| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Multi-threaded tests of ConditionVariable class. |
| |
| #include "base/synchronization/condition_variable.h" |
| |
| #include <time.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <vector> |
| |
| #include "base/functional/bind.h" |
| #include "base/location.h" |
| #include "base/logging.h" |
| #include "base/synchronization/lock.h" |
| #include "base/task/single_thread_task_runner.h" |
| #include "base/test/spin_wait.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/threading/thread.h" |
| #include "base/threading/thread_collision_warner.h" |
| #include "base/time/time.h" |
| #include "build/build_config.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "testing/platform_test.h" |
| |
| namespace base { |
| |
| namespace { |
| //------------------------------------------------------------------------------ |
| // Define our test class, with several common variables. |
| //------------------------------------------------------------------------------ |
| |
| class ConditionVariableTest : public PlatformTest { |
| public: |
| const TimeDelta kZeroMs; |
| const TimeDelta kTenMs; |
| const TimeDelta kThirtyMs; |
| const TimeDelta kFortyFiveMs; |
| const TimeDelta kSixtyMs; |
| const TimeDelta kOneHundredMs; |
| |
| ConditionVariableTest() |
| : kZeroMs(Milliseconds(0)), |
| kTenMs(Milliseconds(10)), |
| kThirtyMs(Milliseconds(30)), |
| kFortyFiveMs(Milliseconds(45)), |
| kSixtyMs(Milliseconds(60)), |
| kOneHundredMs(Milliseconds(100)) {} |
| }; |
| |
| //------------------------------------------------------------------------------ |
| // Define a class that will control activities an several multi-threaded tests. |
| // The general structure of multi-threaded tests is that a test case will |
| // construct an instance of a WorkQueue. The WorkQueue will spin up some |
| // threads and control them throughout their lifetime, as well as maintaining |
| // a central repository of the work thread's activity. Finally, the WorkQueue |
| // will command the worker threads to terminate. At that point, the test |
| // cases will validate that the WorkQueue has records showing that the desired |
| // activities were performed. |
| //------------------------------------------------------------------------------ |
| |
| // Callers are responsible for synchronizing access to the following class. |
| // The WorkQueue::lock_, as accessed via WorkQueue::lock(), should be used for |
| // all synchronized access. |
| class WorkQueue : public PlatformThread::Delegate { |
| public: |
| explicit WorkQueue(int thread_count); |
| ~WorkQueue() override; |
| |
| // PlatformThread::Delegate interface. |
| void ThreadMain() override; |
| |
| //---------------------------------------------------------------------------- |
| // Worker threads only call the following methods. |
| // They should use the lock to get exclusive access. |
| int GetThreadId(); // Get an ID assigned to a thread.. |
| bool EveryIdWasAllocated() const; // Indicates that all IDs were handed out. |
| TimeDelta GetAnAssignment(int thread_id); // Get a work task duration. |
| void WorkIsCompleted(int thread_id); |
| |
| int task_count() const; |
| bool allow_help_requests() const; // Workers can signal more workers. |
| bool shutdown() const; // Check if shutdown has been requested. |
| |
| void thread_shutting_down(); |
| |
| |
| //---------------------------------------------------------------------------- |
| // Worker threads can call them but not needed to acquire a lock. |
| Lock* lock(); |
| |
| ConditionVariable* work_is_available(); |
| ConditionVariable* all_threads_have_ids(); |
| ConditionVariable* no_more_tasks(); |
| |
| //---------------------------------------------------------------------------- |
| // The rest of the methods are for use by the controlling master thread (the |
| // test case code). |
| void ResetHistory(); |
| int GetMinCompletionsByWorkerThread() const; |
| int GetMaxCompletionsByWorkerThread() const; |
| int GetNumThreadsTakingAssignments() const; |
| int GetNumThreadsCompletingTasks() const; |
| int GetNumberOfCompletedTasks() const; |
| |
| void SetWorkTime(TimeDelta delay); |
| void SetTaskCount(int count); |
| void SetAllowHelp(bool allow); |
| |
| // The following must be called without locking, and will spin wait until the |
