
| cpu_brand_ = cpu_string; |
| } |
| |
| static constexpr uint32_t kParameterContainingNonStopTimeStampCounter = |
| 0x80000007; |
| if (max_parameter >= kParameterContainingNonStopTimeStampCounter) { |
| __cpuid(cpu_info, |
| static_cast<int>(kParameterContainingNonStopTimeStampCounter)); |
| has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0; |
| } |
| |
| if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) { |
| int cpu_info_hv[4] = {}; |
| __cpuid(cpu_info_hv, 0x40000000); |
| if (cpu_info_hv[1] == 0x7263694D && // Micr |
| cpu_info_hv[2] == 0x666F736F && // osof |
| cpu_info_hv[3] == 0x76482074) { // t Hv |
| // If CPUID says we have a variant TSC and a hypervisor has identified |
| // itself and the hypervisor says it is Microsoft Hyper-V, then treat |
| // TSC as invariant. |
| // |
| // Microsoft Hyper-V hypervisor reports variant TSC as there are some |
| // scenarios (eg. VM live migration) where the TSC is variant, but for |
| // our purposes we can treat it as invariant. |
| has_non_stop_time_stamp_counter_ = true; |
| } |
| } |
| #elif defined(ARCH_CPU_ARM_FAMILY) |
| #if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) |
| if (require_branding) { |
| const ProcCpuInfo& info = ParseProcCpu(); |
| cpu_brand_ = info.brand; |
| implementer_ = info.implementer; |
| part_number_ = info.part_number; |
| } |
| |
| #if defined(ARCH_CPU_ARM64) |
| // Check for Armv8.5-A BTI/MTE support, exposed via HWCAP2 |
| unsigned long hwcap2 = getauxval(AT_HWCAP2); |
| has_mte_ = hwcap2 & HWCAP2_MTE; |
| has_bti_ = hwcap2 & HWCAP2_BTI; |
| #endif |
| |
| #elif BUILDFLAG(IS_WIN) |
| // Windows makes high-resolution thread timing information available in |
| // user-space. |
| has_non_stop_time_stamp_counter_ = true; |
| #endif |
| #endif |
| } |
| |
| #if defined(ARCH_CPU_X86_FAMILY) |
| CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const { |
| if (has_avx2()) return AVX2; |
| if (has_fma3()) return FMA3; |
| if (has_avx()) return AVX; |
| if (has_sse42()) return SSE42; |
| if (has_sse41()) return SSE41; |
| if (has_ssse3()) return SSSE3; |
| if (has_sse3()) return SSE3; |
| if (has_sse2()) return SSE2; |
| if (has_sse()) return SSE; |
| return PENTIUM; |
| } |
| #endif |
| |
| const CPU& CPU::GetInstanceNoAllocation() { |
| static const base::NoDestructor<const CPU> cpu(CPU(false)); |
| |
| return *cpu; |
| } |
| |
| } // namespace base |