blob: cb92cf3e32a98e4616748a69040dc4a948a2d13f [file] [log] [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <type_traits>
#include "base/compiler_specific.h"
#include "build/build_config.h"
// WARNING: This block must come before the base/numerics headers are included.
// These tests deliberately cause arithmetic boundary errors. If the compiler is
// aggressive enough, it can const detect these errors, so we disable warnings.
#if BUILDFLAG(IS_WIN)
#pragma warning(disable : 4756) // Arithmetic overflow.
#pragma warning(disable : 4293) // Invalid shift.
#endif
// This may not need to come before the base/numerics headers, but let's keep
// it close to the MSVC equivalent.
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winteger-overflow"
#endif
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/test/gtest_util.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(COMPILER_MSVC) && defined(ARCH_CPU_32_BITS)
#include <mmintrin.h>
#endif
namespace base {
namespace internal {
using std::numeric_limits;
// This is a helper function for finding the maximum value in Src that can be
// wholy represented as the destination floating-point type.
template <typename Dst, typename Src>
Dst GetMaxConvertibleToFloat() {
using DstLimits = numeric_limits<Dst>;
using SrcLimits = numeric_limits<Src>;
static_assert(SrcLimits::is_specialized, "Source must be numeric.");
static_assert(DstLimits::is_specialized, "Destination must be numeric.");
CHECK(DstLimits::is_iec559);
if (SrcLimits::digits <= DstLimits::digits &&
MaxExponent<Src>::value <= MaxExponent<Dst>::value)
return SrcLimits::max();
Src max = SrcLimits::max() / 2 + (SrcLimits::is_integer ? 1 : 0);
while (max != static_cast<Src>(static_cast<Dst>(max))) {
max /= 2;
}
return static_cast<Dst>(max);
}
// Test corner case promotions used
static_assert(IsIntegerArithmeticSafe<int32_t, int8_t, int8_t>::value, "");
static_assert(IsIntegerArithmeticSafe<int32_t, int16_t, int8_t>::value, "");
static_assert(IsIntegerArithmeticSafe<int32_t, int8_t, int16_t>::value, "");
static_assert(!IsIntegerArithmeticSafe<int32_t, int32_t, int8_t>::value, "");
static_assert(BigEnoughPromotion<int16_t, int8_t>::is_contained, "");
static_assert(BigEnoughPromotion<int32_t, uint32_t>::is_contained, "");
static_assert(BigEnoughPromotion<intmax_t, int8_t>::is_contained, "");
static_assert(!BigEnoughPromotion<uintmax_t, int8_t>::is_contained, "");
static_assert(
std::is_same<BigEnoughPromotion<int16_t, int8_t>::type, int16_t>::value,
"");
static_assert(
std::is_same<BigEnoughPromotion<int32_t, uint32_t>::type, int64_t>::value,
"");
static_assert(
std::is_same<BigEnoughPromotion<intmax_t, int8_t>::type, intmax_t>::value,
"");
static_assert(
std::is_same<BigEnoughPromotion<uintmax_t, int8_t>::type, uintmax_t>::value,
"");
static_assert(BigEnoughPromotion<int16_t, int8_t>::is_contained, "");
static_assert(BigEnoughPromotion<int32_t, uint32_t>::is_contained, "");
static_assert(BigEnoughPromotion<intmax_t, int8_t>::is_contained, "");
static_assert(!BigEnoughPromotion<uintmax_t, int8_t>::is_contained, "");
static_assert(
std::is_same<FastIntegerArithmeticPromotion<int16_t, int8_t>::type,
int32_t>::value,
"");
static_assert(
std::is_same<FastIntegerArithmeticPromotion<int32_t, uint32_t>::type,
int64_t>::value,
"");
static_assert(
std::is_same<FastIntegerArithmeticPromotion<intmax_t, int8_t>::type,
intmax_t>::value,
"");
static_assert(
std::is_same<FastIntegerArithmeticPromotion<uintmax_t, int8_t>::type,
uintmax_t>::value,
"");
static_assert(FastIntegerArithmeticPromotion<int16_t, int8_t>::is_contained,
"");
static_assert(FastIntegerArithmeticPromotion<int32_t, uint32_t>::is_contained,
"");
static_assert(!FastIntegerArithmeticPromotion<intmax_t, int8_t>::is_contained,
"");
static_assert(!FastIntegerArithmeticPromotion<uintmax_t, int8_t>::is_contained,
"");
// Test compile-time (constexpr) evaluation of checking and saturation.
constexpr int32_t kIntOne = 1;
static_assert(1 == checked_cast<uint8_t>(kIntOne), "");
static_assert(1 == saturated_cast<uint8_t>(kIntOne), "");
static_assert(2U == MakeClampedNum(kIntOne) + 1, "");
static_assert(2U == (MakeCheckedNum(kIntOne) + 1).ValueOrDie(), "");
static_assert(0U == MakeClampedNum(kIntOne) - 1, "");
static_assert(0U == (MakeCheckedNum(kIntOne) - 1).ValueOrDie(), "");
static_assert(-1 == -MakeClampedNum(kIntOne), "");
static_assert(-1 == (-MakeCheckedNum(kIntOne)).ValueOrDie(), "");
static_assert(1U == MakeClampedNum(kIntOne) * 1, "");
static_assert(1U == (MakeCheckedNum(kIntOne) * 1).ValueOrDie(), "");
static_assert(1U == MakeClampedNum(kIntOne) / 1, "");
static_assert(1U == (MakeCheckedNum(kIntOne) / 1).ValueOrDie(), "");
static_assert(1 == MakeClampedNum(-kIntOne).Abs(), "");
static_assert(1 == MakeCheckedNum(-kIntOne).Abs().ValueOrDie(), "");
static_assert(1U == MakeClampedNum(kIntOne) % 2, "");
static_assert(1U == (MakeCheckedNum(kIntOne) % 2).ValueOrDie(), "");
static_assert(0U == MakeClampedNum(kIntOne) >> 1U, "");
static_assert(0U == (MakeCheckedNum(kIntOne) >> 1U).ValueOrDie(), "");
static_assert(2U == MakeClampedNum(kIntOne) << 1U, "");
static_assert(2U == (MakeCheckedNum(kIntOne) << 1U).ValueOrDie(), "");
static_assert(1 == MakeClampedNum(kIntOne) & 1U, "");
static_assert(1 == (MakeCheckedNum(kIntOne) & 1U).ValueOrDie(), "");
static_assert(1 == MakeClampedNum(kIntOne) | 1U, "");
static_assert(1 == (MakeCheckedNum(kIntOne) | 1U).ValueOrDie(), "");
static_assert(0 == MakeClampedNum(kIntOne) ^ 1U, "");
static_assert(0 == (MakeCheckedNum(kIntOne) ^ 1U).ValueOrDie(), "");
constexpr float kFloatOne = 1.0;
static_assert(1 == int{checked_cast<int8_t>(kFloatOne)}, "");
static_assert(1 == int{saturated_cast<int8_t>(kFloatOne)}, "");
static_assert(2U == unsigned{MakeClampedNum(kFloatOne) + 1}, "");
static_assert(2U ==
(MakeCheckedNum(kFloatOne) + 1).Cast<unsigned>().ValueOrDie(),
"");
static_assert(0U == unsigned{MakeClampedNum(kFloatOne) - 1}, "");
static_assert(0U ==
(MakeCheckedNum(kFloatOne) - 1).Cast<unsigned>().ValueOrDie(),
"");
static_assert(-1 == int{-MakeClampedNum(kFloatOne)}, "");
static_assert(-1 == (-MakeCheckedNum(kFloatOne)).Cast<int>().ValueOrDie(), "");
static_assert(1U == unsigned{MakeClampedNum(kFloatOne) * 1}, "");
static_assert(1U ==
(MakeCheckedNum(kFloatOne) * 1).Cast<unsigned>().ValueOrDie(),
"");
static_assert(1U == unsigned{MakeClampedNum(kFloatOne) / 1}, "");
static_assert(1U ==
(MakeCheckedNum(kFloatOne) / 1).Cast<unsigned>().ValueOrDie(),
"");
static_assert(1 == int{MakeClampedNum(-kFloatOne).Abs()}, "");
static_assert(1 == MakeCheckedNum(-kFloatOne).Abs().Cast<int>().ValueOrDie(),
"");
template <typename U>
U GetNumericValueForTest(const CheckedNumeric<U>& src) {
return src.state_.value();
}
template <typename U>
U GetNumericValueForTest(const ClampedNumeric<U>& src) {
return static_cast<U>(src);
}
template <typename U>
U GetNumericValueForTest(const U& src) {
return src;
}
// Logs the ValueOrDie() failure instead of crashing.
struct LogOnFailure {
template <typename T>
static T HandleFailure() {
LOG(WARNING) << "ValueOrDie() failed unexpectedly.";
return T();
}
};
template <typename T>
constexpr T GetValue(const T& src) {
return src;
}
template <typename T, typename U>
constexpr T GetValueAsDest(const U& src) {
return static_cast<T>(src);
}
template <typename T>
constexpr T GetValue(const CheckedNumeric<T>& src) {
return src.template ValueOrDie<T, LogOnFailure>();
}
template <typename T, typename U>
constexpr T GetValueAsDest(const CheckedNumeric<U>& src) {
return src.template ValueOrDie<T, LogOnFailure>();
}
template <typename T>
constexpr T GetValue(const ClampedNumeric<T>& src) {
return static_cast<T>(src);
}
template <typename T, typename U>
constexpr T GetValueAsDest(const ClampedNumeric<U>& src) {
return static_cast<T>(src);
}
// Helper macros to wrap displaying the conversion types and line numbers.