| // threads are all in a wait state. |
| void SpinUntilAllThreadsAreWaiting(); |
| void SpinUntilTaskCountLessThan(int task_count); |
| |
| // Caller must acquire lock before calling. |
| void SetShutdown(); |
| |
| // Compares the |shutdown_task_count_| to the |thread_count| and returns true |
| // if they are equal. This check will acquire the |lock_| so the caller |
| // should not hold the lock when calling this method. |
| bool ThreadSafeCheckShutdown(int thread_count); |
| |
| private: |
| // Both worker threads and controller use the following to synchronize. |
| Lock lock_; |
| ConditionVariable work_is_available_; // To tell threads there is work. |
| |
| // Conditions to notify the controlling process (if it is interested). |
| ConditionVariable all_threads_have_ids_; // All threads are running. |
| ConditionVariable no_more_tasks_; // Task count is zero. |
| |
| const int thread_count_; |
| int waiting_thread_count_; |
| std::unique_ptr<PlatformThreadHandle[]> thread_handles_; |
| std::vector<int> assignment_history_; // Number of assignment per worker. |
| std::vector<int> completion_history_; // Number of completions per worker. |
| int thread_started_counter_; // Used to issue unique id to workers. |
| int shutdown_task_count_; // Number of tasks told to shutdown |
| int task_count_; // Number of assignment tasks waiting to be processed. |
| TimeDelta worker_delay_; // Time each task takes to complete. |
| bool allow_help_requests_; // Workers can signal more workers. |
| bool shutdown_; // Set when threads need to terminate. |
| |
| DFAKE_MUTEX(locked_methods_); |
| }; |
| |
| //------------------------------------------------------------------------------ |
| // The next section contains the actual tests. |
| //------------------------------------------------------------------------------ |
| |
| TEST_F(ConditionVariableTest, StartupShutdownTest) { |
| Lock lock; |
| |
| // First try trivial startup/shutdown. |
| { |
| ConditionVariable cv1(&lock); |
| } // Call for cv1 destruction. |
| |
| // Exercise with at least a few waits. |
| ConditionVariable cv(&lock); |
| |
| lock.Acquire(); |
| cv.TimedWait(kTenMs); // Wait for 10 ms. |
| cv.TimedWait(kTenMs); // Wait for 10 ms. |
| lock.Release(); |
| |
| lock.Acquire(); |
| cv.TimedWait(kTenMs); // Wait for 10 ms. |
| cv.TimedWait(kTenMs); // Wait for 10 ms. |
| cv.TimedWait(kTenMs); // Wait for 10 ms. |
| lock.Release(); |
| } // Call for cv destruction. |
| |
| TEST_F(ConditionVariableTest, TimeoutTest) { |
| Lock lock; |
| ConditionVariable cv(&lock); |
| lock.Acquire(); |
| |
| TimeTicks start = TimeTicks::Now(); |
| const TimeDelta WAIT_TIME = Milliseconds(300); |
| // Allow for clocking rate granularity. |
| const TimeDelta FUDGE_TIME = Milliseconds(50); |
| |
| cv.TimedWait(WAIT_TIME + FUDGE_TIME); |
| TimeDelta duration = TimeTicks::Now() - start; |
| // We can't use EXPECT_GE here as the TimeDelta class does not support the |
| // required stream conversion. |
| EXPECT_TRUE(duration >= WAIT_TIME); |
| |
| lock.Release(); |
| } |
| |
| #if BUILDFLAG(IS_POSIX) && !defined(STARBOARD) |
| const int kDiscontinuitySeconds = 2; |
| |
| void BackInTime(Lock* lock) { |
| AutoLock auto_lock(*lock); |
| |
| timeval tv; |
| gettimeofday(&tv, nullptr); |
| tv.tv_sec -= kDiscontinuitySeconds; |
| settimeofday(&tv, nullptr); |
| } |
| |
| // Tests that TimedWait ignores changes to the system clock. |
| // Test is disabled by default, because it needs to run as root to muck with the |
| // system clock. |
| // http://crbug.com/293736 |
| TEST_F(ConditionVariableTest, DISABLED_TimeoutAcrossSetTimeOfDay) { |
| timeval tv; |
| gettimeofday(&tv, nullptr); |
| tv.tv_sec += kDiscontinuitySeconds; |
| if (settimeofday(&tv, nullptr) < 0) { |
| PLOG(ERROR) << "Could not set time of day. Run as root?"; |
| return; |
| } |
| |
| Lock lock; |
| ConditionVariable cv(&lock); |
| lock.Acquire(); |
| |
| Thread thread("Helper"); |
| thread.Start(); |
| thread.task_runner()->PostTask(FROM_HERE, base::BindOnce(&BackInTime, &lock)); |
| |
| TimeTicks start = TimeTicks::Now(); |
| const TimeDelta kWaitTime = Milliseconds(300); |
| // Allow for clocking rate granularity. |
| const TimeDelta kFudgeTime = Milliseconds(50); |
| |
| cv.TimedWait(kWaitTime + kFudgeTime); |
