blob: 030d01e02f035dbf4a2891bf02c56ddbabb654fa [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/win/registry.h"
#include <windows.h>
#include <shlobj.h>
#include <stdint.h>
#include <cstring>
#include <iterator>
#include <type_traits>
#include <utility>
#include "base/compiler_specific.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/location.h"
#include "base/memory/scoped_refptr.h"
#include "base/run_loop.h"
#include "base/test/bind.h"
#include "base/test/mock_callback.h"
#include "base/test/task_environment.h"
#include "base/test/test_mock_time_task_runner.h"
#include "base/test/test_reg_util_win.h"
#include "base/threading/simple_thread.h"
#include "base/win/windows_version.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base::win {
namespace {
constexpr wchar_t kRootKey[] = L"Base_Registry_Unittest";
// A test harness for registry tests that operate in HKCU. Each test is given
// a valid key distinct from that used by other tests.
template <typename Traits>
class RegistryTest : public testing::Test {
protected:
RegistryTest() : root_key_(std::wstring(L"Software\\") + kRootKey) {}
void SetUp() override {
ASSERT_NO_FATAL_FAILURE(
registry_override_.OverrideRegistry(HKEY_CURRENT_USER));
// Create the test's root key.
typename Traits::RegType key(
Traits::Create(HKEY_CURRENT_USER, L"", KEY_CREATE_SUB_KEY));
ASSERT_NE(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, root_key().c_str(), KEY_READ));
ASSERT_EQ(ERROR_SUCCESS,
key.Create(HKEY_CURRENT_USER, root_key().c_str(), KEY_READ));
}
// Returns the path to a key under HKCU that is made available for exclusive
// use by a test.
const std::wstring& root_key() const { return root_key_; }
private:
registry_util::RegistryOverrideManager registry_override_;
const std::wstring root_key_;
};
} // namespace
namespace internal {
template <typename T>
class RegTestTraits {
public:
using RegType = T;
static T Create() { return T(); }
static T Create(HKEY rootkey, const wchar_t* subkey, REGSAM access) {
return T(rootkey, subkey, access);
}
};
} // namespace internal
namespace {
class RegistryTypeNames {
public:
template <typename T>
static std::string GetName(int index) {
if (std::is_same<typename T::RegType, RegKey>()) {
return "RegKey";
}
if (std::is_same<typename T::RegType, ExportDerivedRegKey>()) {
return "ExportDerivedRegKey";
}
}
};
} // namespace
using RegistryTypes =
::testing::Types<internal::RegTestTraits<RegKey>,
internal::RegTestTraits<ExportDerivedRegKey>>;
TYPED_TEST_SUITE(RegistryTest, RegistryTypes, RegistryTypeNames);
TYPED_TEST(RegistryTest, ValueTest) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_READ | KEY_SET_VALUE));
ASSERT_TRUE(key.Valid());
const wchar_t kStringValueName[] = L"StringValue";
const wchar_t kDWORDValueName[] = L"DWORDValue";
const wchar_t kInt64ValueName[] = L"Int64Value";
const wchar_t kStringData[] = L"string data";
const DWORD kDWORDData = 0xdeadbabe;
const int64_t kInt64Data = 0xdeadbabedeadbabeLL;
// Test value creation
ASSERT_EQ(ERROR_SUCCESS, key.WriteValue(kStringValueName, kStringData));
ASSERT_EQ(ERROR_SUCCESS, key.WriteValue(kDWORDValueName, kDWORDData));
ASSERT_EQ(ERROR_SUCCESS, key.WriteValue(kInt64ValueName, &kInt64Data,
sizeof(kInt64Data), REG_QWORD));
EXPECT_EQ(3U, key.GetValueCount());
EXPECT_TRUE(key.HasValue(kStringValueName));
EXPECT_TRUE(key.HasValue(kDWORDValueName));
EXPECT_TRUE(key.HasValue(kInt64ValueName));
// Test Read
std::wstring string_value;
DWORD dword_value = 0;
int64_t int64_value = 0;
ASSERT_EQ(ERROR_SUCCESS, key.ReadValue(kStringValueName, &string_value));
ASSERT_EQ(ERROR_SUCCESS, key.ReadValueDW(kDWORDValueName, &dword_value));
ASSERT_EQ(ERROR_SUCCESS, key.ReadInt64(kInt64ValueName, &int64_value));
EXPECT_EQ(kStringData, string_value);
EXPECT_EQ(kDWORDData, dword_value);
EXPECT_EQ(kInt64Data, int64_value);
// Make sure out args are not touched if ReadValue fails
const wchar_t* kNonExistent = L"NonExistent";
ASSERT_NE(ERROR_SUCCESS, key.ReadValue(kNonExistent, &string_value));
ASSERT_NE(ERROR_SUCCESS, key.ReadValueDW(kNonExistent, &dword_value));
ASSERT_NE(ERROR_SUCCESS, key.ReadInt64(kNonExistent, &int64_value));
EXPECT_EQ(kStringData, string_value);
EXPECT_EQ(kDWORDData, dword_value);
EXPECT_EQ(kInt64Data, int64_value);
// Test delete
ASSERT_EQ(ERROR_SUCCESS, key.DeleteValue(kStringValueName));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteValue(kDWORDValueName));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteValue(kInt64ValueName));
EXPECT_EQ(0U, key.GetValueCount());
EXPECT_FALSE(key.HasValue(kStringValueName));
EXPECT_FALSE(key.HasValue(kDWORDValueName));
EXPECT_FALSE(key.HasValue(kInt64ValueName));
}
TYPED_TEST(RegistryTest, BigValueIteratorTest) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_READ | KEY_SET_VALUE));
ASSERT_TRUE(key.Valid());
// Create a test value that is larger than MAX_PATH.