#define TEST_EXPECTED_VALIDITY(expected, actual) \
EXPECT_EQ(expected, (actual).template Cast<Dst>().IsValid()) \
<< "Result test: Value " << GetNumericValueForTest(actual) << " as " \
<< dst << " on line " << line
#define TEST_EXPECTED_SUCCESS(actual) TEST_EXPECTED_VALIDITY(true, actual)
#define TEST_EXPECTED_FAILURE(actual) TEST_EXPECTED_VALIDITY(false, actual)
// We have to handle promotions, so infer the underlying type below from actual.
#define TEST_EXPECTED_VALUE(expected, actual) \
EXPECT_EQ(GetValue(expected), GetValueAsDest<decltype(expected)>(actual)) \
<< "Result test: Value " << GetNumericValueForTest(actual) << " as " \
<< dst << " on line " << line
// Test the simple pointer arithmetic overrides.
template <typename Dst>
void TestStrictPointerMath() {
Dst dummy_value = 0;
Dst* dummy_ptr = &dummy_value;
static const Dst kDummyOffset = 2; // Don't want to go too far.
EXPECT_EQ(dummy_ptr + kDummyOffset,
dummy_ptr + StrictNumeric<Dst>(kDummyOffset));
EXPECT_EQ(dummy_ptr - kDummyOffset,
dummy_ptr - StrictNumeric<Dst>(kDummyOffset));
EXPECT_NE(dummy_ptr, dummy_ptr + StrictNumeric<Dst>(kDummyOffset));
EXPECT_NE(dummy_ptr, dummy_ptr - StrictNumeric<Dst>(kDummyOffset));
EXPECT_DEATH_IF_SUPPORTED(
dummy_ptr + StrictNumeric<size_t>(std::numeric_limits<size_t>::max()),
"");
}
// Signed integer arithmetic.
template <typename Dst>
static void TestSpecializedArithmetic(
const char* dst,
int line,
typename std::enable_if<numeric_limits<Dst>::is_integer &&
numeric_limits<Dst>::is_signed,
int>::type = 0) {
using DstLimits = SaturationDefaultLimits<Dst>;
TEST_EXPECTED_FAILURE(-CheckedNumeric<Dst>(DstLimits::lowest()));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()).Abs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).Abs());
TEST_EXPECTED_VALUE(DstLimits::max(),
MakeCheckedNum(-DstLimits::max()).Abs());
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
-ClampedNumeric<Dst>(DstLimits::lowest()));
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::lowest()).Abs());
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(-1).Abs());
TEST_EXPECTED_VALUE(DstLimits::max(),
MakeClampedNum(-DstLimits::max()).Abs());
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) + -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) + -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) +
DstLimits::lowest());
TEST_EXPECTED_VALUE(DstLimits::max() - 1,
ClampedNumeric<Dst>(DstLimits::max()) + -1);
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) + -1);
TEST_EXPECTED_VALUE(
DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) + DstLimits::lowest());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) - 1);
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::lowest()) - -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) -
DstLimits::lowest());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) -
DstLimits::max());
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) - 1);
TEST_EXPECTED_VALUE(DstLimits::lowest() + 1,
ClampedNumeric<Dst>(DstLimits::lowest()) - -1);
TEST_EXPECTED_VALUE(
DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::max()) - DstLimits::lowest());
TEST_EXPECTED_VALUE(
DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) - DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) * 2);
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) * 2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) / -1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(-1) / 2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) * -1);
TEST_EXPECTED_VALUE(DstLimits::max(),
CheckedNumeric<Dst>(DstLimits::lowest() + 1) * Dst(-1));
TEST_EXPECTED_VALUE(DstLimits::max(),
CheckedNumeric<Dst>(-1) * Dst(DstLimits::lowest() + 1));
TEST_EXPECTED_VALUE(DstLimits::lowest(),
CheckedNumeric<Dst>(DstLimits::lowest()) * Dst(1));
TEST_EXPECTED_VALUE(DstLimits::lowest(),
CheckedNumeric<Dst>(1) * Dst(DstLimits::lowest()));
TEST_EXPECTED_VALUE(
typename std::make_unsigned<Dst>::type(0) - DstLimits::lowest(),
MakeCheckedNum(DstLimits::lowest()).UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::max(),
MakeCheckedNum(DstLimits::max()).UnsignedAbs());
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0).UnsignedAbs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1).UnsignedAbs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) / -1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(-1) / 2);
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) * -1);
TEST_EXPECTED_VALUE(DstLimits::max(),
ClampedNumeric<Dst>(DstLimits::lowest() + 1) * Dst(-1));
TEST_EXPECTED_VALUE(DstLimits::max(),
ClampedNumeric<Dst>(-1) * Dst(DstLimits::lowest() + 1));
TEST_EXPECTED_VALUE(DstLimits::lowest(),
ClampedNumeric<Dst>(DstLimits::lowest()) * Dst(1));
TEST_EXPECTED_VALUE(DstLimits::lowest(),
ClampedNumeric<Dst>(1) * Dst(DstLimits::lowest()));
TEST_EXPECTED_VALUE(
typename std::make_unsigned<Dst>::type(0) - DstLimits::lowest(),
MakeClampedNum(DstLimits::lowest()).UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::max(),
MakeClampedNum(DstLimits::max()).UnsignedAbs());
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0).UnsignedAbs());
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1).UnsignedAbs());
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(-1).UnsignedAbs());
// Modulus is legal only for integers.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) % -1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) % -2);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % -1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) % -2);
TEST_EXPECTED_VALUE(-1, CheckedNumeric<Dst>(-1) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(-1) % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(-1) % -1);
TEST_EXPECTED_VALUE(-1, CheckedNumeric<Dst>(-1) % -2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::lowest()) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::lowest()) % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::lowest()) % -1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::lowest()) % -2);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::max()) % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::max()) % -1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % -2);
// Test all the different modulus combinations.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
CheckedNumeric<Dst> checked_dst = 1;
TEST_EXPECTED_VALUE(0, checked_dst %= 1);
// Test that div by 0 is avoided but returns invalid result.
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) % 0);
// Test bit shifts.
volatile Dst negative_one = -1;
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << negative_one);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1)
<< (IntegerBitsPlusSign<Dst>::value - 1));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(0)
<< IntegerBitsPlusSign<Dst>::value);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) << 1);
TEST_EXPECTED_VALUE(
static_cast<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 2),
CheckedNumeric<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 2));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0)
<< (IntegerBitsPlusSign<Dst>::value - 1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) << 0);
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) << 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >>
IntegerBitsPlusSign<Dst>::value);
TEST_EXPECTED_VALUE(
0, CheckedNumeric<Dst>(1) >> (IntegerBitsPlusSign<Dst>::value - 1));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >> negative_one);
// Modulus is legal only for integers.
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) % 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) % 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) % -1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) % -2);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) % 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % -1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) % -2);
TEST_EXPECTED_VALUE(-1, ClampedNumeric<Dst>(-1) % 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(-1) % 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(-1) % -1);
TEST_EXPECTED_VALUE(-1, ClampedNumeric<Dst>(-1) % -2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()) % 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()) % 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()) % -1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()) % -2);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(DstLimits::max()) % 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::max()) % 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::max()) % -1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(DstLimits::max()) % -2);
// Test all the different modulus combinations.
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 % ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % 1);
ClampedNumeric<Dst> clamped_dst = 1;
TEST_EXPECTED_VALUE(0, clamped_dst %= 1);
TEST_EXPECTED_VALUE(Dst(1), ClampedNumeric<Dst>(1) % 0);
// Test bit shifts.
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(1)
<< (IntegerBitsPlusSign<Dst>::value - 1U));
TEST_EXPECTED_VALUE(Dst(0), ClampedNumeric<Dst>(0)
<< (IntegerBitsPlusSign<Dst>::value + 0U));
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::max()) << 1U);
TEST_EXPECTED_VALUE(
static_cast<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 2U),
ClampedNumeric<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 2U));
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0)
<< (IntegerBitsPlusSign<Dst>::value - 1U));
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) << 0U);
TEST_EXPECTED_VALUE(2, ClampedNumeric<Dst>(1) << 1U);
TEST_EXPECTED_VALUE(
0, ClampedNumeric<Dst>(1) >> (IntegerBitsPlusSign<Dst>::value + 0U));
TEST_EXPECTED_VALUE(
0, ClampedNumeric<Dst>(1) >> (IntegerBitsPlusSign<Dst>::value - 1U));
TEST_EXPECTED_VALUE(
-1, ClampedNumeric<Dst>(-1) >> (IntegerBitsPlusSign<Dst>::value - 1U));
TEST_EXPECTED_VALUE(-1, ClampedNumeric<Dst>(DstLimits::lowest()) >>
(IntegerBitsPlusSign<Dst>::value - 0U));
TestStrictPointerMath<Dst>();
}
// Unsigned integer arithmetic.
template <typename Dst>
static void TestSpecializedArithmetic(
const char* dst,
int line,
typename std::enable_if<numeric_limits<Dst>::is_integer &&
!numeric_limits<Dst>::is_signed,
int>::type = 0) {
using DstLimits = SaturationDefaultLimits<Dst>;
TEST_EXPECTED_SUCCESS(-CheckedNumeric<Dst>(DstLimits::lowest()));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::lowest()).Abs());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) + -1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) - 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::lowest()) * 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) / 2);
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::lowest()).UnsignedAbs());
TEST_EXPECTED_SUCCESS(
CheckedNumeric<typename std::make_signed<Dst>::type>(
std::numeric_limits<typename std::make_signed<Dst>::type>::lowest())
.UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::lowest(),
MakeCheckedNum(DstLimits::lowest()).UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::max(),
MakeCheckedNum(DstLimits::max()).UnsignedAbs());
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0).UnsignedAbs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1).UnsignedAbs());
TEST_EXPECTED_VALUE(0, -ClampedNumeric<Dst>(DstLimits::lowest()));
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()).Abs());
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) + -1);
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) - 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()) * 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) / 2);
TEST_EXPECTED_VALUE(0,
ClampedNumeric<Dst>(DstLimits::lowest()).UnsignedAbs());
TEST_EXPECTED_VALUE(
as_unsigned(
std::numeric_limits<typename std::make_signed<Dst>::type>::lowest()),
ClampedNumeric<typename std::make_signed<Dst>::type>(
std::numeric_limits<typename std::make_signed<Dst>::type>::lowest())
.UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::lowest(),
MakeClampedNum(DstLimits::lowest()).UnsignedAbs());
TEST_EXPECTED_VALUE(DstLimits::max(),
MakeClampedNum(DstLimits::max()).UnsignedAbs());
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0).UnsignedAbs());
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1).UnsignedAbs());
// Modulus is legal only for integers.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() % 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) % 2);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::lowest()) % 2);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % 2);
// Test all the different modulus combinations.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 % CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1);
CheckedNumeric<Dst> checked_dst = 1;
TEST_EXPECTED_VALUE(0, checked_dst %= 1);
// Test that div by 0 is avoided but returns invalid result.