| TimeDelta duration = TimeTicks::Now() - start; |
| |
| thread.Stop(); |
| // We can't use EXPECT_GE here as the TimeDelta class does not support the |
| // required stream conversion. |
| EXPECT_TRUE(duration >= kWaitTime); |
| EXPECT_TRUE(duration <= Seconds(kDiscontinuitySeconds)); |
| |
| lock.Release(); |
| } |
| #endif |
| |
| // Test serial task servicing, as well as two parallel task servicing methods. |
| TEST_F(ConditionVariableTest, MultiThreadConsumerTest) { |
| const int kThreadCount = 10; |
| WorkQueue queue(kThreadCount); // Start the threads. |
| |
| const int kTaskCount = 10; // Number of tasks in each mini-test here. |
| |
| Time start_time; // Used to time task processing. |
| |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| while (!queue.EveryIdWasAllocated()) |
| queue.all_threads_have_ids()->Wait(); |
| } |
| |
| // If threads aren't in a wait state, they may start to gobble up tasks in |
| // parallel, short-circuiting (breaking) this test. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| // Since we have no tasks yet, all threads should be waiting by now. |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(0, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(0, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_EQ(0, queue.GetMaxCompletionsByWorkerThread()); |
| EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); |
| EXPECT_EQ(0, queue.GetNumberOfCompletedTasks()); |
| |
| // Set up to make each task include getting help from another worker, so |
| // so that the work gets done in paralell. |
| queue.ResetHistory(); |
| queue.SetTaskCount(kTaskCount); |
| queue.SetWorkTime(kThirtyMs); |
| queue.SetAllowHelp(true); |
| |
| start_time = Time::Now(); |
| } |
| |
| queue.work_is_available()->Signal(); // But each worker can signal another. |
| // Wait till we at least start to handle tasks (and we're not all waiting). |
| queue.SpinUntilTaskCountLessThan(kTaskCount); |
| // Wait to allow the all workers to get done. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| // Wait until all work tasks have at least been assigned. |
| base::AutoLock auto_lock(*queue.lock()); |
| while (queue.task_count()) |
| queue.no_more_tasks()->Wait(); |
| |
| // To avoid racy assumptions, we'll just assert that at least 2 threads |
| // did work. We know that the first worker should have gone to sleep, and |
| // hence a second worker should have gotten an assignment. |
| EXPECT_LE(2, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(kTaskCount, queue.GetNumberOfCompletedTasks()); |
| |
| // Try to ask all workers to help, and only a few will do the work. |
| queue.ResetHistory(); |
| queue.SetTaskCount(3); |
| queue.SetWorkTime(kThirtyMs); |
| queue.SetAllowHelp(false); |
| } |
| queue.work_is_available()->Broadcast(); // Make them all try. |
| // Wait till we at least start to handle tasks (and we're not all waiting). |
| queue.SpinUntilTaskCountLessThan(3); |
| // Wait to allow the 3 workers to get done. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(3, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(3, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_EQ(1, queue.GetMaxCompletionsByWorkerThread()); |
| EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); |
| EXPECT_EQ(3, queue.GetNumberOfCompletedTasks()); |
| |
| // Set up to make each task get help from another worker. |
| queue.ResetHistory(); |
| queue.SetTaskCount(3); |
| queue.SetWorkTime(kThirtyMs); |
| queue.SetAllowHelp(true); // Allow (unnecessary) help requests. |
| } |
| queue.work_is_available()->Broadcast(); // Signal all threads. |
| // Wait till we at least start to handle tasks (and we're not all waiting). |
| queue.SpinUntilTaskCountLessThan(3); |
| // Wait to allow the 3 workers to get done. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(3, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(3, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_EQ(1, queue.GetMaxCompletionsByWorkerThread()); |
| EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); |
| EXPECT_EQ(3, queue.GetNumberOfCompletedTasks()); |
| |
| // Set up to make each task get help from another worker. |
| queue.ResetHistory(); |
| queue.SetTaskCount(20); // 2 tasks per thread. |
| queue.SetWorkTime(kThirtyMs); |
| queue.SetAllowHelp(true); |
| } |