std::wstring data(MAX_PATH * 2, 'a');
ASSERT_EQ(ERROR_SUCCESS, key.WriteValue(data.c_str(), data.c_str()));
RegistryValueIterator iterator(HKEY_CURRENT_USER, this->root_key().c_str());
ASSERT_TRUE(iterator.Valid());
EXPECT_EQ(data, iterator.Name());
EXPECT_EQ(data, iterator.Value());
// ValueSize() is in bytes, including NUL.
EXPECT_EQ((MAX_PATH * 2 + 1) * sizeof(wchar_t), iterator.ValueSize());
++iterator;
EXPECT_FALSE(iterator.Valid());
}
TYPED_TEST(RegistryTest, TruncatedCharTest) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_READ | KEY_SET_VALUE));
ASSERT_TRUE(key.Valid());
const wchar_t kName[] = L"name";
// kData size is not a multiple of sizeof(wchar_t).
const uint8_t kData[] = {1, 2, 3, 4, 5};
EXPECT_EQ(5u, std::size(kData));
ASSERT_EQ(ERROR_SUCCESS,
key.WriteValue(kName, kData, std::size(kData), REG_BINARY));
RegistryValueIterator iterator(HKEY_CURRENT_USER, this->root_key().c_str());
ASSERT_TRUE(iterator.Valid());
// Avoid having to use EXPECT_STREQ here by leveraging StringPiece's
// operator== to perform a deep comparison.
EXPECT_EQ(WStringPiece(kName), WStringPiece(iterator.Name()));
// ValueSize() is in bytes.
ASSERT_EQ(std::size(kData), iterator.ValueSize());
// Value() is NUL terminated.
int end = (iterator.ValueSize() + sizeof(wchar_t) - 1) / sizeof(wchar_t);
EXPECT_NE('\0', iterator.Value()[end - 1]);
EXPECT_EQ('\0', iterator.Value()[end]);
EXPECT_EQ(0, std::memcmp(kData, iterator.Value(), std::size(kData)));
++iterator;
EXPECT_FALSE(iterator.Valid());
}
// Tests that the value iterator is okay with an empty key.
TYPED_TEST(RegistryTest, ValueIteratorEmptyKey) {
RegistryValueIterator iterator(HKEY_CURRENT_USER, this->root_key().c_str());
EXPECT_EQ(iterator.ValueCount(), 0U);
EXPECT_FALSE(iterator.Valid());
}
// Tests that the default value is seen by a value iterator.