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) % 0);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1)
<< IntegerBitsPlusSign<Dst>::value);
// Test bit shifts.
volatile int negative_one = -1;
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) << negative_one);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1)
<< IntegerBitsPlusSign<Dst>::value);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(0)
<< IntegerBitsPlusSign<Dst>::value);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) << 1);
TEST_EXPECTED_VALUE(
static_cast<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 1),
CheckedNumeric<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) << 0);
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) << 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >>
IntegerBitsPlusSign<Dst>::value);
TEST_EXPECTED_VALUE(
0, CheckedNumeric<Dst>(1) >> (IntegerBitsPlusSign<Dst>::value - 1));
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) >> negative_one);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) & 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) & 0);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) & 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) & 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
MakeCheckedNum(DstLimits::max()) & -1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) | 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) | 0);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(0) | 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) | 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
CheckedNumeric<Dst>(0) | static_cast<Dst>(-1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) ^ 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) ^ 0);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(0) ^ 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(0) ^ 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
CheckedNumeric<Dst>(0) ^ static_cast<Dst>(-1));
TEST_EXPECTED_VALUE(DstLimits::max(), ~CheckedNumeric<Dst>(0));
// Modulus is legal only for integers.
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>() % 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % 1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) % 2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::lowest()) % 2);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(DstLimits::max()) % 2);
// Test all the different modulus combinations.
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 % ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) % 1);
ClampedNumeric<Dst> clamped_dst = 1;
TEST_EXPECTED_VALUE(0, clamped_dst %= 1);
// Test that div by 0 is avoided but returns invalid result.
TEST_EXPECTED_VALUE(Dst(1), ClampedNumeric<Dst>(1) % 0);
// Test bit shifts.
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(1)
<< as_unsigned(IntegerBitsPlusSign<Dst>::value));
TEST_EXPECTED_VALUE(Dst(0), ClampedNumeric<Dst>(0) << as_unsigned(
IntegerBitsPlusSign<Dst>::value));
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::max()) << 1U);
TEST_EXPECTED_VALUE(
static_cast<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 1U),
ClampedNumeric<Dst>(1) << (IntegerBitsPlusSign<Dst>::value - 1U));
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) << 0U);
TEST_EXPECTED_VALUE(2, ClampedNumeric<Dst>(1) << 1U);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) >>
as_unsigned(IntegerBitsPlusSign<Dst>::value));
TEST_EXPECTED_VALUE(
0, ClampedNumeric<Dst>(1) >> (IntegerBitsPlusSign<Dst>::value - 1U));
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) & 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) & 0);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) & 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) & 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
MakeClampedNum(DstLimits::max()) & -1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) | 1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) | 0);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(0) | 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) | 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
ClampedNumeric<Dst>(0) | static_cast<Dst>(-1));
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) ^ 1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) ^ 0);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(0) ^ 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) ^ 0);
TEST_EXPECTED_VALUE(std::numeric_limits<Dst>::max(),
ClampedNumeric<Dst>(0) ^ static_cast<Dst>(-1));
TEST_EXPECTED_VALUE(DstLimits::max(), ~ClampedNumeric<Dst>(0));
TestStrictPointerMath<Dst>();
}
// Floating point arithmetic.
template <typename Dst>
void TestSpecializedArithmetic(
const char* dst,
int line,
typename std::enable_if<numeric_limits<Dst>::is_iec559, int>::type = 0) {
using DstLimits = SaturationDefaultLimits<Dst>;
TEST_EXPECTED_SUCCESS(-CheckedNumeric<Dst>(DstLimits::lowest()));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::lowest()).Abs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).Abs());
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::lowest()) + -1);
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) + 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) +
DstLimits::lowest());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) -
DstLimits::lowest());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) -
DstLimits::max());
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::lowest()) * 2);
TEST_EXPECTED_VALUE(-0.5, CheckedNumeric<Dst>(-1.0) / 2);
TEST_EXPECTED_VALUE(DstLimits::max(),
-ClampedNumeric<Dst>(DstLimits::lowest()));
TEST_EXPECTED_VALUE(DstLimits::max(),
ClampedNumeric<Dst>(DstLimits::lowest()).Abs());
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(-1).Abs());
TEST_EXPECTED_VALUE(DstLimits::lowest() - 1,
ClampedNumeric<Dst>(DstLimits::lowest()) + -1);
TEST_EXPECTED_VALUE(DstLimits::max() + 1,
ClampedNumeric<Dst>(DstLimits::max()) + 1);
TEST_EXPECTED_VALUE(
DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) + DstLimits::lowest());
TEST_EXPECTED_VALUE(
DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::max()) - DstLimits::lowest());
TEST_EXPECTED_VALUE(
DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) - DstLimits::max());
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::lowest()) * 2);
TEST_EXPECTED_VALUE(-0.5, ClampedNumeric<Dst>(-1.0) / 2);
}
// Generic arithmetic tests.
template <typename Dst>
static void TestArithmetic(const char* dst, int line) {
using DstLimits = SaturationDefaultLimits<Dst>;
// Test C++17 class template argument deduction
static_assert(
std::is_same_v<Dst, typename decltype(CheckedNumeric(Dst{0}))::type>);
static_assert(
std::is_same_v<Dst, typename decltype(ClampedNumeric(Dst{0}))::type>);
static_assert(
std::is_same_v<Dst, typename decltype(StrictNumeric(Dst{0}))::type>);
EXPECT_EQ(true, CheckedNumeric<Dst>().IsValid());
EXPECT_EQ(false, CheckedNumeric<Dst>(CheckedNumeric<Dst>(DstLimits::max()) *
DstLimits::max())
.IsValid());
EXPECT_EQ(static_cast<Dst>(0), CheckedNumeric<Dst>().ValueOrDie());
EXPECT_EQ(static_cast<Dst>(0), CheckedNumeric<Dst>().ValueOrDefault(1));
EXPECT_EQ(static_cast<Dst>(1),
CheckedNumeric<Dst>(CheckedNumeric<Dst>(DstLimits::max()) *
DstLimits::max())
.ValueOrDefault(1));
// Test the operator combinations.
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) + CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) - CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) * CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(2, 1 + CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 - CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, 1 * CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, 1 / CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) + 1);
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) - 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) * 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / 1);
CheckedNumeric<Dst> checked_dst = 1;
TEST_EXPECTED_VALUE(2, checked_dst += 1);
checked_dst = 1;
TEST_EXPECTED_VALUE(0, checked_dst -= 1);
checked_dst = 1;
TEST_EXPECTED_VALUE(1, checked_dst *= 1);
checked_dst = 1;
TEST_EXPECTED_VALUE(1, checked_dst /= 1);
TEST_EXPECTED_VALUE(2, ClampedNumeric<Dst>(1) + ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) - ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) * ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) / ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(2, 1 + ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(0, 1 - ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, 1 * ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, 1 / ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(2, ClampedNumeric<Dst>(1) + 1);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(1) - 1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) * 1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) / 1);
ClampedNumeric<Dst> clamped_dst = 1;
TEST_EXPECTED_VALUE(2, clamped_dst += 1);
clamped_dst = 1;
TEST_EXPECTED_VALUE(0, clamped_dst -= 1);
clamped_dst = 1;
TEST_EXPECTED_VALUE(1, clamped_dst *= 1);
clamped_dst = 1;
TEST_EXPECTED_VALUE(1, clamped_dst /= 1);
// Generic negation.
if (DstLimits::is_signed) {
TEST_EXPECTED_VALUE(0, -CheckedNumeric<Dst>());
TEST_EXPECTED_VALUE(-1, -CheckedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, -CheckedNumeric<Dst>(-1));
TEST_EXPECTED_VALUE(static_cast<Dst>(DstLimits::max() * -1),
-CheckedNumeric<Dst>(DstLimits::max()));
TEST_EXPECTED_VALUE(0, -ClampedNumeric<Dst>());
TEST_EXPECTED_VALUE(-1, -ClampedNumeric<Dst>(1));
TEST_EXPECTED_VALUE(1, -ClampedNumeric<Dst>(-1));
TEST_EXPECTED_VALUE(static_cast<Dst>(DstLimits::max() * -1),
-ClampedNumeric<Dst>(DstLimits::max()));
// The runtime paths for saturated negation differ significantly from what
// gets evaluated at compile-time. Making this test volatile forces the
// compiler to generate code rather than fold constant expressions.
volatile Dst value = Dst(0);
TEST_EXPECTED_VALUE(0, -MakeClampedNum(value));
value = Dst(1);
TEST_EXPECTED_VALUE(-1, -MakeClampedNum(value));
value = Dst(2);
TEST_EXPECTED_VALUE(-2, -MakeClampedNum(value));
value = Dst(-1);
TEST_EXPECTED_VALUE(1, -MakeClampedNum(value));
value = Dst(-2);
TEST_EXPECTED_VALUE(2, -MakeClampedNum(value));
value = DstLimits::max();
TEST_EXPECTED_VALUE(Dst(DstLimits::max() * -1), -MakeClampedNum(value));
value = Dst(-1 * DstLimits::max());
TEST_EXPECTED_VALUE(DstLimits::max(), -MakeClampedNum(value));
value = DstLimits::lowest();
TEST_EXPECTED_VALUE(DstLimits::max(), -MakeClampedNum(value));
}
// Generic absolute value.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>().Abs());
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1).Abs());
TEST_EXPECTED_VALUE(DstLimits::max(),
CheckedNumeric<Dst>(DstLimits::max()).Abs());
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>().Abs());
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1).Abs());
TEST_EXPECTED_VALUE(DstLimits::max(),
ClampedNumeric<Dst>(DstLimits::max()).Abs());
// Generic addition.