| queue.work_is_available()->Signal(); // But each worker can signal another. |
| // Wait till we at least start to handle tasks (and we're not all waiting). |
| queue.SpinUntilTaskCountLessThan(20); |
| // Wait to allow the 10 workers to get done. |
| queue.SpinUntilAllThreadsAreWaiting(); // Should take about 60 ms. |
| |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(10, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(10, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_EQ(20, queue.GetNumberOfCompletedTasks()); |
| |
| // Same as last test, but with Broadcast(). |
| queue.ResetHistory(); |
| queue.SetTaskCount(20); // 2 tasks per thread. |
| queue.SetWorkTime(kThirtyMs); |
| queue.SetAllowHelp(true); |
| } |
| queue.work_is_available()->Broadcast(); |
| // Wait till we at least start to handle tasks (and we're not all waiting). |
| queue.SpinUntilTaskCountLessThan(20); |
| // Wait to allow the 10 workers to get done. |
| queue.SpinUntilAllThreadsAreWaiting(); // Should take about 60 ms. |
| |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(10, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(10, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_EQ(20, queue.GetNumberOfCompletedTasks()); |
| |
| queue.SetShutdown(); |
| } |
| queue.work_is_available()->Broadcast(); // Force check for shutdown. |
| |
| SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(Minutes(1), |
| queue.ThreadSafeCheckShutdown(kThreadCount)); |
| } |
| |
| TEST_F(ConditionVariableTest, LargeFastTaskTest) { |
| const int kThreadCount = 200; |
| WorkQueue queue(kThreadCount); // Start the threads. |
| |
| Lock private_lock; // Used locally for master to wait. |
| base::AutoLock private_held_lock(private_lock); |
| ConditionVariable private_cv(&private_lock); |
| |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| while (!queue.EveryIdWasAllocated()) |
| queue.all_threads_have_ids()->Wait(); |
| } |
| |
| // Wait a bit more to allow threads to reach their wait state. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| // Since we have no tasks, all threads should be waiting by now. |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(0, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(0, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_EQ(0, queue.GetMaxCompletionsByWorkerThread()); |
| EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); |
| EXPECT_EQ(0, queue.GetNumberOfCompletedTasks()); |
| |
| // Set up to make all workers do (an average of) 20 tasks. |
| queue.ResetHistory(); |
| queue.SetTaskCount(20 * kThreadCount); |
| queue.SetWorkTime(kFortyFiveMs); |
| queue.SetAllowHelp(false); |
| } |
| queue.work_is_available()->Broadcast(); // Start up all threads. |
| // Wait until we've handed out all tasks. |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| while (queue.task_count() != 0) |
| queue.no_more_tasks()->Wait(); |
| } |
| |
| // Wait till the last of the tasks complete. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| // With Broadcast(), every thread should have participated. |
| // but with racing.. they may not all have done equal numbers of tasks. |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(kThreadCount, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(kThreadCount, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_LE(20, queue.GetMaxCompletionsByWorkerThread()); |
| EXPECT_EQ(20 * kThreadCount, queue.GetNumberOfCompletedTasks()); |
| |
| // Set up to make all workers do (an average of) 4 tasks. |
| queue.ResetHistory(); |
| queue.SetTaskCount(kThreadCount * 4); |
| queue.SetWorkTime(kFortyFiveMs); |
| queue.SetAllowHelp(true); // Might outperform Broadcast(). |
| } |
| queue.work_is_available()->Signal(); // Start up one thread. |
| |
| // Wait until we've handed out all tasks |
| { |
| base::AutoLock auto_lock(*queue.lock()); |
| while (queue.task_count() != 0) |
| queue.no_more_tasks()->Wait(); |
| } |
| |
| // Wait till the last of the tasks complete. |
| queue.SpinUntilAllThreadsAreWaiting(); |
| |
| { |
| // With Signal(), every thread should have participated. |
| // but with racing.. they may not all have done four tasks. |
| base::AutoLock auto_lock(*queue.lock()); |
| EXPECT_EQ(kThreadCount, queue.GetNumThreadsTakingAssignments()); |
| EXPECT_EQ(kThreadCount, queue.GetNumThreadsCompletingTasks()); |