TYPED_TEST(RegistryTest, ValueIteratorDefaultValue) {
const WStringPiece kTestString(L"i miss you");
ASSERT_EQ(TypeParam::Create(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_SET_VALUE)
.WriteValue(nullptr, kTestString.data()),
ERROR_SUCCESS);
RegistryValueIterator iterator(HKEY_CURRENT_USER, this->root_key().c_str());
EXPECT_EQ(iterator.ValueCount(), 1U);
ASSERT_TRUE(iterator.Valid());
EXPECT_EQ(WStringPiece(iterator.Name()), WStringPiece());
EXPECT_EQ(iterator.ValueSize(), (kTestString.size() + 1) * sizeof(wchar_t));
EXPECT_EQ(iterator.Type(), REG_SZ);
EXPECT_EQ(WStringPiece(iterator.Value()), kTestString);
++iterator;
EXPECT_FALSE(iterator.Valid());
}
TYPED_TEST(RegistryTest, RecursiveDelete) {
typename TypeParam::RegType key(TypeParam::Create());
// Create root_key()
// \->Bar (TestValue)
// \->Foo (TestValue)
// \->Bar
// \->Foo
// \->Moo
// \->Foo
// and delete root_key()
std::wstring key_path = this->root_key();
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_CREATE_SUB_KEY));
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"Bar", KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS, key.WriteValue(L"TestValue", L"TestData"));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_CREATE_SUB_KEY));
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"Moo", KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_CREATE_SUB_KEY));
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"Foo", KEY_WRITE));
key_path += L"\\Bar";
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_CREATE_SUB_KEY));
key_path += L"\\Foo";
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"Foo", KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS, key.WriteValue(L"TestValue", L"TestData"));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_READ));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_WRITE));
ASSERT_NE(ERROR_SUCCESS, key.DeleteEmptyKey(L""));
ASSERT_NE(ERROR_SUCCESS, key.DeleteEmptyKey(L"Bar\\Foo"));
ASSERT_NE(ERROR_SUCCESS, key.DeleteEmptyKey(L"Bar"));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteEmptyKey(L"Foo"));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_CREATE_SUB_KEY));
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"Bar", KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"Foo", KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteKey(L""));
ASSERT_NE(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_READ));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteKey(L"Bar"));
ASSERT_NE(ERROR_SUCCESS, key.DeleteKey(L"Bar"));
ASSERT_NE(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, key_path.c_str(), KEY_READ));
}
TYPED_TEST(RegistryTest, OpenSubKey) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_READ | KEY_CREATE_SUB_KEY));
ASSERT_NE(ERROR_SUCCESS, key.OpenKey(L"foo", KEY_READ));
ASSERT_EQ(ERROR_SUCCESS, key.CreateKey(L"foo", KEY_READ));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_READ));
ASSERT_EQ(ERROR_SUCCESS, key.OpenKey(L"foo", KEY_READ));
std::wstring foo_key = this->root_key() + L"\\Foo";
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, foo_key.c_str(), KEY_READ));
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_WRITE));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteKey(L"foo"));
}
namespace {
class TestChangeDelegate {
public:
TestChangeDelegate() = default;
~TestChangeDelegate() = default;
void OnKeyChanged() {
RunLoop::QuitCurrentWhenIdleDeprecated();
called_ = true;
}
bool WasCalled() {
bool was_called = called_;
called_ = false;
return was_called;
}
private:
bool called_ = false;
};
} // namespace
TYPED_TEST(RegistryTest, ChangeCallback) {
typename TypeParam::RegType key(TypeParam::Create());
TestChangeDelegate delegate;
test::TaskEnvironment task_environment;
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_READ));
ASSERT_TRUE(key.StartWatching(
BindOnce(&TestChangeDelegate::OnKeyChanged, Unretained(&delegate))));
EXPECT_FALSE(delegate.WasCalled());
// Make some change.
typename TypeParam::RegType key2(TypeParam::Create());
ASSERT_EQ(ERROR_SUCCESS,
key2.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_READ | KEY_SET_VALUE));
ASSERT_TRUE(key2.Valid());
EXPECT_EQ(ERROR_SUCCESS, key2.WriteValue(L"name", L"data"));
// Allow delivery of the notification.
EXPECT_FALSE(delegate.WasCalled());
RunLoop().Run();
ASSERT_TRUE(delegate.WasCalled());
EXPECT_FALSE(delegate.WasCalled());
ASSERT_TRUE(key.StartWatching(
BindOnce(&TestChangeDelegate::OnKeyChanged, Unretained(&delegate))));
// Change something else.
EXPECT_EQ(ERROR_SUCCESS, key2.WriteValue(L"name2", L"data2"));
RunLoop().Run();
ASSERT_TRUE(delegate.WasCalled());
ASSERT_TRUE(key.StartWatching(
BindOnce(&TestChangeDelegate::OnKeyChanged, Unretained(&delegate))));
RunLoop().RunUntilIdle();
EXPECT_FALSE(delegate.WasCalled());
}
namespace {
// A thread that runs tasks from a TestMockTimeTaskRunner.
class RegistryWatcherThread : public SimpleThread {
public:
explicit RegistryWatcherThread(
scoped_refptr<base::TestMockTimeTaskRunner> task_runner)
: SimpleThread("RegistryWatcherThread"),
task_runner_(std::move(task_runner)) {}
private:
void Run() override {
task_runner_->DetachFromThread();
task_runner_->RunUntilIdle();
}
const scoped_refptr<base::TestMockTimeTaskRunner> task_runner_;
};
} // namespace
TYPED_TEST(RegistryTest, WatcherNotSignaledOnInitiatingThreadExit) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_READ),
ERROR_SUCCESS);
auto test_task_runner = base::MakeRefCounted<base::TestMockTimeTaskRunner>(
base::TestMockTimeTaskRunner::Type::kBoundToThread);
::testing::StrictMock<
base::MockCallback<typename TypeParam::RegType::ChangeCallback>>
change_cb;
test_task_runner->PostTask(
FROM_HERE, BindOnce(IgnoreResult(&TypeParam::RegType::StartWatching),
Unretained(&key), change_cb.Get()));
{
// Start the watch on a thread that then goes away.