TEST_EXPECTED_VALUE(1, (CheckedNumeric<Dst>() + 1));
TEST_EXPECTED_VALUE(2, (CheckedNumeric<Dst>(1) + 1));
if (numeric_limits<Dst>::is_signed)
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(-1) + 1));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::lowest()) + 1);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) +
DstLimits::max());
TEST_EXPECTED_VALUE(1, (ClampedNumeric<Dst>() + 1));
TEST_EXPECTED_VALUE(2, (ClampedNumeric<Dst>(1) + 1));
if (numeric_limits<Dst>::is_signed)
TEST_EXPECTED_VALUE(0, (ClampedNumeric<Dst>(-1) + 1));
TEST_EXPECTED_VALUE(DstLimits::lowest() + 1,
ClampedNumeric<Dst>(DstLimits::lowest()) + 1);
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::max()) + DstLimits::max());
// Generic subtraction.
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(1) - 1));
TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) - 1);
if (numeric_limits<Dst>::is_signed) {
TEST_EXPECTED_VALUE(-1, (CheckedNumeric<Dst>() - 1));
TEST_EXPECTED_VALUE(-2, (CheckedNumeric<Dst>(-1) - 1));
} else {
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) - -1);
}
TEST_EXPECTED_VALUE(0, (ClampedNumeric<Dst>(1) - 1));
TEST_EXPECTED_VALUE(DstLimits::max() - 1,
ClampedNumeric<Dst>(DstLimits::max()) - 1);
if (numeric_limits<Dst>::is_signed) {
TEST_EXPECTED_VALUE(-1, (ClampedNumeric<Dst>() - 1));
TEST_EXPECTED_VALUE(-2, (ClampedNumeric<Dst>(-1) - 1));
} else {
TEST_EXPECTED_VALUE(DstLimits::max(),
ClampedNumeric<Dst>(DstLimits::max()) - -1);
}
// Generic multiplication.
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>() * 1));
TEST_EXPECTED_VALUE(1, (CheckedNumeric<Dst>(1) * 1));
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(0) * 0));
if (numeric_limits<Dst>::is_signed) {
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(-1) * 0));
TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(0) * -1));
TEST_EXPECTED_VALUE(-2, (CheckedNumeric<Dst>(-1) * 2));
} else {
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) * -2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) *
CheckedNumeric<uintmax_t>(-2));
}
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) *
DstLimits::max());
TEST_EXPECTED_VALUE(0, (ClampedNumeric<Dst>() * 1));
TEST_EXPECTED_VALUE(1, (ClampedNumeric<Dst>(1) * 1));
TEST_EXPECTED_VALUE(0, (ClampedNumeric<Dst>(0) * 0));
if (numeric_limits<Dst>::is_signed) {
TEST_EXPECTED_VALUE(0, (ClampedNumeric<Dst>(-1) * 0));
TEST_EXPECTED_VALUE(0, (ClampedNumeric<Dst>(0) * -1));
TEST_EXPECTED_VALUE(-2, (ClampedNumeric<Dst>(-1) * 2));
} else {
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
ClampedNumeric<Dst>(DstLimits::max()) * -2);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(DstLimits::max()) *
ClampedNumeric<uintmax_t>(-2));
}
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
ClampedNumeric<Dst>(DstLimits::max()) * DstLimits::max());
// Generic division.
TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() / 1);
TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / 1);
TEST_EXPECTED_VALUE(DstLimits::lowest() / 2,
CheckedNumeric<Dst>(DstLimits::lowest()) / 2);
TEST_EXPECTED_VALUE(DstLimits::max() / 2,
CheckedNumeric<Dst>(DstLimits::max()) / 2);
TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(1) / 0);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>() / 1);
TEST_EXPECTED_VALUE(1, ClampedNumeric<Dst>(1) / 1);
TEST_EXPECTED_VALUE(DstLimits::lowest() / 2,
ClampedNumeric<Dst>(DstLimits::lowest()) / 2);
TEST_EXPECTED_VALUE(DstLimits::max() / 2,
ClampedNumeric<Dst>(DstLimits::max()) / 2);
TEST_EXPECTED_VALUE(DstLimits::Overflow(), ClampedNumeric<Dst>(1) / 0);
TEST_EXPECTED_VALUE(DstLimits::Underflow(), ClampedNumeric<Dst>(-1) / 0);
TEST_EXPECTED_VALUE(0, ClampedNumeric<Dst>(0) / 0);
TestSpecializedArithmetic<Dst>(dst, line);
}
// Helper macro to wrap displaying the conversion types and line numbers.
#define TEST_ARITHMETIC(Dst) TestArithmetic<Dst>(#Dst, __LINE__)
TEST(SafeNumerics, SignedIntegerMath) {
TEST_ARITHMETIC(int8_t);
TEST_ARITHMETIC(int16_t);
TEST_ARITHMETIC(int);
TEST_ARITHMETIC(intptr_t);
TEST_ARITHMETIC(intmax_t);
}
TEST(SafeNumerics, UnsignedIntegerMath) {
TEST_ARITHMETIC(uint8_t);
TEST_ARITHMETIC(uint16_t);
TEST_ARITHMETIC(unsigned int);
TEST_ARITHMETIC(uintptr_t);
TEST_ARITHMETIC(uintmax_t);
}
TEST(SafeNumerics, FloatingPointMath) {
TEST_ARITHMETIC(float);
TEST_ARITHMETIC(double);
}
// Enumerates the five different conversions types we need to test.
enum NumericConversionType {
SIGN_PRESERVING_VALUE_PRESERVING,
SIGN_PRESERVING_NARROW,
SIGN_TO_UNSIGN_WIDEN_OR_EQUAL,
SIGN_TO_UNSIGN_NARROW,
UNSIGN_TO_SIGN_NARROW_OR_EQUAL,
};
// Template covering the different conversion tests.
template <typename Dst, typename Src, NumericConversionType conversion>
struct TestNumericConversion {};
enum RangeConstraint {
RANGE_VALID = 0x0, // Value can be represented by the destination type.
RANGE_UNDERFLOW = 0x1, // Value would underflow.
RANGE_OVERFLOW = 0x2, // Value would overflow.
RANGE_INVALID = RANGE_UNDERFLOW | RANGE_OVERFLOW // Invalid (i.e. NaN).
};
// These are some wrappers to make the tests a bit cleaner.
constexpr RangeConstraint RangeCheckToEnum(const RangeCheck constraint) {
return static_cast<RangeConstraint>(
static_cast<int>(constraint.IsOverflowFlagSet()) << 1 |
static_cast<int>(constraint.IsUnderflowFlagSet()));
}
// EXPECT_EQ wrappers providing specific detail on test failures.
#define TEST_EXPECTED_RANGE(expected, actual) \
EXPECT_EQ(expected, \
RangeCheckToEnum(DstRangeRelationToSrcRange<Dst>(actual))) \
<< "Conversion test: " << src << " value " << actual << " to " << dst \
<< " on line " << line
template <typename Dst, typename Src>
void TestStrictComparison(const char* dst, const char* src, int line) {
using DstLimits = numeric_limits<Dst>;
using SrcLimits = numeric_limits<Src>;
static_assert(StrictNumeric<Src>(SrcLimits::lowest()) < DstLimits::max(), "");
static_assert(StrictNumeric<Src>(SrcLimits::lowest()) < SrcLimits::max(), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::lowest()) >= DstLimits::max()),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::lowest()) >= SrcLimits::max()),
"");
static_assert(StrictNumeric<Src>(SrcLimits::lowest()) <= DstLimits::max(),
"");
static_assert(StrictNumeric<Src>(SrcLimits::lowest()) <= SrcLimits::max(),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::lowest()) > DstLimits::max()),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::lowest()) > SrcLimits::max()),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) > DstLimits::lowest(), "");
static_assert(StrictNumeric<Src>(SrcLimits::max()) > SrcLimits::lowest(), "");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) <= DstLimits::lowest()),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) <= SrcLimits::lowest()),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) >= DstLimits::lowest(),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) >= SrcLimits::lowest(),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) < DstLimits::lowest()),
"");
static_assert(!(StrictNumeric<Src>(SrcLimits::max()) < SrcLimits::lowest()),
"");
static_assert(StrictNumeric<Src>(static_cast<Src>(1)) == static_cast<Dst>(1),
"");
static_assert(StrictNumeric<Src>(static_cast<Src>(1)) != static_cast<Dst>(0),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) != static_cast<Dst>(0),
"");
static_assert(StrictNumeric<Src>(SrcLimits::max()) != DstLimits::lowest(),
"");
static_assert(
!(StrictNumeric<Src>(static_cast<Src>(1)) != static_cast<Dst>(1)), "");
static_assert(
!(StrictNumeric<Src>(static_cast<Src>(1)) == static_cast<Dst>(0)), "");
// Due to differences in float handling between compilers, these aren't
// compile-time constants everywhere. So, we use run-time tests.