| EXPECT_EQ(0, queue.task_count()); |
| EXPECT_LE(4, queue.GetMaxCompletionsByWorkerThread()); |
| EXPECT_EQ(4 * kThreadCount, queue.GetNumberOfCompletedTasks()); |
| |
| queue.SetShutdown(); |
| } |
| queue.work_is_available()->Broadcast(); // Force check for shutdown. |
| |
| // Wait for shutdowns to complete. |
| SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(Minutes(1), |
| queue.ThreadSafeCheckShutdown(kThreadCount)); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Finally we provide the implementation for the methods in the WorkQueue class. |
| //------------------------------------------------------------------------------ |
| |
| WorkQueue::WorkQueue(int thread_count) |
| : lock_(), |
| work_is_available_(&lock_), |
| all_threads_have_ids_(&lock_), |
| no_more_tasks_(&lock_), |
| thread_count_(thread_count), |
| waiting_thread_count_(0), |
| thread_handles_(new PlatformThreadHandle[thread_count]), |
| assignment_history_(thread_count), |
| completion_history_(thread_count), |
| thread_started_counter_(0), |
| shutdown_task_count_(0), |
| task_count_(0), |
| allow_help_requests_(false), |
| shutdown_(false) { |
| EXPECT_GE(thread_count_, 1); |
| ResetHistory(); |
| SetTaskCount(0); |
| SetWorkTime(Milliseconds(30)); |
| |
| for (int i = 0; i < thread_count_; ++i) { |
| PlatformThreadHandle pth; |
| EXPECT_TRUE(PlatformThread::Create(0, this, &pth)); |
| thread_handles_[i] = pth; |
| } |
| } |
| |
| WorkQueue::~WorkQueue() { |
| { |
| base::AutoLock auto_lock(lock_); |
| SetShutdown(); |
| } |
| work_is_available_.Broadcast(); // Tell them all to terminate. |
| |
| for (int i = 0; i < thread_count_; ++i) { |
| PlatformThread::Join(thread_handles_[i]); |
| } |
| EXPECT_EQ(0, waiting_thread_count_); |
| } |
| |
| int WorkQueue::GetThreadId() { |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| DCHECK(!EveryIdWasAllocated()); |
| return thread_started_counter_++; // Give out Unique IDs. |
| } |
| |
| bool WorkQueue::EveryIdWasAllocated() const { |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| return thread_count_ == thread_started_counter_; |
| } |
| |
| TimeDelta WorkQueue::GetAnAssignment(int thread_id) { |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| DCHECK_LT(0, task_count_); |
| assignment_history_[thread_id]++; |
| if (0 == --task_count_) { |
| no_more_tasks_.Signal(); |
| } |
| return worker_delay_; |
| } |
| |
| void WorkQueue::WorkIsCompleted(int thread_id) { |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| completion_history_[thread_id]++; |
| } |
| |
| int WorkQueue::task_count() const { |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| return task_count_; |
| } |
| |
| bool WorkQueue::allow_help_requests() const { |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| return allow_help_requests_; |
| } |
| |
| bool WorkQueue::shutdown() const { |
| lock_.AssertAcquired(); |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| return shutdown_; |
| } |
| |
| // Because this method is called from the test's main thread we need to actually |
| // take the lock. Threads will call the thread_shutting_down() method with the |
| // lock already acquired. |
| bool WorkQueue::ThreadSafeCheckShutdown(int thread_count) { |
| bool all_shutdown; |
| base::AutoLock auto_lock(lock_); |
| { |
| // Declare in scope so DFAKE is guranteed to be destroyed before AutoLock. |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| all_shutdown = (shutdown_task_count_ == thread_count); |
| } |
| return all_shutdown; |
| } |
| |
| void WorkQueue::thread_shutting_down() { |
| lock_.AssertAcquired(); |
| DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); |
| shutdown_task_count_++; |
| } |
| |
| Lock* WorkQueue::lock() { |
| return &lock_; |
| } |
| |
| ConditionVariable* WorkQueue::work_is_available() { |
| return &work_is_available_; |
| } |
| |
| ConditionVariable* WorkQueue::all_threads_have_ids() { |
| return &all_threads_have_ids_; |
| } |
| |
| ConditionVariable* WorkQueue::no_more_tasks() { |
| return &no_more_tasks_; |
| } |
| |
| void WorkQueue::ResetHistory() { |
| for (int i = 0; i < thread_count_; ++i) { |
| assignment_history_[i] = 0; |
| completion_history_[i] = 0; |
| } |
| } |
| |
| int WorkQueue::GetMinCompletionsByWorkerThread() const { |