RegistryWatcherThread watcher_thread(test_task_runner);
watcher_thread.Start();
watcher_thread.Join();
}
// Termination of the thread should not cause a notification to get sent.
ASSERT_TRUE(::testing::Mock::VerifyAndClearExpectations(&change_cb));
test_task_runner->DetachFromThread();
ASSERT_FALSE(test_task_runner->HasPendingTask());
// Expect that a notification is sent when a change is made. Exit the run loop
// when this happens.
base::RunLoop run_loop;
EXPECT_CALL(change_cb, Run).WillOnce([&run_loop]() { run_loop.Quit(); });
// Make some change.
typename TypeParam::RegType key2(TypeParam::Create());
ASSERT_EQ(key2.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_READ | KEY_SET_VALUE),
ERROR_SUCCESS);
ASSERT_TRUE(key2.Valid());
ASSERT_EQ(key2.WriteValue(L"name", L"data"), ERROR_SUCCESS);
// Wait for the watcher to be signaled.
run_loop.Run();
}
TYPED_TEST(RegistryTest, TestMoveConstruct) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(
key.Open(HKEY_CURRENT_USER, this->root_key().c_str(), KEY_SET_VALUE),
ERROR_SUCCESS);
typename TypeParam::RegType key2(std::move(key));
// The old key should be meaningless now.
EXPECT_EQ(key.Handle(), nullptr);
// And the new one should work just fine.
EXPECT_NE(key2.Handle(), nullptr);
EXPECT_EQ(key2.WriteValue(L"foo", 1U), ERROR_SUCCESS);
}
TYPED_TEST(RegistryTest, TestMoveAssign) {
typename TypeParam::RegType key(TypeParam::Create());
typename TypeParam::RegType key2(TypeParam::Create());
const wchar_t kFooValueName[] = L"foo";
ASSERT_EQ(key.Open(HKEY_CURRENT_USER, this->root_key().c_str(),
KEY_SET_VALUE | KEY_QUERY_VALUE),
ERROR_SUCCESS);
ASSERT_EQ(key.WriteValue(kFooValueName, 1U), ERROR_SUCCESS);
ASSERT_EQ(key2.Create(HKEY_CURRENT_USER,
(this->root_key() + L"\\child").c_str(), KEY_SET_VALUE),
ERROR_SUCCESS);
key2 = std::move(key);
// The old key should be meaningless now.
EXPECT_EQ(key.Handle(), nullptr);
// And the new one should hold what was the old one.
EXPECT_NE(key2.Handle(), nullptr);
DWORD foo = 0;
ASSERT_EQ(key2.ReadValueDW(kFooValueName, &foo), ERROR_SUCCESS);
EXPECT_EQ(foo, 1U);
}
// Verify that either the platform, or the API-integration, causes deletion
// attempts via an invalid handle to fail with the expected error code.
TYPED_TEST(RegistryTest, DeleteWithInvalidRegKey) {
typename TypeParam::RegType key(TypeParam::Create());
static const wchar_t kFooName[] = L"foo";
EXPECT_EQ(key.DeleteKey(kFooName), ERROR_INVALID_HANDLE);
EXPECT_EQ(key.DeleteEmptyKey(kFooName), ERROR_INVALID_HANDLE);
EXPECT_EQ(key.DeleteValue(kFooName), ERROR_INVALID_HANDLE);
}
namespace {
// A test harness for tests that use HKLM to test WoW redirection and such.