EXPECT_EQ(
SrcLimits::max(),
MakeCheckedNum(SrcLimits::max()).Max(DstLimits::lowest()).ValueOrDie());
EXPECT_EQ(
DstLimits::max(),
MakeCheckedNum(SrcLimits::lowest()).Max(DstLimits::max()).ValueOrDie());
EXPECT_EQ(
DstLimits::lowest(),
MakeCheckedNum(SrcLimits::max()).Min(DstLimits::lowest()).ValueOrDie());
EXPECT_EQ(
SrcLimits::lowest(),
MakeCheckedNum(SrcLimits::lowest()).Min(DstLimits::max()).ValueOrDie());
EXPECT_EQ(SrcLimits::lowest(), CheckMin(MakeStrictNum(1), MakeCheckedNum(0),
DstLimits::max(), SrcLimits::lowest())
.ValueOrDie());
EXPECT_EQ(DstLimits::max(), CheckMax(MakeStrictNum(1), MakeCheckedNum(0),
DstLimits::max(), SrcLimits::lowest())
.ValueOrDie());
EXPECT_EQ(SrcLimits::max(),
MakeClampedNum(SrcLimits::max()).Max(DstLimits::lowest()));
EXPECT_EQ(DstLimits::max(),
MakeClampedNum(SrcLimits::lowest()).Max(DstLimits::max()));
EXPECT_EQ(DstLimits::lowest(),
MakeClampedNum(SrcLimits::max()).Min(DstLimits::lowest()));
EXPECT_EQ(SrcLimits::lowest(),
MakeClampedNum(SrcLimits::lowest()).Min(DstLimits::max()));
EXPECT_EQ(SrcLimits::lowest(),
ClampMin(MakeStrictNum(1), MakeClampedNum(0), DstLimits::max(),
SrcLimits::lowest()));
EXPECT_EQ(DstLimits::max(), ClampMax(MakeStrictNum(1), MakeClampedNum(0),
DstLimits::max(), SrcLimits::lowest()));
if (IsValueInRangeForNumericType<Dst>(SrcLimits::max())) {
TEST_EXPECTED_VALUE(Dst(SrcLimits::max()), (CommonMax<Dst, Src>()));
TEST_EXPECTED_VALUE(Dst(SrcLimits::max()),
(CommonMaxOrMin<Dst, Src>(false)));
} else {
TEST_EXPECTED_VALUE(DstLimits::max(), (CommonMax<Dst, Src>()));
TEST_EXPECTED_VALUE(DstLimits::max(), (CommonMaxOrMin<Dst, Src>(false)));
}
if (IsValueInRangeForNumericType<Dst>(SrcLimits::lowest())) {
TEST_EXPECTED_VALUE(Dst(SrcLimits::lowest()), (CommonMin<Dst, Src>()));
TEST_EXPECTED_VALUE(Dst(SrcLimits::lowest()),
(CommonMaxOrMin<Dst, Src>(true)));
} else {
TEST_EXPECTED_VALUE(DstLimits::lowest(), (CommonMin<Dst, Src>()));
TEST_EXPECTED_VALUE(DstLimits::lowest(), (CommonMaxOrMin<Dst, Src>(true)));
}
}
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_PRESERVING_VALUE_PRESERVING> {
static void Test(const char* dst, const char* src, int line) {
using SrcLimits = SaturationDefaultLimits<Src>;
using DstLimits = SaturationDefaultLimits<Dst>;
// Integral to floating.
static_assert((DstLimits::is_iec559 && SrcLimits::is_integer) ||
// Not floating to integral and...
(!(DstLimits::is_integer && SrcLimits::is_iec559) &&
// Same sign, same numeric, source is narrower or same.
((SrcLimits::is_signed == DstLimits::is_signed &&
MaxExponent<Dst>::value >= MaxExponent<Src>::value) ||
// Or signed destination and source is smaller
(DstLimits::is_signed &&
MaxExponent<Dst>::value >= MaxExponent<Src>::value))),
"Comparison must be sign preserving and value preserving");
TestStrictComparison<Dst, Src>(dst, src, line);
const CheckedNumeric<Dst> checked_dst = SrcLimits::max();
const ClampedNumeric<Dst> clamped_dst = SrcLimits::max();
TEST_EXPECTED_SUCCESS(checked_dst);
TEST_EXPECTED_VALUE(Dst(SrcLimits::max()), clamped_dst);
if (MaxExponent<Dst>::value > MaxExponent<Src>::value) {
if (MaxExponent<Dst>::value >= MaxExponent<Src>::value * 2 - 1) {
// At least twice larger type.
TEST_EXPECTED_SUCCESS(SrcLimits::max() * checked_dst);
TEST_EXPECTED_VALUE(SrcLimits::max() * clamped_dst,
Dst(SrcLimits::max()) * Dst(SrcLimits::max()));
} else { // Larger, but not at least twice as large.
TEST_EXPECTED_FAILURE(SrcLimits::max() * checked_dst);
TEST_EXPECTED_SUCCESS(checked_dst + 1);
TEST_EXPECTED_VALUE(DstLimits::Overflow(),
SrcLimits::max() * clamped_dst);
TEST_EXPECTED_VALUE(Dst(SrcLimits::max()) + Dst(1),
clamped_dst + Dst(1));
}
} else { // Same width type.
TEST_EXPECTED_FAILURE(checked_dst + 1);
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst + Dst(1));
}
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
if (SrcLimits::is_iec559) {
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max() * static_cast<Src>(-1));
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1);
TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN());
} else if (numeric_limits<Src>::is_signed) {
// This block reverses the Src to Dst relationship so we don't have to
// complicate the test macros.
if (!std::is_same<Src, Dst>::value) {
TEST_EXPECTED_SUCCESS(CheckDiv(SrcLimits::lowest(), Dst(-1)));
}
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1));
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::lowest());
}
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_PRESERVING_NARROW> {
static void Test(const char* dst, const char* src, int line) {
using SrcLimits = SaturationDefaultLimits<Src>;
using DstLimits = SaturationDefaultLimits<Dst>;
static_assert(SrcLimits::is_signed == DstLimits::is_signed,
"Destination and source sign must be the same");
static_assert(MaxExponent<Dst>::value <= MaxExponent<Src>::value,
"Destination must be narrower than source");
TestStrictComparison<Dst, Src>(dst, src, line);
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(1, checked_dst + Src(1));
TEST_EXPECTED_FAILURE(checked_dst - SrcLimits::max());
ClampedNumeric<Dst> clamped_dst;
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(1, clamped_dst + Src(1));
TEST_EXPECTED_VALUE(DstLimits::Underflow(), clamped_dst - SrcLimits::max());
clamped_dst += SrcLimits::max();
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst);
clamped_dst = DstLimits::max();
clamped_dst += SrcLimits::max();
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst);
clamped_dst = DstLimits::max();
clamped_dst -= SrcLimits::max();
TEST_EXPECTED_VALUE(DstLimits::Underflow(), clamped_dst);
clamped_dst = 0;
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
if (SrcLimits::is_iec559) {
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::max() * -1);
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1));
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1);
TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN());
if (DstLimits::is_integer) {
if (SrcLimits::digits < DstLimits::digits) {
TEST_EXPECTED_RANGE(RANGE_OVERFLOW,
static_cast<Src>(DstLimits::max()));
} else {
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::max()));
}
TEST_EXPECTED_RANGE(
RANGE_VALID,
static_cast<Src>(GetMaxConvertibleToFloat<Src, Dst>()));
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::lowest()));
}
} else if (SrcLimits::is_signed) {
TEST_EXPECTED_VALUE(-1, checked_dst - static_cast<Src>(1));
TEST_EXPECTED_VALUE(-1, clamped_dst - static_cast<Src>(1));
TEST_EXPECTED_VALUE(Src(Src(0) - DstLimits::lowest()),
ClampDiv(DstLimits::lowest(), Src(-1)));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::lowest());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1));
} else {
TEST_EXPECTED_FAILURE(checked_dst - static_cast<Src>(1));
TEST_EXPECTED_VALUE(Dst(0), clamped_dst - static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::lowest());
}
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL> {
static void Test(const char* dst, const char* src, int line) {
using SrcLimits = SaturationDefaultLimits<Src>;
using DstLimits = SaturationDefaultLimits<Dst>;
static_assert(MaxExponent<Dst>::value >= MaxExponent<Src>::value,
"Destination must be equal or wider than source.");
static_assert(SrcLimits::is_signed, "Source must be signed");
static_assert(!DstLimits::is_signed, "Destination must be unsigned");
TestStrictComparison<Dst, Src>(dst, src, line);
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_VALUE(SrcLimits::max(), checked_dst + SrcLimits::max());
TEST_EXPECTED_FAILURE(checked_dst + static_cast<Src>(-1));
TEST_EXPECTED_SUCCESS(checked_dst * static_cast<Src>(-1));
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::lowest());
TEST_EXPECTED_VALUE(Dst(0), CheckDiv(Dst(0), Src(-1)));
const ClampedNumeric<Dst> clamped_dst;
TEST_EXPECTED_VALUE(SrcLimits::max(), clamped_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
clamped_dst + static_cast<Src>(-1));
TEST_EXPECTED_VALUE(0, clamped_dst * static_cast<Src>(-1));
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
clamped_dst + SrcLimits::lowest());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::lowest());
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, static_cast<Src>(-1));
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, SIGN_TO_UNSIGN_NARROW> {
static void Test(const char* dst, const char* src, int line) {
using SrcLimits = SaturationDefaultLimits<Src>;
using DstLimits = SaturationDefaultLimits<Dst>;
static_assert(MaxExponent<Dst>::value < MaxExponent<Src>::value,
"Destination must be narrower than source.");
static_assert(SrcLimits::is_signed, "Source must be signed.");
static_assert(!DstLimits::is_signed, "Destination must be unsigned.");
TestStrictComparison<Dst, Src>(dst, src, line);
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1));
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max());
TEST_EXPECTED_FAILURE(checked_dst + static_cast<Src>(-1));
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::lowest());
ClampedNumeric<Dst> clamped_dst;
TEST_EXPECTED_VALUE(1, clamped_dst + static_cast<Src>(1));
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
clamped_dst + static_cast<Src>(-1));
TEST_EXPECTED_VALUE(DstLimits::Underflow(),
clamped_dst + SrcLimits::lowest());
clamped_dst += SrcLimits::max();
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst);
clamped_dst = DstLimits::max();
clamped_dst += SrcLimits::max();
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst);
clamped_dst = DstLimits::max();
clamped_dst -= SrcLimits::max();
TEST_EXPECTED_VALUE(DstLimits::Underflow(), clamped_dst);
clamped_dst = 0;
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, static_cast<Src>(-1));
// Additional saturation tests.