| int minumum = completion_history_[0]; |
| for (int i = 0; i < thread_count_; ++i) |
| minumum = std::min(minumum, completion_history_[i]); |
| return minumum; |
| } |
| |
| int WorkQueue::GetMaxCompletionsByWorkerThread() const { |
| int maximum = completion_history_[0]; |
| for (int i = 0; i < thread_count_; ++i) |
| maximum = std::max(maximum, completion_history_[i]); |
| return maximum; |
| } |
| |
| int WorkQueue::GetNumThreadsTakingAssignments() const { |
| int count = 0; |
| for (int i = 0; i < thread_count_; ++i) |
| if (assignment_history_[i]) |
| count++; |
| return count; |
| } |
| |
| int WorkQueue::GetNumThreadsCompletingTasks() const { |
| int count = 0; |
| for (int i = 0; i < thread_count_; ++i) |
| if (completion_history_[i]) |
| count++; |
| return count; |
| } |
| |
| int WorkQueue::GetNumberOfCompletedTasks() const { |
| int total = 0; |
| for (int i = 0; i < thread_count_; ++i) |
| total += completion_history_[i]; |
| return total; |
| } |
| |
| void WorkQueue::SetWorkTime(TimeDelta delay) { |
| worker_delay_ = delay; |
| } |
| |
| void WorkQueue::SetTaskCount(int count) { |
| task_count_ = count; |
| } |
| |
| void WorkQueue::SetAllowHelp(bool allow) { |
| allow_help_requests_ = allow; |
| } |
| |
| void WorkQueue::SetShutdown() { |
| lock_.AssertAcquired(); |
| shutdown_ = true; |
| } |
| |
| void WorkQueue::SpinUntilAllThreadsAreWaiting() { |
| while (true) { |
| { |
| base::AutoLock auto_lock(lock_); |
| if (waiting_thread_count_ == thread_count_) |
| break; |
| } |
| PlatformThread::Sleep(Milliseconds(30)); |
| } |
| } |
| |
| void WorkQueue::SpinUntilTaskCountLessThan(int task_count) { |
| while (true) { |
| { |
| base::AutoLock auto_lock(lock_); |
| if (task_count_ < task_count) |
| break; |
| } |
| PlatformThread::Sleep(Milliseconds(30)); |
| } |
| } |
| |
| |
| //------------------------------------------------------------------------------ |
| // Define the standard worker task. Several tests will spin out many of these |
| // threads. |
| //------------------------------------------------------------------------------ |
| |
| // The multithread tests involve several threads with a task to perform as |
| // directed by an instance of the class WorkQueue. |
| // The task is to: |
| // a) Check to see if there are more tasks (there is a task counter). |
| // a1) Wait on condition variable if there are no tasks currently. |
| // b) Call a function to see what should be done. |
| // c) Do some computation based on the number of milliseconds returned in (b). |
| // d) go back to (a). |
| |
| // WorkQueue::ThreadMain() implements the above task for all threads. |
| // It calls the controlling object to tell the creator about progress, and to |
| // ask about tasks. |
| |
| void WorkQueue::ThreadMain() { |
| int thread_id; |
| { |
| base::AutoLock auto_lock(lock_); |
| thread_id = GetThreadId(); |
| if (EveryIdWasAllocated()) |
| all_threads_have_ids()->Signal(); // Tell creator we're ready. |
| } |
| |
| Lock private_lock; // Used to waste time on "our work". |
| while (true) { // This is the main consumer loop. |
| TimeDelta work_time; |
| bool could_use_help; |
| { |
| base::AutoLock auto_lock(lock_); |
| while (0 == task_count() && !shutdown()) { |
| ++waiting_thread_count_; |
| work_is_available()->Wait(); |
| --waiting_thread_count_; |
| } |
| if (shutdown()) { |
| // Ack the notification of a shutdown message back to the controller. |
| thread_shutting_down(); |
| return; // Terminate. |
| } |
| // Get our task duration from the queue. |
| work_time = GetAnAssignment(thread_id); |
| could_use_help = (task_count() > 0) && allow_help_requests(); |
| } // Release lock |
| |
| // Do work (outside of locked region. |
| if (could_use_help) |
| work_is_available()->Signal(); // Get help from other threads. |
| |
| if (work_time > Milliseconds(0)) { |
| // We could just sleep(), but we'll instead further exercise the |
| // condition variable class, and do a timed wait. |
| base::AutoLock auto_lock(private_lock); |
| ConditionVariable private_cv(&private_lock); |
| private_cv.TimedWait(work_time); // Unsynchronized waiting. |
| } |
| |
| { |
| base::AutoLock auto_lock(lock_); |
| // Send notification that we completed our "work." |
| WorkIsCompleted(thread_id); |
| } |
| } |
| } |
| |
| } // namespace |
| |
| } // namespace base |