// TODO(https://crbug.com/377917): The tests here that write to the registry are
// disabled because they need work to handle parallel runs of different tests.
template <typename Traits>
class RegistryTestHKLM : public ::testing::Test {
protected:
enum : REGSAM {
#if defined(_WIN64)
kNativeViewMask = KEY_WOW64_64KEY,
kRedirectedViewMask = KEY_WOW64_32KEY,
#else
kNativeViewMask = KEY_WOW64_32KEY,
kRedirectedViewMask = KEY_WOW64_64KEY,
#endif // _WIN64
};
RegistryTestHKLM()
: foo_software_key_(std::wstring(L"Software\\") + kRootKey + L"\\Foo") {}
static bool IsRedirectorPresent() {
#if defined(_WIN64)
return true;
#else
return OSInfo::GetInstance()->IsWowX86OnAMD64();
#endif
}
const std::wstring foo_software_key_;
};
} // namespace
TYPED_TEST_SUITE(RegistryTestHKLM, RegistryTypes, RegistryTypeNames);
namespace {
template <typename Traits>
class RegistryTestHKLMAdmin : public RegistryTestHKLM<Traits> {
protected:
void SetUp() override {
if (!this->IsRedirectorPresent()) {
GTEST_SKIP();
}
if (!::IsUserAnAdmin()) {
GTEST_SKIP();
}
// Clean up any stale registry keys.
for (const REGSAM mask :
{this->kNativeViewMask, this->kRedirectedViewMask}) {
typename Traits::RegType key(Traits::Create());
key.Open(HKEY_LOCAL_MACHINE, L"Software", KEY_SET_VALUE | mask);
key.DeleteKey(kRootKey);
}
}
};
} // namespace
TYPED_TEST_SUITE(RegistryTestHKLMAdmin, RegistryTypes, RegistryTypeNames);
// This test requires running as an Administrator as it tests redirected
// registry writes to HKLM\Software
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa384253.aspx
TYPED_TEST(RegistryTestHKLMAdmin, Wow64RedirectedFromNative) {
typename TypeParam::RegType key(TypeParam::Create());
// Test redirected key access from non-redirected.
ASSERT_EQ(ERROR_SUCCESS,
key.Create(HKEY_LOCAL_MACHINE, this->foo_software_key_.c_str(),
KEY_WRITE | this->kRedirectedViewMask));
ASSERT_NE(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE,
this->foo_software_key_.c_str(), KEY_READ));
ASSERT_NE(ERROR_SUCCESS,
key.Open(HKEY_LOCAL_MACHINE, this->foo_software_key_.c_str(),
KEY_READ | this->kNativeViewMask));
// Open the non-redirected view of the parent and try to delete the test key.
ASSERT_EQ(ERROR_SUCCESS,
key.Open(HKEY_LOCAL_MACHINE, L"Software", KEY_SET_VALUE));
ASSERT_NE(ERROR_SUCCESS, key.DeleteKey(kRootKey));
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE, L"Software",
KEY_SET_VALUE | this->kNativeViewMask));
ASSERT_NE(ERROR_SUCCESS, key.DeleteKey(kRootKey));
// Open the redirected view and delete the key created above.
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE, L"Software",
KEY_SET_VALUE | this->kRedirectedViewMask));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteKey(kRootKey));
}
// Test for the issue found in http://crbug.com/384587 where OpenKey would call
// Close() and reset wow64_access_ flag to 0 and cause a NOTREACHED to hit on a
// subsequent OpenKey call.
TYPED_TEST(RegistryTestHKLM, SameWowFlags) {
typename TypeParam::RegType key(TypeParam::Create());
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE, L"Software",
KEY_READ | KEY_WOW64_64KEY));
ASSERT_EQ(ERROR_SUCCESS,
key.OpenKey(L"Microsoft", KEY_READ | KEY_WOW64_64KEY));
ASSERT_EQ(ERROR_SUCCESS, key.OpenKey(L"Windows", KEY_READ | KEY_WOW64_64KEY));
}
TYPED_TEST(RegistryTestHKLMAdmin, Wow64NativeFromRedirected) {
typename TypeParam::RegType key(TypeParam::Create());
// Test non-redirected key access from redirected.
ASSERT_EQ(ERROR_SUCCESS,
key.Create(HKEY_LOCAL_MACHINE, this->foo_software_key_.c_str(),
KEY_WRITE | this->kNativeViewMask));
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE,
this->foo_software_key_.c_str(), KEY_READ));
ASSERT_NE(ERROR_SUCCESS,
key.Open(HKEY_LOCAL_MACHINE, this->foo_software_key_.c_str(),
KEY_READ | this->kRedirectedViewMask));
// Open the redirected view of the parent and try to delete the test key
// from the non-redirected view.
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE, L"Software",
KEY_SET_VALUE | this->kRedirectedViewMask));
ASSERT_NE(ERROR_SUCCESS, key.DeleteKey(kRootKey));
ASSERT_EQ(ERROR_SUCCESS, key.Open(HKEY_LOCAL_MACHINE, L"Software",
KEY_SET_VALUE | this->kNativeViewMask));
ASSERT_EQ(ERROR_SUCCESS, key.DeleteKey(kRootKey));
}
} // namespace base::win