EXPECT_EQ(DstLimits::max(), saturated_cast<Dst>(SrcLimits::max()));
EXPECT_EQ(DstLimits::lowest(), saturated_cast<Dst>(SrcLimits::lowest()));
if (SrcLimits::is_iec559) {
EXPECT_EQ(Dst(0), saturated_cast<Dst>(SrcLimits::quiet_NaN()));
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::max() * -1);
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity());
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1);
TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN());
if (DstLimits::is_integer) {
if (SrcLimits::digits < DstLimits::digits) {
TEST_EXPECTED_RANGE(RANGE_OVERFLOW,
static_cast<Src>(DstLimits::max()));
} else {
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::max()));
}
TEST_EXPECTED_RANGE(
RANGE_VALID,
static_cast<Src>(GetMaxConvertibleToFloat<Src, Dst>()));
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::lowest()));
}
} else {
TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::lowest());
}
}
};
template <typename Dst, typename Src>
struct TestNumericConversion<Dst, Src, UNSIGN_TO_SIGN_NARROW_OR_EQUAL> {
static void Test(const char* dst, const char* src, int line) {
using SrcLimits = SaturationDefaultLimits<Src>;
using DstLimits = SaturationDefaultLimits<Dst>;
static_assert(MaxExponent<Dst>::value <= MaxExponent<Src>::value,
"Destination must be narrower or equal to source.");
static_assert(!SrcLimits::is_signed, "Source must be unsigned.");
static_assert(DstLimits::is_signed, "Destination must be signed.");
TestStrictComparison<Dst, Src>(dst, src, line);
const CheckedNumeric<Dst> checked_dst;
TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1));
TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(SrcLimits::lowest(), checked_dst + SrcLimits::lowest());
const ClampedNumeric<Dst> clamped_dst;
TEST_EXPECTED_VALUE(1, clamped_dst + static_cast<Src>(1));
TEST_EXPECTED_VALUE(DstLimits::Overflow(), clamped_dst + SrcLimits::max());
TEST_EXPECTED_VALUE(SrcLimits::lowest(), clamped_dst + SrcLimits::lowest());
TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::lowest());
TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max());
TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1));
// Additional saturation tests.
EXPECT_EQ(DstLimits::max(), saturated_cast<Dst>(SrcLimits::max()));
EXPECT_EQ(Dst(0), saturated_cast<Dst>(SrcLimits::lowest()));
}
};
// Helper macro to wrap displaying the conversion types and line numbers
#define TEST_NUMERIC_CONVERSION(d, s, t) \
TestNumericConversion<d, s, t>::Test(#d, #s, __LINE__)
TEST(SafeNumerics, IntMinOperations) {
TEST_NUMERIC_CONVERSION(int8_t, int8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uint8_t, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int8_t, int16_t, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int8_t, int, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, uint16_t, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, unsigned int, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int8_t, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uint8_t, int16_t, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, int, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, intmax_t, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint8_t, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(int8_t, uint16_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int8_t, unsigned int, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int8_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, Int16Operations) {
TEST_NUMERIC_CONVERSION(int16_t, int16_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uint16_t, uint16_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int16_t, int, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint16_t, unsigned int, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int16_t, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uint16_t, int16_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uint16_t, int, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint16_t, intmax_t, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uint16_t, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(int16_t, unsigned int,
UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int16_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, IntOperations) {
TEST_NUMERIC_CONVERSION(int, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(unsigned int, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int, int8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(unsigned int, uint8_t,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(int, intmax_t, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, uintmax_t, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(int, double, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(unsigned int, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(unsigned int, intmax_t, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(unsigned int, double, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(int, unsigned int, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, IntMaxOperations) {
TEST_NUMERIC_CONVERSION(intmax_t, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uintmax_t, uintmax_t,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(uintmax_t, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(intmax_t, float, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(intmax_t, double, SIGN_PRESERVING_NARROW);
TEST_NUMERIC_CONVERSION(uintmax_t, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uintmax_t, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(uintmax_t, float, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(uintmax_t, double, SIGN_TO_UNSIGN_NARROW);
TEST_NUMERIC_CONVERSION(intmax_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
TEST(SafeNumerics, FloatOperations) {
TEST_NUMERIC_CONVERSION(float, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, uintmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(float, double, SIGN_PRESERVING_NARROW);
}
TEST(SafeNumerics, DoubleOperations) {
TEST_NUMERIC_CONVERSION(double, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(double, uintmax_t, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(double, int, SIGN_PRESERVING_VALUE_PRESERVING);
TEST_NUMERIC_CONVERSION(double, unsigned int,
SIGN_PRESERVING_VALUE_PRESERVING);
}
TEST(SafeNumerics, SizeTOperations) {
TEST_NUMERIC_CONVERSION(size_t, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL);
TEST_NUMERIC_CONVERSION(int, size_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL);
}
// A one-off test to ensure StrictNumeric won't resolve to an incorrect type.
// If this fails we'll just get a compiler error on an ambiguous overload.
int TestOverload(int) { // Overload fails.
return 0;
}
uint8_t TestOverload(uint8_t) { // Overload fails.
return 0;
}
size_t TestOverload(size_t) { // Overload succeeds.
return 0;
}
static_assert(
std::is_same<decltype(TestOverload(StrictNumeric<int>())), int>::value,
"");
static_assert(std::is_same<decltype(TestOverload(StrictNumeric<size_t>())),
size_t>::value,
"");
template <typename T>
struct CastTest1 {
static constexpr T NaN() { return -1; }
static constexpr T max() { return numeric_limits<T>::max() - 1; }
static constexpr T Overflow() { return max(); }
static constexpr T lowest() { return numeric_limits<T>::lowest() + 1; }
static constexpr T Underflow() { return lowest(); }
};
template <typename T>
struct CastTest2 {
static constexpr T NaN() { return 11; }
static constexpr T max() { return 10; }
static constexpr T Overflow() { return max(); }
static constexpr T lowest() { return 1; }
static constexpr T Underflow() { return lowest(); }
};
TEST(SafeNumerics, CastTests) {
// MSVC catches and warns that we're forcing saturation in these tests.
// Since that's intentional, we need to shut this warning off.
#if defined(COMPILER_MSVC)
#pragma warning(disable : 4756)
#endif
int small_positive = 1;
int small_negative = -1;
double double_small = 1.0;
double double_large = numeric_limits<double>::max();
double double_infinity = numeric_limits<float>::infinity();
double double_large_int = numeric_limits<int>::max();
double double_small_int = numeric_limits<int>::lowest();
// Just test that the casts compile, since the other tests cover logic.
EXPECT_EQ(0, checked_cast<int>(static_cast<size_t>(0)));
EXPECT_EQ(0, strict_cast<int>(static_cast<char>(0)));
EXPECT_EQ(0, strict_cast<int>(static_cast<unsigned char>(0)));
EXPECT_EQ(0U, strict_cast<unsigned>(static_cast<unsigned char>(0)));
EXPECT_EQ(1ULL, static_cast<uint64_t>(StrictNumeric<size_t>(1U)));
EXPECT_EQ(1ULL, static_cast<uint64_t>(SizeT(1U)));
EXPECT_EQ(1U, static_cast<size_t>(StrictNumeric<unsigned>(1U)));
EXPECT_TRUE(CheckedNumeric<uint64_t>(StrictNumeric<unsigned>(1U)).IsValid());
EXPECT_TRUE(CheckedNumeric<int>(StrictNumeric<unsigned>(1U)).IsValid());
EXPECT_FALSE(CheckedNumeric<unsigned>(StrictNumeric<int>(-1)).IsValid());
EXPECT_TRUE(IsValueNegative(-1));
EXPECT_TRUE(IsValueNegative(numeric_limits<int>::lowest()));
EXPECT_FALSE(IsValueNegative(numeric_limits<unsigned>::lowest()));
EXPECT_TRUE(IsValueNegative(numeric_limits<double>::lowest()));
EXPECT_FALSE(IsValueNegative(0));
EXPECT_FALSE(IsValueNegative(1));
EXPECT_FALSE(IsValueNegative(0u));
EXPECT_FALSE(IsValueNegative(1u));
EXPECT_FALSE(IsValueNegative(numeric_limits<int>::max()));
EXPECT_FALSE(IsValueNegative(numeric_limits<unsigned>::max()));
EXPECT_FALSE(IsValueNegative(numeric_limits<double>::max()));
// These casts and coercions will fail to compile:
// EXPECT_EQ(0, strict_cast<int>(static_cast<size_t>(0)));
// EXPECT_EQ(0, strict_cast<size_t>(static_cast<int>(0)));
// EXPECT_EQ(1ULL, StrictNumeric<size_t>(1));
// EXPECT_EQ(1, StrictNumeric<size_t>(1U));
// Test various saturation corner cases.
EXPECT_EQ(saturated_cast<int>(small_negative),
static_cast<int>(small_negative));
EXPECT_EQ(saturated_cast<int>(small_positive),
static_cast<int>(small_positive));
EXPECT_EQ(saturated_cast<unsigned>(small_negative), static_cast<unsigned>(0));
EXPECT_EQ(saturated_cast<int>(double_small), static_cast<int>(double_small));
EXPECT_EQ(saturated_cast<int>(double_large), numeric_limits<int>::max());
EXPECT_EQ(saturated_cast<float>(double_large), double_infinity);
EXPECT_EQ(saturated_cast<float>(-double_large), -double_infinity);
EXPECT_EQ(numeric_limits<int>::lowest(),
saturated_cast<int>(double_small_int));
EXPECT_EQ(numeric_limits<int>::max(), saturated_cast<int>(double_large_int));
// Test the saturated cast overrides.
using FloatLimits = numeric_limits<float>;
using IntLimits = numeric_limits<int>;
EXPECT_EQ(-1, (saturated_cast<int, CastTest1>(FloatLimits::quiet_NaN())));
EXPECT_EQ(CastTest1<int>::max(),
(saturated_cast<int, CastTest1>(FloatLimits::infinity())));
EXPECT_EQ(CastTest1<int>::max(),
(saturated_cast<int, CastTest1>(FloatLimits::max())));
EXPECT_EQ(CastTest1<int>::max(),
(saturated_cast<int, CastTest1>(float(IntLimits::max()))));
EXPECT_EQ(CastTest1<int>::lowest(),
(saturated_cast<int, CastTest1>(-FloatLimits::infinity())));
EXPECT_EQ(CastTest1<int>::lowest(),
(saturated_cast<int, CastTest1>(FloatLimits::lowest())));
EXPECT_EQ(0, (saturated_cast<int, CastTest1>(0.0)));
EXPECT_EQ(1, (saturated_cast<int, CastTest1>(1.0)));
EXPECT_EQ(-1, (saturated_cast<int, CastTest1>(-1.0)));
EXPECT_EQ(0, (saturated_cast<int, CastTest1>(0)));
EXPECT_EQ(1, (saturated_cast<int, CastTest1>(1)));
EXPECT_EQ(-1, (saturated_cast<int, CastTest1>(-1)));
EXPECT_EQ(CastTest1<int>::lowest(),
(saturated_cast<int, CastTest1>(float(IntLimits::lowest()))));
EXPECT_EQ(11, (saturated_cast<int, CastTest2>(FloatLimits::quiet_NaN())));
EXPECT_EQ(10, (saturated_cast<int, CastTest2>(FloatLimits::infinity())));
EXPECT_EQ(10, (saturated_cast<int, CastTest2>(FloatLimits::max())));
EXPECT_EQ(1, (saturated_cast<int, CastTest2>(-FloatLimits::infinity())));
EXPECT_EQ(1, (saturated_cast<int, CastTest2>(FloatLimits::lowest())));
EXPECT_EQ(1, (saturated_cast<int, CastTest2>(0U)));
float not_a_number = std::numeric_limits<float>::infinity() -
std::numeric_limits<float>::infinity();
EXPECT_TRUE(std::isnan(not_a_number));
EXPECT_EQ(0, saturated_cast<int>(not_a_number));
// Test the CheckedNumeric value extractions functions.
auto int8_min = MakeCheckedNum(numeric_limits<int8_t>::lowest());
auto int8_max = MakeCheckedNum(numeric_limits<int8_t>::max());
auto double_max = MakeCheckedNum(numeric_limits<double>::max());
static_assert(
std::is_same<int16_t,
decltype(int8_min.ValueOrDie<int16_t>())::type>::value,
"ValueOrDie returning incorrect type.");
static_assert(
std::is_same<int16_t,
decltype(int8_min.ValueOrDefault<int16_t>(0))::type>::value,
"ValueOrDefault returning incorrect type.");
EXPECT_FALSE(IsValidForType<uint8_t>(int8_min));
EXPECT_TRUE(IsValidForType<uint8_t>(int8_max));
EXPECT_EQ(static_cast<int>(numeric_limits<int8_t>::lowest()),
ValueOrDieForType<int>(int8_min));
EXPECT_TRUE(IsValidForType<uint32_t>(int8_max));
EXPECT_EQ(static_cast<int>(numeric_limits<int8_t>::max()),
ValueOrDieForType<int>(int8_max));
EXPECT_EQ(0, ValueOrDefaultForType<int>(double_max, 0));
uint8_t uint8_dest = 0;
int16_t int16_dest = 0;
double double_dest = 0;
EXPECT_TRUE(int8_max.AssignIfValid(&uint8_dest));
EXPECT_EQ(static_cast<uint8_t>(numeric_limits<int8_t>::max()), uint8_dest);
EXPECT_FALSE(int8_min.AssignIfValid(&uint8_dest));
EXPECT_TRUE(int8_max.AssignIfValid(&int16_dest));
EXPECT_EQ(static_cast<int16_t>(numeric_limits<int8_t>::max()), int16_dest);
EXPECT_TRUE(int8_min.AssignIfValid(&int16_dest));
EXPECT_EQ(static_cast<int16_t>(numeric_limits<int8_t>::lowest()), int16_dest);
EXPECT_FALSE(double_max.AssignIfValid(&uint8_dest));
EXPECT_FALSE(double_max.AssignIfValid(&int16_dest));
EXPECT_TRUE(double_max.AssignIfValid(&double_dest));
EXPECT_EQ(numeric_limits<double>::max(), double_dest);
EXPECT_EQ(1, checked_cast<int>(StrictNumeric<int>(1)));
EXPECT_EQ(1, saturated_cast<int>(StrictNumeric<int>(1)));
EXPECT_EQ(1, strict_cast<int>(StrictNumeric<int>(1)));
enum class EnumTest { kOne = 1 };
EXPECT_EQ(1, checked_cast<int>(EnumTest::kOne));
EXPECT_EQ(1, saturated_cast<int>(EnumTest::kOne));
EXPECT_EQ(1, strict_cast<int>(EnumTest::kOne));
}
TEST(SafeNumerics, IsValueInRangeForNumericType) {
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(2));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(0xffffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0xffffffff)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0x100000000)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0x100000001)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(
std::numeric_limits<int32_t>::lowest()));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(
std::numeric_limits<int64_t>::lowest()));
// Converting to integer types will discard the fractional part first, so -0.9
// will be truncated to -0.0.
EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(-0.9));
EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(-1.0));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(2));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0x7fffffff));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0x7fffffffu));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(0x80000000u));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(0xffffffffu));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0x80000000)));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0xffffffff)));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0x100000000)));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(
std::numeric_limits<int32_t>::lowest()));
EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(
static_cast<int64_t>(std::numeric_limits<int32_t>::lowest())));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(
static_cast<int64_t>(std::numeric_limits<int32_t>::lowest()) - 1));
EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(
std::numeric_limits<int64_t>::lowest()));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(2));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(0xffffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0xffffffff)));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0x100000000)));
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0x100000001)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(
std::numeric_limits<int32_t>::lowest()));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(INT64_C(-1)));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(
std::numeric_limits<int64_t>::lowest()));
// Converting to integer types will discard the fractional part first, so -0.9
// will be truncated to -0.0.
EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(-0.9));
EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(-1.0));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(1));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(2));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(-1));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x7fffffff));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x7fffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x80000000u));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0xffffffffu));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x80000000)));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0xffffffff)));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x100000000)));
EXPECT_TRUE(
IsValueInRangeForNumericType<int64_t>(INT64_C(0x7fffffffffffffff)));
EXPECT_TRUE(
IsValueInRangeForNumericType<int64_t>(UINT64_C(0x7fffffffffffffff)));
EXPECT_FALSE(
IsValueInRangeForNumericType<int64_t>(UINT64_C(0x8000000000000000)));
EXPECT_FALSE(
IsValueInRangeForNumericType<int64_t>(UINT64_C(0xffffffffffffffff)));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(
std::numeric_limits<int32_t>::lowest()));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(
static_cast<int64_t>(std::numeric_limits<int32_t>::lowest())));
EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(
std::numeric_limits<int64_t>::lowest()));
}
TEST(SafeNumerics, CompoundNumericOperations) {
CheckedNumeric<int> a = 1;
CheckedNumeric<int> b = 2;
CheckedNumeric<int> c = 3;
CheckedNumeric<int> d = 4;
a += b;
EXPECT_EQ(3, a.ValueOrDie());
a -= c;
EXPECT_EQ(0, a.ValueOrDie());
d /= b;
EXPECT_EQ(2, d.ValueOrDie());
d *= d;
EXPECT_EQ(4, d.ValueOrDie());
d *= 0.5;
EXPECT_EQ(2, d.ValueOrDie());
CheckedNumeric<int> too_large = std::numeric_limits<int>::max();
EXPECT_TRUE(too_large.IsValid());
too_large += d;
EXPECT_FALSE(too_large.IsValid());
too_large -= d;
EXPECT_FALSE(too_large.IsValid());
too_large /= d;
EXPECT_FALSE(too_large.IsValid());
}
TEST(SafeNumerics, TemplatedSafeMath) {
// CheckMul and friends can be confusing, as they change behavior depending on
// where the template is specified.
uint64_t result;
short short_one_thousand = 1000;
// In this case, CheckMul uses template deduction to use the <short> variant,
// and this will overflow even if assigned to a uint64_t.
EXPECT_FALSE(CheckMul(short_one_thousand, short_one_thousand)
.AssignIfValid<uint64_t>(&result));
EXPECT_FALSE(CheckMul(short_one_thousand, short_one_thousand).IsValid());
// In both cases, CheckMul is forced to use the uint64_t template and will not
// overflow.
EXPECT_TRUE(CheckMul<uint64_t>(short_one_thousand, short_one_thousand)
.AssignIfValid(&result));
EXPECT_TRUE(CheckMul<uint64_t>(short_one_thousand, short_one_thousand)
.AssignIfValid<uint64_t>(&result));
uint64_t big_one_thousand = 1000u;
// Order doesn't matter here: if one of the parameters is uint64_t then the
// operation is done on a uint64_t.
EXPECT_TRUE(
CheckMul(big_one_thousand, short_one_thousand).AssignIfValid(&result));
EXPECT_TRUE(
CheckMul(short_one_thousand, big_one_thousand).AssignIfValid(&result));
// Checked math functions can also take two template type parameters. Here are
// the results of all four combinations.
EXPECT_TRUE((CheckMul<short, uint64_t>(1000, 1000).AssignIfValid(&result)));
// Note: Order here does not matter.
EXPECT_TRUE((CheckMul<uint64_t, short>(1000, 1000).AssignIfValid(&result)));
// Only if both are short will the operation be invalid.
EXPECT_FALSE((CheckMul<short, short>(1000, 1000).AssignIfValid(&result)));
// Same as above.
EXPECT_TRUE(
(CheckMul<uint64_t, uint64_t>(1000, 1000).AssignIfValid(&result)));
}
TEST(SafeNumerics, VariadicNumericOperations) {
{ // Synthetic scope to avoid variable naming collisions.
auto a = CheckAdd(1, 2UL, MakeCheckedNum(3LL), 4).ValueOrDie();
EXPECT_EQ(static_cast<decltype(a)::type>(10), a);
auto b = CheckSub(MakeCheckedNum(20.0), 2UL, 4).ValueOrDie();
EXPECT_EQ(static_cast<decltype(b)::type>(14.0), b);
auto c = CheckMul(20.0, MakeCheckedNum(1), 5, 3UL).ValueOrDie();
EXPECT_EQ(static_cast<decltype(c)::type>(300.0), c);
auto d = CheckDiv(20.0, 2.0, MakeCheckedNum(5LL), -4).ValueOrDie();
EXPECT_EQ(static_cast<decltype(d)::type>(-.5), d);
auto e = CheckMod(MakeCheckedNum(20), 3).ValueOrDie();
EXPECT_EQ(static_cast<decltype(e)::type>(2), e);
auto f = CheckLsh(1, MakeCheckedNum(2)).ValueOrDie();
EXPECT_EQ(static_cast<decltype(f)::type>(4), f);
auto g = CheckRsh(4, MakeCheckedNum(2)).ValueOrDie();
EXPECT_EQ(static_cast<decltype(g)::type>(1), g);
auto h = CheckRsh(CheckAdd(1, 1, 1, 1), CheckSub(4, 2)).ValueOrDie();
EXPECT_EQ(static_cast<decltype(h)::type>(1), h);
}
{
auto a = ClampAdd(1, 2UL, MakeClampedNum(3LL), 4);
EXPECT_EQ(static_cast<decltype(a)::type>(10), a);
auto b = ClampSub(MakeClampedNum(20.0), 2UL, 4);
EXPECT_EQ(static_cast<decltype(b)::type>(14.0), b);
auto c = ClampMul(20.0, MakeClampedNum(1), 5, 3UL);
EXPECT_EQ(static_cast<decltype(c)::type>(300.0), c);
auto d = ClampDiv(20.0, 2.0, MakeClampedNum(5LL), -4);
EXPECT_EQ(static_cast<decltype(d)::type>(-.5), d);
auto e = ClampMod(MakeClampedNum(20), 3);
EXPECT_EQ(static_cast<decltype(e)::type>(2), e);
auto f = ClampLsh(1, MakeClampedNum(2U));
EXPECT_EQ(static_cast<decltype(f)::type>(4), f);
auto g = ClampRsh(4, MakeClampedNum(2U));
EXPECT_EQ(static_cast<decltype(g)::type>(1), g);
auto h = ClampRsh(ClampAdd(1, 1, 1, 1), ClampSub(4U, 2));
EXPECT_EQ(static_cast<decltype(h)::type>(1), h);
}
}
TEST(SafeNumerics, CeilInt) {
constexpr float kMax = static_cast<float>(std::numeric_limits<int>::max());
constexpr float kMin = std::numeric_limits<int>::min();
constexpr float kInfinity = std::numeric_limits<float>::infinity();
constexpr float kNaN = std::numeric_limits<float>::quiet_NaN();
constexpr int kIntMax = std::numeric_limits<int>::max();
constexpr int kIntMin = std::numeric_limits<int>::min();
EXPECT_EQ(kIntMax, ClampCeil(kInfinity));
EXPECT_EQ(kIntMax, ClampCeil(kMax));
EXPECT_EQ(kIntMax, ClampCeil(kMax + 100.0f));
EXPECT_EQ(0, ClampCeil(kNaN));
EXPECT_EQ(-100, ClampCeil(-100.5f));
EXPECT_EQ(0, ClampCeil(0.0f));
EXPECT_EQ(101, ClampCeil(100.5f));
EXPECT_EQ(kIntMin, ClampCeil(-kInfinity));
EXPECT_EQ(kIntMin, ClampCeil(kMin));
EXPECT_EQ(kIntMin, ClampCeil(kMin - 100.0f));
EXPECT_EQ(0, ClampCeil(-kNaN));
}
TEST(SafeNumerics, FloorInt) {
constexpr float kMax = static_cast<float>(std::numeric_limits<int>::max());
constexpr float kMin = std::numeric_limits<int>::min();
constexpr float kInfinity = std::numeric_limits<float>::infinity();
constexpr float kNaN = std::numeric_limits<float>::quiet_NaN();
constexpr int kIntMax = std::numeric_limits<int>::max();
constexpr int kIntMin = std::numeric_limits<int>::min();
EXPECT_EQ(kIntMax, ClampFloor(kInfinity));
EXPECT_EQ(kIntMax, ClampFloor(kMax));
EXPECT_EQ(kIntMax, ClampFloor(kMax + 100.0f));
EXPECT_EQ(0, ClampFloor(kNaN));
EXPECT_EQ(-101, ClampFloor(-100.5f));
EXPECT_EQ(0, ClampFloor(0.0f));
EXPECT_EQ(100, ClampFloor(100.5f));
EXPECT_EQ(kIntMin, ClampFloor(-kInfinity));
EXPECT_EQ(kIntMin, ClampFloor(kMin));
EXPECT_EQ(kIntMin, ClampFloor(kMin - 100.0f));
EXPECT_EQ(0, ClampFloor(-kNaN));
}
TEST(SafeNumerics, RoundInt) {
constexpr float kMax = static_cast<float>(std::numeric_limits<int>::max());
constexpr float kMin = std::numeric_limits<int>::min();
constexpr float kInfinity = std::numeric_limits<float>::infinity();
constexpr float kNaN = std::numeric_limits<float>::quiet_NaN();
constexpr int kIntMax = std::numeric_limits<int>::max();
constexpr int kIntMin = std::numeric_limits<int>::min();
EXPECT_EQ(kIntMax, ClampRound(kInfinity));
EXPECT_EQ(kIntMax, ClampRound(kMax));
EXPECT_EQ(kIntMax, ClampRound(kMax + 100.0f));
EXPECT_EQ(0, ClampRound(kNaN));
EXPECT_EQ(-100, ClampRound(-100.1f));
EXPECT_EQ(-101, ClampRound(-100.5f));
EXPECT_EQ(-101, ClampRound(-100.9f));
EXPECT_EQ(0, ClampRound(0.0f));
EXPECT_EQ(100, ClampRound(100.1f));
EXPECT_EQ(101, ClampRound(100.5f));
EXPECT_EQ(101, ClampRound(100.9f));
EXPECT_EQ(kIntMin, ClampRound(-kInfinity));
EXPECT_EQ(kIntMin, ClampRound(kMin));
EXPECT_EQ(kIntMin, ClampRound(kMin - 100.0f));
EXPECT_EQ(0, ClampRound(-kNaN));
}
TEST(SafeNumerics, Int64) {
constexpr double kMax =
static_cast<double>(std::numeric_limits<int64_t>::max());
constexpr double kMin = std::numeric_limits<int64_t>::min();
constexpr double kInfinity = std::numeric_limits<double>::infinity();
constexpr double kNaN = std::numeric_limits<double>::quiet_NaN();
constexpr int64_t kInt64Max = std::numeric_limits<int64_t>::max();
constexpr int64_t kInt64Min = std::numeric_limits<int64_t>::min();
EXPECT_EQ(kInt64Max, ClampFloor<int64_t>(kInfinity));
EXPECT_EQ(kInt64Max, ClampCeil<int64_t>(kInfinity));
EXPECT_EQ(kInt64Max, ClampRound<int64_t>(kInfinity));
EXPECT_EQ(kInt64Max, ClampFloor<int64_t>(kMax));
EXPECT_EQ(kInt64Max, ClampCeil<int64_t>(kMax));
EXPECT_EQ(kInt64Max, ClampRound<int64_t>(kMax));
EXPECT_EQ(kInt64Max, ClampFloor<int64_t>(kMax + 100.0));
EXPECT_EQ(kInt64Max, ClampCeil<int64_t>(kMax + 100.0));
EXPECT_EQ(kInt64Max, ClampRound<int64_t>(kMax + 100.0));
EXPECT_EQ(0, ClampFloor<int64_t>(kNaN));
EXPECT_EQ(0, ClampCeil<int64_t>(kNaN));
EXPECT_EQ(0, ClampRound<int64_t>(kNaN));
EXPECT_EQ(kInt64Min, ClampFloor<int64_t>(-kInfinity));
EXPECT_EQ(kInt64Min, ClampCeil<int64_t>(-kInfinity));
EXPECT_EQ(kInt64Min, ClampRound<int64_t>(-kInfinity));
EXPECT_EQ(kInt64Min, ClampFloor<int64_t>(kMin));
EXPECT_EQ(kInt64Min, ClampCeil<int64_t>(kMin));
EXPECT_EQ(kInt64Min, ClampRound<int64_t>(kMin));
EXPECT_EQ(kInt64Min, ClampFloor<int64_t>(kMin - 100.0));
EXPECT_EQ(kInt64Min, ClampCeil<int64_t>(kMin - 100.0));
EXPECT_EQ(kInt64Min, ClampRound<int64_t>(kMin - 100.0));
EXPECT_EQ(0, ClampFloor<int64_t>(-kNaN));
EXPECT_EQ(0, ClampCeil<int64_t>(-kNaN));
EXPECT_EQ(0, ClampRound<int64_t>(-kNaN));
}
#if defined(__clang__)
#pragma clang diagnostic pop // -Winteger-overflow
#endif
} // namespace internal
} // namespace base